Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population

We aimed to improve the diagnostic accuracy of myocardial perfusion SPECT (MPS) by integrating clinical data and quantitative image features with machine learning (ML) algorithms. 1,181 rest 201Tl/stress 99mTc-sestamibi dual-isotope MPS studies [713 consecutive cases with correlating invasive corona...

Full description

Saved in:
Bibliographic Details
Published inJournal of nuclear cardiology Vol. 20; no. 4; pp. 553 - 562
Main Authors Arsanjani, Reza, Xu, Yuan, Dey, Damini, Vahistha, Vishal, Shalev, Aryeh, Nakanishi, Rine, Hayes, Sean, Fish, Mathews, Berman, Daniel, Germano, Guido, Slomka, Piotr J.
Format Journal Article
LanguageEnglish
Published Boston Elsevier Inc 01.08.2013
Springer US
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1071-3581
1532-6551
1532-6551
DOI10.1007/s12350-013-9706-2

Cover

Abstract We aimed to improve the diagnostic accuracy of myocardial perfusion SPECT (MPS) by integrating clinical data and quantitative image features with machine learning (ML) algorithms. 1,181 rest 201Tl/stress 99mTc-sestamibi dual-isotope MPS studies [713 consecutive cases with correlating invasive coronary angiography (ICA) and suspected coronary artery disease (CAD) and 468 with low likelihood (LLk) of CAD <5%] were considered. Cases with stenosis <70% by ICA and LLk of CAD were considered normal. Total stress perfusion deficit (TPD) for supine/prone data, stress/rest perfusion change, and transient ischemic dilatation were derived by automated perfusion quantification software and were combined with age, sex, and post-electrocardiogram CAD probability by a boosted ensemble ML algorithm (LogitBoost). The diagnostic accuracy of the model for prediction of obstructive CAD ≥70% was compared to standard prone/supine quantification and to visual analysis by two experienced readers utilizing all imaging, quantitative, and clinical data. Tenfold stratified cross-validation was performed. The diagnostic accuracy of ML (87.3% ± 2.1%) was similar to Expert 1 (86.0% ± 2.1%), but superior to combined supine/prone TPD (82.8% ± 2.2%) and Expert 2 (82.1% ± 2.2%) (P < .01). The receiver operator characteristic areas under curve for ML algorithm (0.94 ± 0.01) were higher than those for TPD and both visual readers (P < .001). The sensitivity of ML algorithm (78.9% ± 4.2%) was similar to TPD (75.6% ± 4.4%) and Expert 1 (76.3% ± 4.3%), but higher than that of Expert 2 (71.1% ± 4.6%), (P < .01). The specificity of ML algorithm (92.1% ± 2.2%) was similar to Expert 1 (91.4% ± 2.2%) and Expert 2 (88.3% ± 2.5%), but higher than TPD (86.8% ± 2.6%), (P < .01). ML significantly improves diagnostic performance of MPS by computational integration of quantitative perfusion and clinical data to the level rivaling expert analysis.
AbstractList We aimed to improve the diagnostic accuracy of myocardial perfusion SPECT (MPS) by integrating clinical data and quantitative image features with machine learning (ML) algorithms. 1,181 rest ^sup 201^Tl/stress ^sup 99m^Tc-sestamibi dual-isotope MPS studies [713 consecutive cases with correlating invasive coronary angiography (ICA) and suspected coronary artery disease (CAD) and 468 with low likelihood (LLk) of CAD <5%] were considered. Cases with stenosis <70% by ICA and LLk of CAD were considered normal. Total stress perfusion deficit (TPD) for supine/prone data, stress/rest perfusion change, and transient ischemic dilatation were derived by automated perfusion quantification software and were combined with age, sex, and post-electrocardiogram CAD probability by a boosted ensemble ML algorithm (LogitBoost). The diagnostic accuracy of the model for prediction of obstructive CAD >=70% was compared to standard prone/supine quantification and to visual analysis by two experienced readers utilizing all imaging, quantitative, and clinical data. Tenfold stratified cross-validation was performed. The diagnostic accuracy of ML (87.3% ± 2.1%) was similar to Expert 1 (86.0% ± 2.1%), but superior to combined supine/prone TPD (82.8% ± 2.2%) and Expert 2 (82.1% ± 2.2%) (P < .01). The receiver operator characteristic areas under curve for ML algorithm (0.94 ± 0.01) were higher than those for TPD and both visual readers (P < .001). The sensitivity of ML algorithm (78.9% ± 4.2%) was similar to TPD (75.6% ± 4.4%) and Expert 1 (76.3% ± 4.3%), but higher than that of Expert 2 (71.1% ± 4.6%), (P < .01). The specificity of ML algorithm (92.1% ± 2.2%) was similar to Expert 1 (91.4% ± 2.2%) and Expert 2 (88.3% ± 2.5%), but higher than TPD (86.8% ± 2.6%), (P < .01). ML significantly improves diagnostic performance of MPS by computational integration of quantitative perfusion and clinical data to the level rivaling expert analysis.[PUBLICATION ABSTRACT]
We aimed to improve the diagnostic accuracy of myocardial perfusion SPECT (MPS) by integrating clinical data and quantitative image features with machine learning (ML) algorithms.OBJECTIVEWe aimed to improve the diagnostic accuracy of myocardial perfusion SPECT (MPS) by integrating clinical data and quantitative image features with machine learning (ML) algorithms.1,181 rest (201)Tl/stress (99m)Tc-sestamibi dual-isotope MPS studies [713 consecutive cases with correlating invasive coronary angiography (ICA) and suspected coronary artery disease (CAD) and 468 with low likelihood (LLk) of CAD <5%] were considered. Cases with stenosis <70% by ICA and LLk of CAD were considered normal. Total stress perfusion deficit (TPD) for supine/prone data, stress/rest perfusion change, and transient ischemic dilatation were derived by automated perfusion quantification software and were combined with age, sex, and post-electrocardiogram CAD probability by a boosted ensemble ML algorithm (LogitBoost). The diagnostic accuracy of the model for prediction of obstructive CAD ≥70% was compared to standard prone/supine quantification and to visual analysis by two experienced readers utilizing all imaging, quantitative, and clinical data. Tenfold stratified cross-validation was performed.METHODS1,181 rest (201)Tl/stress (99m)Tc-sestamibi dual-isotope MPS studies [713 consecutive cases with correlating invasive coronary angiography (ICA) and suspected coronary artery disease (CAD) and 468 with low likelihood (LLk) of CAD <5%] were considered. Cases with stenosis <70% by ICA and LLk of CAD were considered normal. Total stress perfusion deficit (TPD) for supine/prone data, stress/rest perfusion change, and transient ischemic dilatation were derived by automated perfusion quantification software and were combined with age, sex, and post-electrocardiogram CAD probability by a boosted ensemble ML algorithm (LogitBoost). The diagnostic accuracy of the model for prediction of obstructive CAD ≥70% was compared to standard prone/supine quantification and to visual analysis by two experienced readers utilizing all imaging, quantitative, and clinical data. Tenfold stratified cross-validation was performed.The diagnostic accuracy of ML (87.3% ± 2.1%) was similar to Expert 1 (86.0% ± 2.1%), but superior to combined supine/prone TPD (82.8% ± 2.2%) and Expert 2 (82.1% ± 2.2%) (P < .01). The receiver operator characteristic areas under curve for ML algorithm (0.94 ± 0.01) were higher than those for TPD and both visual readers (P < .001). The sensitivity of ML algorithm (78.9% ± 4.2%) was similar to TPD (75.6% ± 4.4%) and Expert 1 (76.3% ± 4.3%), but higher than that of Expert 2 (71.1% ± 4.6%), (P < .01). The specificity of ML algorithm (92.1% ± 2.2%) was similar to Expert 1 (91.4% ± 2.2%) and Expert 2 (88.3% ± 2.5%), but higher than TPD (86.8% ± 2.6%), (P < .01).RESULTSThe diagnostic accuracy of ML (87.3% ± 2.1%) was similar to Expert 1 (86.0% ± 2.1%), but superior to combined supine/prone TPD (82.8% ± 2.2%) and Expert 2 (82.1% ± 2.2%) (P < .01). The receiver operator characteristic areas under curve for ML algorithm (0.94 ± 0.01) were higher than those for TPD and both visual readers (P < .001). The sensitivity of ML algorithm (78.9% ± 4.2%) was similar to TPD (75.6% ± 4.4%) and Expert 1 (76.3% ± 4.3%), but higher than that of Expert 2 (71.1% ± 4.6%), (P < .01). The specificity of ML algorithm (92.1% ± 2.2%) was similar to Expert 1 (91.4% ± 2.2%) and Expert 2 (88.3% ± 2.5%), but higher than TPD (86.8% ± 2.6%), (P < .01).ML significantly improves diagnostic performance of MPS by computational integration of quantitative perfusion and clinical data to the level rivaling expert analysis.CONCLUSIONML significantly improves diagnostic performance of MPS by computational integration of quantitative perfusion and clinical data to the level rivaling expert analysis.
