FCRNet: Fast Fourier convolutional residual network for ventilator bearing fault diagnosis
This study presents FCRNet, a Fast Fourier Convolution Residual Network, tailored for fault diagnosis of mine ventilation bearings under complex operating conditions. By integrating residual learning with Fast Fourier Convolution (FFC), FCRNet employs a dual-branch architecture to effectively captur...
Saved in:
| Published in | PloS one Vol. 20; no. 7; p. e0327342 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
11.07.2025
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0327342 |
Cover
| Summary: | This study presents FCRNet, a Fast Fourier Convolution Residual Network, tailored for fault diagnosis of mine ventilation bearings under complex operating conditions. By integrating residual learning with Fast Fourier Convolution (FFC), FCRNet employs a dual-branch architecture to effectively capture local spatial features and global frequency patterns. A Spectral Transformation (ST) module achieves unified processing of multi-scale spatial and frequency information by integrating local Fourier features (LFF), global fourier features (GFF), and local time-domain features (LF), overcoming the limitations of conventional convolutional approaches. The testing results on publicly available datasets and our self-built platform validate that the proposed method outperforms several existing fault diagnosis methods at various noise levels, providing strong support for the condition monitoring of mine ventilation. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1932-6203 1932-6203 |
| DOI: | 10.1371/journal.pone.0327342 |