We aimed to improve the diagnostic accuracy of myocardial perfusion SPECT (MPS) by integrating clinical data and quantitative image features with machine learning (ML) algorithms. 1,181 rest 201Tl/stress 99mTc-sestamibi dual-isotope MPS studies [713 consecutive cases with correlating invasive coronary angiography (ICA) and suspected coronary artery disease (CAD) and 468 with low likelihood (LLk) of CAD <5%] were considered. Cases with stenosis <70% by ICA and LLk of CAD were considered normal. Total stress perfusion deficit (TPD) for supine/prone data, stress/rest perfusion change, and transient ischemic dilatation were derived by automated perfusion quantification software and were combined with age, sex, and post-electrocardiogram CAD probability by a boosted ensemble ML algorithm (LogitBoost). The diagnostic accuracy of the model for prediction of obstructive CAD ≥70% was compared to standard prone/supine quantification and to visual analysis by two experienced readers utilizing all imaging, quantitative, and clinical data. Tenfold stratified cross-validation was performed. The diagnostic accuracy of ML (87.3% ± 2.1%) was similar to Expert 1 (86.0% ± 2.1%), but superior to combined supine/prone TPD (82.8% ± 2.2%) and Expert 2 (82.1% ± 2.2%) (P < .01). The receiver operator characteristic areas under curve for ML algorithm (0.94 ± 0.01) were higher than those for TPD and both visual readers (P < .001). The sensitivity of ML algorithm (78.9% ± 4.2%) was similar to TPD (75.6% ± 4.4%) and Expert 1 (76.3% ± 4.3%), but higher than that of Expert 2 (71.1% ± 4.6%), (P < .01). The specificity of ML algorithm (92.1% ± 2.2%) was similar to Expert 1 (91.4% ± 2.2%) and Expert 2 (88.3% ± 2.5%), but higher than TPD (86.8% ± 2.6%), (P < .01). ML significantly improves diagnostic performance of MPS by computational integration of quantitative perfusion and clinical data to the level rivaling expert analysis.
We aimed to improve the diagnostic accuracy of myocardial perfusion SPECT (MPS) by integrating clinical data and quantitative image features with machine learning (ML) algorithms. 1,181 rest (201)Tl/stress (99m)Tc-sestamibi dual-isotope MPS studies [713 consecutive cases with correlating invasive coronary angiography (ICA) and suspected coronary artery disease (CAD) and 468 with low likelihood (LLk) of CAD <5%] were considered. Cases with stenosis <70% by ICA and LLk of CAD were considered normal. Total stress perfusion deficit (TPD) for supine/prone data, stress/rest perfusion change, and transient ischemic dilatation were derived by automated perfusion quantification software and were combined with age, sex, and post-electrocardiogram CAD probability by a boosted ensemble ML algorithm (LogitBoost). The diagnostic accuracy of the model for prediction of obstructive CAD ≥70% was compared to standard prone/supine quantification and to visual analysis by two experienced readers utilizing all imaging, quantitative, and clinical data. Tenfold stratified cross-validation was performed. The diagnostic accuracy of ML (87.3% ± 2.1%) was similar to Expert 1 (86.0% ± 2.1%), but superior to combined supine/prone TPD (82.8% ± 2.2%) and Expert 2 (82.1% ± 2.2%) (P < .01). The receiver operator characteristic areas under curve for ML algorithm (0.94 ± 0.01) were higher than those for TPD and both visual readers (P < .001). The sensitivity of ML algorithm (78.9% ± 4.2%) was similar to TPD (75.6% ± 4.4%) and Expert 1 (76.3% ± 4.3%), but higher than that of Expert 2 (71.1% ± 4.6%), (P < .01). The specificity of ML algorithm (92.1% ± 2.2%) was similar to Expert 1 (91.4% ± 2.2%) and Expert 2 (88.3% ± 2.5%), but higher than TPD (86.8% ± 2.6%), (P < .01). ML significantly improves diagnostic performance of MPS by computational integration of quantitative perfusion and clinical data to the level rivaling expert analysis.
Objective We aimed to improve the diagnostic accuracy of myocardial perfusion SPECT (MPS) by integrating clinical data and quantitative image features with machine learning (ML) algorithms. Methods 1,181 rest 201 Tl/stress 99m Tc-sestamibi dual-isotope MPS studies [713 consecutive cases with correlating invasive coronary angiography (ICA) and suspected coronary artery disease (CAD) and 468 with low likelihood (LLk) of CAD <5%] were considered. Cases with stenosis <70% by ICA and LLk of CAD were considered normal. Total stress perfusion deficit (TPD) for supine/prone data, stress/rest perfusion change, and transient ischemic dilatation were derived by automated perfusion quantification software and were combined with age, sex, and post-electrocardiogram CAD probability by a boosted ensemble ML algorithm (LogitBoost). The diagnostic accuracy of the model for prediction of obstructive CAD ≥70% was compared to standard prone/supine quantification and to visual analysis by two experienced readers utilizing all imaging, quantitative, and clinical data. Tenfold stratified cross-validation was performed. Results The diagnostic accuracy of ML (87.3% ± 2.1%) was similar to Expert 1 (86.0% ± 2.1%), but superior to combined supine/prone TPD (82.8% ± 2.2%) and Expert 2 (82.1% ± 2.2%) ( P  < .01). The receiver operator characteristic areas under curve for ML algorithm (0.94 ± 0.01) were higher than those for TPD and both visual readers ( P  < .001). The sensitivity of ML algorithm (78.9% ± 4.2%) was similar to TPD (75.6% ± 4.4%) and Expert 1 (76.3% ± 4.3%), but higher than that of Expert 2 (71.1% ± 4.6%), ( P  < .01). The specificity of ML algorithm (92.1% ± 2.2%) was similar to Expert 1 (91.4% ± 2.2%) and Expert 2 (88.3% ± 2.5%), but higher than TPD (86.8% ± 2.6%), ( P  < .01). Conclusion ML significantly improves diagnostic performance of MPS by computational integration of quantitative perfusion and clinical data to the level rivaling expert analysis.
Author Arsanjani, Reza
Dey, Damini
Hayes, Sean
Nakanishi, Rine
Germano, Guido
Slomka, Piotr J.
Xu, Yuan
Berman, Daniel
Fish, Mathews
Vahistha, Vishal
Shalev, Aryeh
AuthorAffiliation a Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
c Oregon Heart and Vascular Institute, Sacred Heart Medical Center, Springfield, OR
b David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
AuthorAffiliation_xml – name: b David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
– name: c Oregon Heart and Vascular Institute, Sacred Heart Medical Center, Springfield, OR
– name: a Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
Author_xml – sequence: 1
  givenname: Reza
  surname: Arsanjani
  fullname: Arsanjani, Reza
  organization: Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Taper A238 90048 Los Angeles, CA, USA
– sequence: 2
  givenname: Yuan
  surname: Xu
  fullname: Xu, Yuan
  organization: Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Taper A238 90048 Los Angeles, CA, USA
– sequence: 3
  givenname: Damini
  surname: Dey
  fullname: Dey, Damini
  organization: Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Taper A238 90048 Los Angeles, CA, USA
– sequence: 4
  givenname: Vishal
  surname: Vahistha
  fullname: Vahistha, Vishal
  organization: Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Taper A238 90048 Los Angeles, CA, USA
– sequence: 5
  givenname: Aryeh
  surname: Shalev
  fullname: Shalev, Aryeh
  organization: Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Taper A238 90048 Los Angeles, CA, USA
– sequence: 6
  givenname: Rine
  surname: Nakanishi
  fullname: Nakanishi, Rine
  organization: Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Taper A238 90048 Los Angeles, CA, USA
– sequence: 7
  givenname: Sean
  surname: Hayes
  fullname: Hayes, Sean
  organization: Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Taper A238 90048 Los Angeles, CA, USA
– sequence: 8
  givenname: Mathews
  surname: Fish
  fullname: Fish, Mathews
  organization: Oregon Heart and Vascular Institute, Sacred Heart Medical Center, Springfield, OR, USA
– sequence: 9
  givenname: Daniel
  surname: Berman
  fullname: Berman, Daniel
  organization: Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Taper A238 90048 Los Angeles, CA, USA
– sequence: 10
  givenname: Guido
  surname: Germano
  fullname: Germano, Guido
  organization: Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Taper A238 90048 Los Angeles, CA, USA
– sequence: 11
  givenname: Piotr J.
  surname: Slomka
  fullname: Slomka, Piotr J.
  email: slomkap@cshs.org, piotr.slomka@cshs.org
  organization: Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Taper A238 90048 Los Angeles, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23703378$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB_wA9ggS2zYBPwgsSMkpGrUlkqVQKKsrRv7ZuoqsYOdDJotvxzPAyhdjFjZ8v3O9fG5Pi2OfPBYFC8Zfcsole8S46KiJWWibCStS_6kOGGV4GVdVewo76lkpagUOy5OU7qnlDaiaZ4Vx1xIKoRUJ8XP62GMYYWWgDFzBLMmoSPDOhiI1kFPRozdnFzw5OuXi8Ut6UIkFic00-YssybE4CGuCcQJ82JdQkhI2jUZwNw5j6RHiN75JXGeAOkhLpGMYZx72DR5XjztoE_4Yr-eFd8uL24Xn8qbz1fXi_Ob0lRKTaVggjeWqQraxlYKlJIVqg5k25iKt6IxtDVoO9q0UBvZNVLxXKib1lqJQomzgu_6zn6E9Q_oez1GN2TrmlG9CVTvAtU5UL0JVPMs-rgTjXM7oDXopwh_hQGc_rfi3Z1ehpUWUnC6vfXNvkEM32dMkx5cMtj34DHMSbM8EV6_l1v09SP0PszR50w2lKqZYJJl6tVDR3-s_J5pBuQOMDGkFLHTxk3bpLNB1x98LHuk_J-A9qmmzPolxgemD4g-7ESY571yWZSMQ5_H52L-WdoGd0D9CyBh6l8
CitedBy_id crossref_primary_10_1016_j_jcmg_2017_07_024
crossref_primary_10_32604_cmes_2024_055599
crossref_primary_10_15420_icr_2020_04
crossref_primary_10_1007_s12350_019_01873_y
crossref_primary_10_3389_fcvm_2021_736223
crossref_primary_10_1007_s12350_022_03166_3
crossref_primary_10_1007_s12410_019_9490_8
crossref_primary_10_1016_j_cjca_2018_04_032
crossref_primary_10_1007_s12265_022_10339_5
crossref_primary_10_1016_j_chest_2020_03_074
crossref_primary_10_1007_s11356_023_31779_9
crossref_primary_10_1007_s12350_022_03049_7
crossref_primary_10_18137_cardiometry_2022_22_136142
crossref_primary_10_1016_j_remnie_2019_04_005
crossref_primary_10_1007_s12350_015_0150_3
crossref_primary_10_1186_s12872_022_03022_9
crossref_primary_10_1007_s12350_018_1432_3
crossref_primary_10_1016_j_compbiomed_2019_103346
crossref_primary_10_1007_s12350_018_1284_x
crossref_primary_10_1186_s41824_019_0052_8
crossref_primary_10_1038_s41598_019_43951_8
crossref_primary_10_1093_eurheartj_ehy404
crossref_primary_10_1007_s42058_022_00091_9
crossref_primary_10_3390_jcm11133918
crossref_primary_10_1186_s13550_024_01179_2
crossref_primary_10_1007_s11936_020_00838_6
crossref_primary_10_3389_fcvm_2022_956147
crossref_primary_10_1007_s12149_022_01762_4
crossref_primary_10_1007_s12350_020_02187_0
crossref_primary_10_17996_anc_22_00155
crossref_primary_10_1016_j_cjca_2021_09_030
crossref_primary_10_1007_s12350_014_0027_x
crossref_primary_10_7759_cureus_68472
crossref_primary_10_1093_ehjci_jez177
crossref_primary_10_1007_s10554_021_02209_z
crossref_primary_10_18038_estubtda_581811
crossref_primary_10_1155_2024_2991243
crossref_primary_10_1007_s12350_023_03333_0
crossref_primary_10_1007_s00259_021_05341_z
crossref_primary_10_1007_s11936_020_0805_5
crossref_primary_10_1007_s12350_020_02459_9
crossref_primary_10_1016_j_hfc_2023_03_005
crossref_primary_10_1186_s12872_021_02314_w
crossref_primary_10_1097_CRD_0000000000000294
crossref_primary_10_1111_jocs_15934
crossref_primary_10_3390_jcm14062095
crossref_primary_10_1177_2058460121990296
crossref_primary_10_1155_2022_9288452
crossref_primary_10_1016_j_jscai_2024_102558
crossref_primary_10_1007_s12410_019_9480_x
crossref_primary_10_1007_s43657_023_00137_7
crossref_primary_10_1016_j_ccl_2015_08_003
crossref_primary_10_1002_jcu_23215
crossref_primary_10_1007_s12350_014_9895_3
crossref_primary_10_18663_tjcl_1252801
crossref_primary_10_3390_app14052171
crossref_primary_10_1007_s00330_017_5223_z
crossref_primary_10_1016_j_pcad_2020_03_003
crossref_primary_10_1097_RTI_0000000000000584
crossref_primary_10_1007_s13665_023_00334_9
crossref_primary_10_1016_j_remn_2019_04_002
crossref_primary_10_15212_CVIA_2016_0052
crossref_primary_10_1038_s41598_022_06604_x
crossref_primary_10_2174_1570159X19666211108141446
crossref_primary_10_1016_j_compbiomed_2020_104095
crossref_primary_10_3389_fcvm_2020_00001
crossref_primary_10_15420_ecr_2022_11
crossref_primary_10_1007_s12350_017_0884_1
crossref_primary_10_1007_s12350_018_1304_x
crossref_primary_10_1007_s12350_016_0582_4
crossref_primary_10_3390_app11146362
crossref_primary_10_1016_j_jcmg_2020_08_024
crossref_primary_10_1259_bjro_20220021
crossref_primary_10_1016_j_knosys_2022_108877
crossref_primary_10_1038_s41598_023_33500_9
crossref_primary_10_3390_healthcare10020232
crossref_primary_10_1148_ryct_2021200512
crossref_primary_10_3389_fcvm_2022_839400
crossref_primary_10_1007_s13139_021_00733_3
crossref_primary_10_1080_17434440_2017_1300057
crossref_primary_10_1016_j_cpcardiol_2023_102349
crossref_primary_10_1016_j_ijcard_2021_04_009
crossref_primary_10_1007_s12350_015_0291_4
crossref_primary_10_17352_2455_2976_000187
crossref_primary_10_1016_j_cmpb_2020_105343
crossref_primary_10_3389_fcvm_2021_765693
crossref_primary_10_1007_s12350_020_02173_6
crossref_primary_10_1080_17434440_2020_1777855
crossref_primary_10_1007_s12149_018_1306_4
crossref_primary_10_1016_j_jcct_2015_03_005
crossref_primary_10_1016_j_mayocp_2020_01_038
crossref_primary_10_1016_j_jcmg_2018_01_020
crossref_primary_10_1136_heartjnl_2015_308670
crossref_primary_10_1007_s12471_019_01311_1
crossref_primary_10_1038_s41598_023_42142_w
crossref_primary_10_1088_1742_6596_1246_1_012030
crossref_primary_10_3389_fcvm_2022_945726
crossref_primary_10_3390_medsci11010020
crossref_primary_10_1161_CIRCIMAGING_117_007217
crossref_primary_10_1007_s12350_017_1057_y
crossref_primary_10_1007_s12350_022_02942_5
crossref_primary_10_1109_TSP_2016_2626250
crossref_primary_10_15420_usc_2019_19_2
crossref_primary_10_1016_j_compbiomed_2020_103893
crossref_primary_10_1016_j_jjcc_2021_11_017
crossref_primary_10_2967_jnumed_118_213538
crossref_primary_10_1007_s40336_014_0070_2
crossref_primary_10_20517_2574_1209_2023_123
crossref_primary_10_1016_j_jacc_2018_12_054
Cites_doi 10.1067/mnc.2002.121233
10.1007/s00259-003-1344-5
10.1016/j.nuclcard.2007.06.008
10.2967/jnumed.108.061333
10.1214/aos/1016218223
10.2307/2531595
10.1097/00019501-200411000-00010
10.1161/hc0402.102975
10.1016/j.nuclcard.2006.06.131
10.1016/j.nuclcard.2004.10.006
10.1007/s12350-010-9220-8
10.1016/S0735-1097(97)00388-4
10.2967/jnumed.109.067736
10.1016/S1071-3581(99)90037-5
10.1007/s12350-012-9527-8
10.1145/1656274.1656278
10.1016/S0002-9149(97)00306-8
10.1016/j.nuclcard.2006.10.021
10.1016/S0735-1097(83)80072-2
10.1016/0735-1097(95)00550-1
10.1161/01.CIR.0000080946.42225.4D
10.1016/j.jacc.2003.07.010
10.1016/S0735-1097(98)00501-4
10.1016/S1071-3581(96)90003-3
10.1007/s12350-010-9246-y
10.1093/bioinformatics/btf867
10.1080/01621459.1984.10478083
10.1016/S0735-1097(03)00085-8
10.1016/0735-1097(93)90557-H
10.1056/NEJM197906143002402
10.2174/1874431101004010136
10.4103/2228-7477.95295
10.1097/TA.0b013e31825ff59a
10.2967/jnumed.112.108969
ContentType Journal Article
Copyright 2013 American Society of Nuclear Cardiology. Published by ELSEVIER INC. All rights reserved.
American Society of Nuclear Cardiology 2013
Copyright_xml – notice: 2013 American Society of Nuclear Cardiology. Published by ELSEVIER INC. All rights reserved.
– notice: American Society of Nuclear Cardiology 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AO
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
KB0
M0S
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s12350-013-9706-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni Edition)
Medical Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Academic Middle East (New)
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1532-6551
EndPage 562
ExternalDocumentID oai:pubmedcentral.nih.gov:3732038
PMC3732038
3014634001
23703378
10_1007_s12350_013_9706_2
S1071358123033068
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01HL089765
– fundername: NHLBI NIH HHS
  grantid: R01 HL089765
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R01 HL089765 || HL
GroupedDBID ---
--K
-EM
-Y2
.GJ
06D
0R~
0VY
199
1B1
1N0
2.D
203
29L
29~
2JN
2JY
2KG
2LR
2VQ
30V
3V.
4.4
406
408
40D
53G
5GY
5VS
67Z
78A
7RV
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
96X
AAAVM
AABHQ
AABYN
AAEDT
AAEOY
AAFGU
AAHNG
AAIAL
AAJKR
AAKSU
AALRI
AANXM
AANZL
AAQFI
AAQXK
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAXUO
AAYFA
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABIPD
ABJNI
ABJOX
ABKAS
ABKCH
ABMAC
ABMQK
ABMYL
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIGE
ACIHN
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACREN
ACTTH
ACUDM
ACVWB
ACWMK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMDM
ADMUD
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEEQQ
AEFQL
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFAFS
AFBBN
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGKHE
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AITUG
AJBLW
AJDOV
AJRNO
AJZVZ
AKMHD
AKQUC
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AZFZN
BA0
BBWZM
BENPR
BGNMA
BKEYQ
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EO8
EO9
ESBYG
EX3
F5P
FDB
FEDTE
FERAY
FFXSO
FGOYB
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYUFA
G-Q
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GRRUI
HF~
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IHE
IKXTQ
IMOTQ
ITM
IWAJR
IXC
I~X
J-C
J0Z
J5H
JBSCW
JZLTJ
KOV
KPH
LLZTM
M1P
M41
M4Y
MA-
N2Q
N9A
NAPCQ
NDZJH
NF0
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P9S
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
R2-
R89
R9I
RHV
RIG
RNI
ROL
RPZ
RSV
RZK
S1Z
S26
S27
S28
S37
S3B
SCLPG
SDE
SDG
SDH
SEW
SHX
SISQX
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
SSZ
STPWE
SV3
SZ9
SZN
T13
T16
TSG
TT1
U2A
U9L
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
WOW
Z45
Z7U
Z7X
Z7Y
Z82
Z87
ZMTXR
ZOVNA
~A9
AAJBT
AAYZH
ABQSL
ABWVN
ACRPL
ADNMO
AFJKZ
ALIPV
AMRAJ
H13
NPVJJ
SJN
AAYXX
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHPBZ
AHWEU
AIGII
AIXLP
APXCP
AYFIA
CITATION
EFKBS
PHGZM
PHGZT
PJZUB
PPXIY
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ADTOC
AFFHD
UNPAY
ID FETCH-LOGICAL-c588t-31329d185ab9d58a8875e8fa7b9c52b39c0bcedf09ba6c7f9782c5269bdd7e383
IEDL.DBID U2A
ISSN 1071-3581
1532-6551
IngestDate Wed Oct 29 11:36:24 EDT 2025
Tue Sep 30 16:54:36 EDT 2025
Mon Sep 29 04:47:54 EDT 2025
Tue Oct 07 05:30:44 EDT 2025
Wed Feb 19 02:03:34 EST 2025
Thu Apr 24 23:05:33 EDT 2025
Sat Oct 25 05:40:01 EDT 2025
Fri Feb 21 02:36:10 EST 2025
Sat Mar 16 16:12:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords coronary artery disease
automated quantification
total perfusion deficit
Myocardial perfusion imaging: SPECT
machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c588t-31329d185ab9d58a8875e8fa7b9c52b39c0bcedf09ba6c7f9782c5269bdd7e383
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1007/s12350-013-9706-2
PMID 23703378
PQID 1398613171
PQPubID 54088
PageCount 10
ParticipantIDs unpaywall_primary_10_1007_s12350_013_9706_2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3732038
proquest_miscellaneous_1399264738
proquest_journals_1398613171
pubmed_primary_23703378
crossref_citationtrail_10_1007_s12350_013_9706_2
crossref_primary_10_1007_s12350_013_9706_2
springer_journals_10_1007_s12350_013_9706_2
elsevier_sciencedirect_doi_10_1007_s12350_013_9706_2
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: United States
– name: New York
PublicationTitle Journal of nuclear cardiology
PublicationTitleAbbrev J. Nucl. Cardiol
PublicationTitleAlternate J Nucl Cardiol
PublicationYear 2013
Publisher Elsevier Inc
Springer US
Springer Nature B.V
Publisher_xml – name: Elsevier Inc
– name: Springer US
– name: Springer Nature B.V
References Friedman, Hastie, Tibshirani (bib27) 2000; 28
Arsanjani, Xu, Hayes, Fish, Lemley, Gerlach (bib37) 2013; 54
Xu, Kavanagh, Fish, Gerlach, Ramesh, Lemley (bib18) 2009; 50
Stein, Hu, Chen, Yang, Stansbury, Scalea (bib43) 2012; 73
Scott, Aziz, Yasuda, Gewirtz (bib40) 2004; 15
Nishina, Slomka, Abidov, Yoda, Akincioglu, Kang (bib14) 2006; 47
Berman, Kang, Van Train, Lewin, Cohen, Areeda (bib9) 1998; 32
Berman, Kang, Hayes, Friedman, Cohen, Abidov (bib13) 2003; 41
Golub, McClellan, Herman, Travin, Kline, Aitken (bib36) 1996; 3
DeLong, DeLong, Clarke-Pearson (bib32) 1988; 44
Picaro, Cook (bib46) 1984; 79
Slomka, Nishina, Berman, Kang, Friedman, Hayes (bib3) 2004; 45
Diamond, Forrester (bib21) 1979; 300
Garcia, Cooke, Folks, Santana, Krawczynska, De Braal (bib39) 2001; 42
Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the international joint conference on artificial intelligence, vol 2, Montreal; 1995. p. 1137-43.
Xu, Arsanjani, Clond, Hyun, Lemley, Fish (bib25) 2012; 19
Diamond, Staniloff, Forrester, Pollock, Swan (bib11) 1983; 300
Candelieri, Conforti (bib41) 2010; 4
Slomka, Nishina, Abidov, Hayes, Friedman, Berman (bib10) 2007; 14
Underwood, Anagnostopoulos, Cerqueira, Ell, Flint, Harbinson (bib1) 2004; 31
Golub, Ahlberg, McClellan, Herman, Travin, Mather (bib35) 1999; 6
Matsumoto, Berman, Kavanagh, Gerlach, Hayes, Lewin (bib19) 2001; 42
Holly, Abbott, Al-Mallah, Calnon, Cohen, DiFilippo (bib7) 2010; 17
Danias, Ahlberg, Travin, Mahr, Abreu, Marini (bib8) 2002; 9
Cerqueira, Weissman, Dilsizian, Jacobs, Kaul, Laskey (bib26) 2002; 105
Slomka, Fish, Lorenzo, Nishina, Gerlach, Berman (bib22) 2006; 13
Germano, Kavanagh, Slomka, Van Kriekinge, Pollard, Berman (bib20) 2007; 14
Lindahl, Lanke, Lundin, Palmer, Edenbrandt (bib38) 1999; 40
Amanullah, Berman, Hachamovitch, Kiat, Kang, Friedman (bib2) 1997; 80
Berman, Kiat, Friedman, Wang, Van Train, Matzer (bib15) 1993; 22
Geisser (bib31) 1993
Slomka, Nishina, Berman, Akincioglu, Abidov, Friedman (bib4) 2005; 12
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib28) 2009; 11
Klocke, Baird, Lorell, Bateman, Messer, Berman (bib34) 2003; 108
Johnson, Verdesca, Aude, Xavier, Nott, Campanella (bib6) 1997; 30
Prasad, Slomka, Fish, Kavanagh, Gerlach, Hayes (bib23) 2010; 51
Xu, Fish, Gerlach, Lemley, Berman, Germano (bib33) 2010; 17
Germano, Kavanagh, Su, Mazzanti, Kiat, Hachamovitch (bib17) 1995; 36
Germano, Kiat, Kavanagh, Moriel, Mazzanti, Su (bib24) 1995; 36
Freund Y, Schapire R. Experiments with a new boosting algorithm. In: Machine learning: Proceedings of the thirteenth international conference, Bari; 1996. p. 148-56.
Amanullah, Kiat, Friedman, Berman (bib12) 1996; 27
Mohebbi, Ghassemian, Asl (bib42) 2011; 1
Hayes, De Lorenzo, Hachamovitch, Dhar, Hsu, Cohen (bib16) 2003; 44
Dettling, Bühlmann (bib30) 2003; 19
Lu, Wang, Chen, Zhao (bib44) 2013; 20
Abidov, Bax, Hayes, Hachamovitch, Cohen, Gerlach (bib5) 2003; 42
Berman, Kang, Van Train, Lewin, Cohen, Areeda (CR9) 1998; 32
Matsumoto, Berman, Kavanagh, Gerlach, Hayes, Lewin (CR19) 2001; 42
Xu, Fish, Gerlach, Lemley, Berman, Germano (CR33) 2010; 17
Diamond, Forrester (CR21) 1979; 300
Xu, Kavanagh, Fish, Gerlach, Ramesh, Lemley (CR18) 2009; 50
Slomka, Nishina, Abidov, Hayes, Friedman, Berman (CR10) 2007; 14
Germano, Kavanagh, Su, Mazzanti, Kiat, Hachamovitch (CR17) 1995; 36
Stein, Hu, Chen, Yang, Stansbury, Scalea (CR43) 2012; 73
Berman, Kang, Hayes, Friedman, Cohen, Abidov (CR13) 2003; 41
Amanullah, Kiat, Friedman, Berman (CR12) 1996; 27
Holly, Abbott, Al-Mallah, Calnon, Cohen, DiFilippo (CR7) 2010; 17
Golub, McClellan, Herman, Travin, Kline, Aitken (CR36) 1996; 3
Klocke, Baird, Lorell, Bateman, Messer, Berman (CR34) 2003; 108
Dettling, Bühlmann (CR30) 2003; 19
Friedman, Hastie, Tibshirani (CR27) 2000; 28
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (CR28) 2009; 11
Johnson, Verdesca, Aude, Xavier, Nott, Campanella (CR6) 1997; 30
Berman, Kiat, Friedman, Wang, Van Train, Matzer (CR15) 1993; 22
Scott, Aziz, Yasuda, Gewirtz (CR40) 2004; 15
Geisser (CR31) 1993
Xu, Arsanjani, Clond, Hyun, Lemley, Fish (CR25) 2012; 19
Golub, Ahlberg, McClellan, Herman, Travin, Mather (CR35) 1999; 6
Germano, Kiat, Kavanagh, Moriel, Mazzanti, Su (CR24) 1995; 36
Underwood, Anagnostopoulos, Cerqueira, Ell, Flint, Harbinson (CR1) 2004; 31
Lindahl, Lanke, Lundin, Palmer, Edenbrandt (CR38) 1999; 40
Danias, Ahlberg, Travin, Mahr, Abreu, Marini (CR8) 2002; 9
Diamond, Staniloff, Forrester, Pollock, Swan (CR11) 1983; 300
Hayes, De Lorenzo, Hachamovitch, Dhar, Hsu, Cohen (CR16) 2003; 44
Slomka, Nishina, Berman, Kang, Friedman, Hayes (CR3) 2004; 45
Lu, Wang, Chen, Zhao (CR44) 2013; 20
CR29
Garcia, Cooke, Folks, Santana, Krawczynska, De Braal (CR39) 2001; 42
Prasad, Slomka, Fish, Kavanagh, Gerlach, Hayes (CR23) 2010; 51
Mohebbi, Ghassemian, Asl (CR42) 2011; 1
Germano, Kavanagh, Slomka, Van Kriekinge, Pollard, Berman (CR20) 2007; 14
Slomka, Nishina, Berman, Akincioglu, Abidov, Friedman (CR4) 2005; 12
Picaro, Cook (CR46) 1984; 79
DeLong, DeLong, Clarke-Pearson (CR32) 1988; 44
Arsanjani, Xu, Hayes, Fish, Lemley, Gerlach (CR37) 2013; 54
CR45
Amanullah, Berman, Hachamovitch, Kiat, Kang, Friedman (CR2) 1997; 80
Abidov, Bax, Hayes, Hachamovitch, Cohen, Gerlach (CR5) 2003; 42
Nishina, Slomka, Abidov, Yoda, Akincioglu, Kang (CR14) 2006; 47
Cerqueira, Weissman, Dilsizian, Jacobs, Kaul, Laskey (CR26) 2002; 105
Slomka, Fish, Lorenzo, Nishina, Gerlach, Berman (CR22) 2006; 13
Candelieri, Conforti (CR41) 2010; 4
Picaro (10.1007/s12350-013-9706-2_bib46) 1984; 79
Underwood (10.1007/s12350-013-9706-2_bib1) 2004; 31
Xu (10.1007/s12350-013-9706-2_bib33) 2010; 17
Danias (10.1007/s12350-013-9706-2_bib8) 2002; 9
Klocke (10.1007/s12350-013-9706-2_bib34) 2003; 108
Slomka (10.1007/s12350-013-9706-2_bib4) 2005; 12
Arsanjani (10.1007/s12350-013-9706-2_bib37) 2013; 54
Berman (10.1007/s12350-013-9706-2_bib9) 1998; 32
Lu (10.1007/s12350-013-9706-2_bib44) 2013; 20
Johnson (10.1007/s12350-013-9706-2_bib6) 1997; 30
Slomka (10.1007/s12350-013-9706-2_bib3) 2004; 45
10.1007/s12350-013-9706-2_bib45
Hayes (10.1007/s12350-013-9706-2_bib16) 2003; 44
Slomka (10.1007/s12350-013-9706-2_bib22) 2006; 13
Berman (10.1007/s12350-013-9706-2_bib15) 1993; 22
Stein (10.1007/s12350-013-9706-2_bib43) 2012; 73
DeLong (10.1007/s12350-013-9706-2_bib32) 1988; 44
Xu (10.1007/s12350-013-9706-2_bib18) 2009; 50
Diamond (10.1007/s12350-013-9706-2_bib21) 1979; 300
Germano (10.1007/s12350-013-9706-2_bib17) 1995; 36
Matsumoto (10.1007/s12350-013-9706-2_bib19) 2001; 42
Prasad (10.1007/s12350-013-9706-2_bib23) 2010; 51
Amanullah (10.1007/s12350-013-9706-2_bib2) 1997; 80
Lindahl (10.1007/s12350-013-9706-2_bib38) 1999; 40
Garcia (10.1007/s12350-013-9706-2_bib39) 2001; 42
Golub (10.1007/s12350-013-9706-2_bib35) 1999; 6
Candelieri (10.1007/s12350-013-9706-2_bib41) 2010; 4
Dettling (10.1007/s12350-013-9706-2_bib30) 2003; 19
Diamond (10.1007/s12350-013-9706-2_bib11) 1983; 300
Mohebbi (10.1007/s12350-013-9706-2_bib42) 2011; 1
Berman (10.1007/s12350-013-9706-2_bib13) 2003; 41
Hall (10.1007/s12350-013-9706-2_bib28) 2009; 11
Geisser (10.1007/s12350-013-9706-2_bib31) 1993
Cerqueira (10.1007/s12350-013-9706-2_bib26) 2002; 105
Amanullah (10.1007/s12350-013-9706-2_bib12) 1996; 27
Germano (10.1007/s12350-013-9706-2_bib20) 2007; 14
Nishina (10.1007/s12350-013-9706-2_bib14) 2006; 47
Golub (10.1007/s12350-013-9706-2_bib36) 1996; 3
Holly (10.1007/s12350-013-9706-2_bib7) 2010; 17
Abidov (10.1007/s12350-013-9706-2_bib5) 2003; 42
10.1007/s12350-013-9706-2_bib29
Scott (10.1007/s12350-013-9706-2_bib40) 2004; 15
Slomka (10.1007/s12350-013-9706-2_bib10) 2007; 14
Germano (10.1007/s12350-013-9706-2_bib24) 1995; 36
Friedman (10.1007/s12350-013-9706-2_bib27) 2000; 28
Xu (10.1007/s12350-013-9706-2_bib25) 2012; 19
References_xml – volume: 19
  start-page: 1061
  year: 2003
  end-page: 1069
  ident: bib30
  article-title: Boosting for tumor classification with gene expression data
  publication-title: Bioinformatics
– volume: 42
  start-page: 1185
  year: 2001
  end-page: 1191
  ident: bib39
  article-title: Diagnostic performance of an expert system for the interpretation of myocardial perfusion SPECT studies
  publication-title: J Nucl Med
– volume: 12
  start-page: 66
  year: 2005
  end-page: 77
  ident: bib4
  article-title: Automated quantification of myocardial perfusion SPECT using simplified normal limits
  publication-title: J Nucl Cardiol
– volume: 36
  start-page: 2138
  year: 1995
  end-page: 2147
  ident: bib24
  article-title: Automatic quantification of ejection fraction from gated myocardial perfusion SPECT
  publication-title: J Nucl Med
– volume: 14
  start-page: 44
  year: 2007
  end-page: 52
  ident: bib10
  article-title: Combined quantitative supine-prone myocardial perfusion SPECT improves detection of coronary artery disease and normalcy rates in women
  publication-title: J Nucl Cardiol
– volume: 80
  start-page: 132
  year: 1997
  end-page: 137
  ident: bib2
  article-title: Identification of severe or extensive coronary artery disease in women by adenosine technetium-99m sestamibi SPECT
  publication-title: Am J Cardiol
– volume: 50
  start-page: 1418
  year: 2009
  end-page: 1426
  ident: bib18
  article-title: Automated quality control for segmentation of myocardial perfusion SPECT
  publication-title: J Nucl Med
– volume: 42
  start-page: 687
  year: 2001
  end-page: 694
  ident: bib19
  article-title: Quantitative assessment of motion artifacts and validation of a new motion-correction program for myocardial perfusion SPECT
  publication-title: J Nucl Med
– volume: 300
  start-page: 1350
  year: 1979
  end-page: 1358
  ident: bib21
  article-title: Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease
  publication-title: N Engl J Med
– volume: 42
  start-page: 1818
  year: 2003
  end-page: 1825
  ident: bib5
  article-title: Transient ischemic dilation ratio of the left ventricle is a significant predictor of future cardiac events in patients with otherwise normal myocardial perfusion SPECT
  publication-title: J Am Coll Cardiol
– volume: 27
  start-page: 803
  year: 1996
  end-page: 809
  ident: bib12
  article-title: Adenosine technetium-99m sestamibi myocardial perfusion SPECT in women: Diagnostic efficacy in detection of coronary artery disease
  publication-title: J Am Coll Cardiol
– volume: 44
  start-page: 1633
  year: 2003
  end-page: 1640
  ident: bib16
  article-title: Prognostic implications of combined prone and supine acquisitions in patients with equivocal or abnormal supine myocardial perfusion SPECT
  publication-title: J Nucl Med
– volume: 36
  start-page: 1107
  year: 1995
  end-page: 1114
  ident: bib17
  article-title: Automatic reorientation of three-dimensional, transaxial myocardial perfusion SPECT images
  publication-title: J Nucl Med
– volume: 30
  start-page: 1641
  year: 1997
  end-page: 1648
  ident: bib6
  article-title: Postischemic stunning can affect left ventricular ejection fraction and regional wall motion on post-stress gated sestamibi tomograms
  publication-title: J Am Coll Cardiol
– volume: 45
  start-page: 183
  year: 2004
  end-page: 191
  ident: bib3
  article-title: Automatic quantification of myocardial perfusion stress-rest change: A new measure of ischemia
  publication-title: J Nucl Med
– volume: 17
  start-page: 591
  year: 2010
  end-page: 599
  ident: bib33
  article-title: Combined quantitative analysis of attenuation corrected and non-corrected myocardial perfusion SPECT: Method development and clinical validation
  publication-title: J Nucl Cardiol
– volume: 1
  start-page: 113
  year: 2011
  end-page: 121
  ident: bib42
  article-title: Structures of the recurrence plot of heart rate variability signal as a tool for predicting the onset of paroxysmal atrial fibrillation
  publication-title: J Med Signals Sens
– volume: 19
  start-page: 465
  year: 2012
  end-page: 473
  ident: bib25
  article-title: Transient ischemic dilation for coronary artery disease in quantitative analysis of same-day sestamibi myocardial perfusion SPECT
  publication-title: J Nucl Cardiol
– volume: 22
  start-page: 1455
  year: 1993
  end-page: 1464
  ident: bib15
  article-title: Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: A clinical validation study
  publication-title: J Am Coll Cardiol
– volume: 79
  start-page: 575
  year: 1984
  end-page: 583
  ident: bib46
  article-title: Cross-validation of regression models
  publication-title: J Am Stat Assoc
– volume: 6
  start-page: 257
  year: 1999
  end-page: 269
  ident: bib35
  article-title: Interpretive reproducibility of stress Tc-99m sestamibi tomographic myocardial perfusion imaging
  publication-title: J Nucl Cardiol
– volume: 54
  start-page: 221
  year: 2013
  ident: bib37
  article-title: Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population
  publication-title: J Nucl Med
– volume: 14
  start-page: 433
  year: 2007
  end-page: 454
  ident: bib20
  article-title: Quantitation in gated perfusion SPECT imaging: The Cedars-Sinai approach
  publication-title: J Nucl Cardiol
– volume: 13
  start-page: 642
  year: 2006
  end-page: 651
  ident: bib22
  article-title: Simplified normal limits and automated quantitative assessment for attenuation-corrected myocardial perfusion SPECT
  publication-title: J Nucl Cardiol
– volume: 105
  start-page: 539
  year: 2002
  end-page: 542
  ident: bib26
  article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association
  publication-title: Circulation
– year: 1993
  ident: bib31
  article-title: Predictive inference: An introduction
  publication-title: Predictive inference: An introduction
– volume: 73
  year: 2012
  ident: bib43
  article-title: Computational gene mapping to analyze continuous automated physiologic monitoring data in neuro-trauma intensive care
  publication-title: J Trauma Acute Care Surg
– volume: 300
  start-page: 444
  year: 1983
  end-page: 455
  ident: bib11
  article-title: Computer-assisted diagnosis in the noninvasive evaluation of patients with suspected coronary artery disease
  publication-title: J Am Coll Cardiol
– volume: 15
  start-page: 427
  year: 2004
  end-page: 434
  ident: bib40
  article-title: Integration of clinical and imaging data to predict the presence of coronary artery disease with the use of neural networks
  publication-title: Coron Artery Dis
– volume: 4
  start-page: 136
  year: 2010
  end-page: 140
  ident: bib41
  article-title: A hyper-solution framework for SVM classification: Application for predicting destabilizations in chronic heart failure patients
  publication-title: Open Med Inform J
– volume: 17
  start-page: 941
  year: 2010
  end-page: 973
  ident: bib7
  article-title: Single photon-emission computed tomography
  publication-title: J Nucl Cardiol
– volume: 31
  start-page: 261
  year: 2004
  end-page: 291
  ident: bib1
  article-title: Myocardial perfusion scintigraphy: the evidence
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 9
  start-page: 263
  year: 2002
  end-page: 270
  ident: bib8
  article-title: Visual assessment of left ventricular perfusion and function with electrocardiography-gated SPECT has high intraobserver and interobserver reproducibility among experienced nuclear cardiologists and cardiology trainees
  publication-title: J Nucl Cardiol
– reference: Freund Y, Schapire R. Experiments with a new boosting algorithm. In: Machine learning: Proceedings of the thirteenth international conference, Bari; 1996. p. 148-56.
– volume: 108
  start-page: 1404
  year: 2003
  end-page: 1418
  ident: bib34
  article-title: ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging)
  publication-title: Circulation
– volume: 3
  start-page: 114
  year: 1996
  end-page: 118
  ident: bib36
  article-title: Effectiveness of nuclear cardiology training guidelines: A comparison of trainees with experienced readers
  publication-title: J Nucl Cardiol
– reference: Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the international joint conference on artificial intelligence, vol 2, Montreal; 1995. p. 1137-43.
– volume: 32
  start-page: 1987
  year: 1998
  end-page: 1995
  ident: bib9
  article-title: Comparative prognostic value of automatic quantitative analysis versus semiquantitative visual analysis of exercise myocardial perfusion single-photon emission computed tomography
  publication-title: J Am Coll Cardiol
– volume: 28
  start-page: 337
  year: 2000
  end-page: 407
  ident: bib27
  article-title: Additive logistic regression: A statistical view of boosting (With discussion and a rejoinder by the authors)
  publication-title: Ann Stat
– volume: 51
  start-page: 204
  year: 2010
  end-page: 209
  ident: bib23
  article-title: Improved quantification and normal limits for myocardial perfusion stress-rest change
  publication-title: J Nucl Med
– volume: 44
  start-page: 837
  year: 1988
  end-page: 845
  ident: bib32
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
  publication-title: Biometrics
– volume: 41
  start-page: 1125
  year: 2003
  end-page: 1133
  ident: bib13
  article-title: Adenosine myocardial perfusion single-photon emission computed tomography in women compared with men. Impact of diabetes mellitus on incremental prognostic value and effect on patient management
  publication-title: J Am Coll Cardiol
– volume: 47
  start-page: 51
  year: 2006
  end-page: 58
  ident: bib14
  article-title: Combined supine and prone quantitative myocardial perfusion SPECT: Method development and clinical validation in patients with no known coronary artery disease
  publication-title: J Nucl Med
– volume: 20
  start-page: 346
  year: 2013
  end-page: 351
  ident: bib44
  article-title: Computational methods for DNA-binding protein and binding residue prediction
  publication-title: Protein Peptide Lett
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: bib28
  article-title: The WEKA data mining software: An update
  publication-title: SIGKDD Explor
– volume: 40
  start-page: 96
  year: 1999
  end-page: 101
  ident: bib38
  article-title: Improved classifications of myocardial bull’s-eye scintigrams with computer-based decision support system
  publication-title: J Nucl Med
– volume: 9
  start-page: 263
  year: 2002
  end-page: 270
  ident: CR8
  article-title: Visual assessment of left ventricular perfusion and function with electrocardiography-gated SPECT has high intraobserver and interobserver reproducibility among experienced nuclear cardiologists and cardiology trainees
  publication-title: J Nucl Cardiol
  doi: 10.1067/mnc.2002.121233
– ident: CR45
– volume: 36
  start-page: 2138
  year: 1995
  end-page: 2147
  ident: CR24
  article-title: Automatic quantification of ejection fraction from gated myocardial perfusion SPECT
  publication-title: J Nucl Med
– volume: 73
  start-page: 419
  year: 2012
  end-page: 5
  ident: CR43
  article-title: Computational gene mapping to analyze continuous automated physiologic monitoring data in neuro-trauma intensive care
  publication-title: J Trauma Acute Care Surg
– volume: 31
  start-page: 261
  year: 2004
  end-page: 291
  ident: CR1
  article-title: Myocardial perfusion scintigraphy: the evidence
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-003-1344-5
– volume: 14
  start-page: 433
  year: 2007
  end-page: 454
  ident: CR20
  article-title: Quantitation in gated perfusion SPECT imaging: The Cedars-Sinai approach
  publication-title: J Nucl Cardiol
  doi: 10.1016/j.nuclcard.2007.06.008
– volume: 50
  start-page: 1418
  year: 2009
  end-page: 1426
  ident: CR18
  article-title: Automated quality control for segmentation of myocardial perfusion SPECT
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.108.061333
– volume: 44
  start-page: 1633
  year: 2003
  end-page: 1640
  ident: CR16
  article-title: Prognostic implications of combined prone and supine acquisitions in patients with equivocal or abnormal supine myocardial perfusion SPECT
  publication-title: J Nucl Med
– volume: 28
  start-page: 337
  year: 2000
  end-page: 407
  ident: CR27
  article-title: Additive logistic regression: A statistical view of boosting (With discussion and a rejoinder by the authors)
  publication-title: Ann Stat
  doi: 10.1214/aos/1016218223
– volume: 44
  start-page: 837
  year: 1988
  end-page: 845
  ident: CR32
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 15
  start-page: 427
  year: 2004
  end-page: 434
  ident: CR40
  article-title: Integration of clinical and imaging data to predict the presence of coronary artery disease with the use of neural networks
  publication-title: Coron Artery Dis
  doi: 10.1097/00019501-200411000-00010
– volume: 105
  start-page: 539
  year: 2002
  end-page: 542
  ident: CR26
  article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association
  publication-title: Circulation
  doi: 10.1161/hc0402.102975
– volume: 13
  start-page: 642
  year: 2006
  end-page: 651
  ident: CR22
  article-title: Simplified normal limits and automated quantitative assessment for attenuation-corrected myocardial perfusion SPECT
  publication-title: J Nucl Cardiol
  doi: 10.1016/j.nuclcard.2006.06.131
– volume: 42
  start-page: 1185
  year: 2001
  end-page: 1191
  ident: CR39
  article-title: Diagnostic performance of an expert system for the interpretation of myocardial perfusion SPECT studies
  publication-title: J Nucl Med
– ident: CR29
– volume: 12
  start-page: 66
  year: 2005
  end-page: 77
  ident: CR4
  article-title: Automated quantification of myocardial perfusion SPECT using simplified normal limits
  publication-title: J Nucl Cardiol
  doi: 10.1016/j.nuclcard.2004.10.006
– volume: 17
  start-page: 591
  year: 2010
  end-page: 599
  ident: CR33
  article-title: Combined quantitative analysis of attenuation corrected and non-corrected myocardial perfusion SPECT: Method development and clinical validation
  publication-title: J Nucl Cardiol
  doi: 10.1007/s12350-010-9220-8
– volume: 30
  start-page: 1641
  year: 1997
  end-page: 1648
  ident: CR6
  article-title: Postischemic stunning can affect left ventricular ejection fraction and regional wall motion on post-stress gated sestamibi tomograms
  publication-title: J Am Coll Cardiol
  doi: 10.1016/S0735-1097(97)00388-4
– volume: 36
  start-page: 1107
  year: 1995
  end-page: 1114
  ident: CR17
  article-title: Automatic reorientation of three-dimensional, transaxial myocardial perfusion SPECT images
  publication-title: J Nucl Med
– volume: 51
  start-page: 204
  year: 2010
  end-page: 209
  ident: CR23
  article-title: Improved quantification and normal limits for myocardial perfusion stress-rest change
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.109.067736
– volume: 42
  start-page: 687
  year: 2001
  end-page: 694
  ident: CR19
  article-title: Quantitative assessment of motion artifacts and validation of a new motion-correction program for myocardial perfusion SPECT
  publication-title: J Nucl Med
– volume: 40
  start-page: 96
  year: 1999
  end-page: 101
  ident: CR38
  article-title: Improved classifications of myocardial bull’s-eye scintigrams with computer-based decision support system
  publication-title: J Nucl Med
– volume: 6
  start-page: 257
  year: 1999
  end-page: 269
  ident: CR35
  article-title: Interpretive reproducibility of stress Tc-99m sestamibi tomographic myocardial perfusion imaging
  publication-title: J Nucl Cardiol
  doi: 10.1016/S1071-3581(99)90037-5
– volume: 19
  start-page: 465
  year: 2012
  end-page: 473
  ident: CR25
  article-title: Transient ischemic dilation for coronary artery disease in quantitative analysis of same-day sestamibi myocardial perfusion SPECT
  publication-title: J Nucl Cardiol
  doi: 10.1007/s12350-012-9527-8
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: CR28
  article-title: The WEKA data mining software: An update
  publication-title: SIGKDD Explor
  doi: 10.1145/1656274.1656278
– volume: 1
  start-page: 113
  year: 2011
  end-page: 121
  ident: CR42
  article-title: Structures of the recurrence plot of heart rate variability signal as a tool for predicting the onset of paroxysmal atrial fibrillation
  publication-title: J Med Signals Sens
– volume: 47
  start-page: 51
  year: 2006
  end-page: 58
  ident: CR14
  article-title: Combined supine and prone quantitative myocardial perfusion SPECT: Method development and clinical validation in patients with no known coronary artery disease
  publication-title: J Nucl Med
– volume: 80
  start-page: 132
  year: 1997
  end-page: 137
  ident: CR2
  article-title: Identification of severe or extensive coronary artery disease in women by adenosine technetium-99m sestamibi SPECT
  publication-title: Am J Cardiol
  doi: 10.1016/S0002-9149(97)00306-8
– volume: 14
  start-page: 44
  year: 2007
  end-page: 52
  ident: CR10
  article-title: Combined quantitative supine-prone myocardial perfusion SPECT improves detection of coronary artery disease and normalcy rates in women
  publication-title: J Nucl Cardiol
  doi: 10.1016/j.nuclcard.2006.10.021
– volume: 300
  start-page: 444
  year: 1983
  end-page: 455
  ident: CR11
  article-title: Computer-assisted diagnosis in the noninvasive evaluation of patients with suspected coronary artery disease
  publication-title: J Am Coll Cardiol
  doi: 10.1016/S0735-1097(83)80072-2
– volume: 20
  start-page: 346
  year: 2013
  end-page: 51
  ident: CR44
  article-title: Computational methods for DNA-binding protein and binding residue prediction
  publication-title: Protein Peptide Lett
– volume: 27
  start-page: 803
  year: 1996
  end-page: 809
  ident: CR12
  article-title: Adenosine technetium-99m sestamibi myocardial perfusion SPECT in women: Diagnostic efficacy in detection of coronary artery disease
  publication-title: J Am Coll Cardiol
  doi: 10.1016/0735-1097(95)00550-1
– volume: 45
  start-page: 183
  year: 2004
  end-page: 191
  ident: CR3
  article-title: Automatic quantification of myocardial perfusion stress-rest change: A new measure of ischemia
  publication-title: J Nucl Med
– volume: 108
  start-page: 1404
  year: 2003
  end-page: 1418
  ident: CR34
  article-title: ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging)
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000080946.42225.4D
– year: 1993
  ident: CR31
  publication-title: Predictive inference: An introduction
– volume: 4
  start-page: 136
  year: 2010
  end-page: 140
  ident: CR41
  article-title: A hyper-solution framework for SVM classification: Application for predicting destabilizations in chronic heart failure patients
  publication-title: Open Med Inform J
– volume: 42
  start-page: 1818
  year: 2003
  end-page: 1825
  ident: CR5
  article-title: Transient ischemic dilation ratio of the left ventricle is a significant predictor of future cardiac events in patients with otherwise normal myocardial perfusion SPECT
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2003.07.010
– volume: 32
  start-page: 1987
  year: 1998
  end-page: 1995
  ident: CR9
  article-title: Comparative prognostic value of automatic quantitative analysis versus semiquantitative visual analysis of exercise myocardial perfusion single-photon emission computed tomography
  publication-title: J Am Coll Cardiol
  doi: 10.1016/S0735-1097(98)00501-4
– volume: 3
  start-page: 114
  year: 1996
  end-page: 118
  ident: CR36
  article-title: Effectiveness of nuclear cardiology training guidelines: A comparison of trainees with experienced readers
  publication-title: J Nucl Cardiol
  doi: 10.1016/S1071-3581(96)90003-3
– volume: 17
  start-page: 941
  year: 2010
  end-page: 973
  ident: CR7
  article-title: Single photon-emission computed tomography
  publication-title: J Nucl Cardiol
  doi: 10.1007/s12350-010-9246-y
– volume: 19
  start-page: 1061
  year: 2003
  end-page: 1069
  ident: CR30
  article-title: Boosting for tumor classification with gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btf867
– volume: 79
  start-page: 575
  year: 1984
  end-page: 583
  ident: CR46
  article-title: Cross-validation of regression models
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1984.10478083
– volume: 41
  start-page: 1125
  year: 2003
  end-page: 1133
  ident: CR13
  article-title: Adenosine myocardial perfusion single-photon emission computed tomography in women compared with men. Impact of diabetes mellitus on incremental prognostic value and effect on patient management
  publication-title: J Am Coll Cardiol
  doi: 10.1016/S0735-1097(03)00085-8
– volume: 54
  start-page: 221
  year: 2013
  ident: CR37
  article-title: Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population
  publication-title: J Nucl Med
– volume: 22
  start-page: 1455
  year: 1993
  end-page: 1464
  ident: CR15
  article-title: Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: A clinical validation study
  publication-title: J Am Coll Cardiol
  doi: 10.1016/0735-1097(93)90557-H
– volume: 300
  start-page: 1350
  year: 1979
  end-page: 1358
  ident: CR21
  article-title: Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJM197906143002402
– volume: 79
  start-page: 575
  year: 1984
  ident: 10.1007/s12350-013-9706-2_bib46
  article-title: Cross-validation of regression models
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1984.10478083
– volume: 40
  start-page: 96
  year: 1999
  ident: 10.1007/s12350-013-9706-2_bib38
  article-title: Improved classifications of myocardial bull’s-eye scintigrams with computer-based decision support system
  publication-title: J Nucl Med
– volume: 41
  start-page: 1125
  year: 2003
  ident: 10.1007/s12350-013-9706-2_bib13
  article-title: Adenosine myocardial perfusion single-photon emission computed tomography in women compared with men. Impact of diabetes mellitus on incremental prognostic value and effect on patient management
  publication-title: J Am Coll Cardiol
  doi: 10.1016/S0735-1097(03)00085-8
– volume: 4
  start-page: 136
  year: 2010
  ident: 10.1007/s12350-013-9706-2_bib41
  article-title: A hyper-solution framework for SVM classification: Application for predicting destabilizations in chronic heart failure patients
  publication-title: Open Med Inform J
  doi: 10.2174/1874431101004010136
– volume: 14
  start-page: 433
  year: 2007
  ident: 10.1007/s12350-013-9706-2_bib20
  article-title: Quantitation in gated perfusion SPECT imaging: The Cedars-Sinai approach
  publication-title: J Nucl Cardiol
  doi: 10.1016/j.nuclcard.2007.06.008
– volume: 44
  start-page: 837
  year: 1988
  ident: 10.1007/s12350-013-9706-2_bib32
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 27
  start-page: 803
  year: 1996
  ident: 10.1007/s12350-013-9706-2_bib12
  article-title: Adenosine technetium-99m sestamibi myocardial perfusion SPECT in women: Diagnostic efficacy in detection of coronary artery disease
  publication-title: J Am Coll Cardiol
  doi: 10.1016/0735-1097(95)00550-1
– volume: 20
  start-page: 346
  year: 2013
  ident: 10.1007/s12350-013-9706-2_bib44
  article-title: Computational methods for DNA-binding protein and binding residue prediction
  publication-title: Protein Peptide Lett
– volume: 36
  start-page: 2138
  year: 1995
  ident: 10.1007/s12350-013-9706-2_bib24
  article-title: Automatic quantification of ejection fraction from gated myocardial perfusion SPECT
  publication-title: J Nucl Med
– volume: 14
  start-page: 44
  year: 2007
  ident: 10.1007/s12350-013-9706-2_bib10
  article-title: Combined quantitative supine-prone myocardial perfusion SPECT improves detection of coronary artery disease and normalcy rates in women
  publication-title: J Nucl Cardiol
  doi: 10.1016/j.nuclcard.2006.10.021
– ident: 10.1007/s12350-013-9706-2_bib45
– volume: 45
  start-page: 183
  year: 2004
  ident: 10.1007/s12350-013-9706-2_bib3
  article-title: Automatic quantification of myocardial perfusion stress-rest change: A new measure of ischemia
  publication-title: J Nucl Med
– volume: 300
  start-page: 444
  year: 1983
  ident: 10.1007/s12350-013-9706-2_bib11
  article-title: Computer-assisted diagnosis in the noninvasive evaluation of patients with suspected coronary artery disease
  publication-title: J Am Coll Cardiol
  doi: 10.1016/S0735-1097(83)80072-2
– volume: 3
  start-page: 114
  year: 1996
  ident: 10.1007/s12350-013-9706-2_bib36
  article-title: Effectiveness of nuclear cardiology training guidelines: A comparison of trainees with experienced readers
  publication-title: J Nucl Cardiol
  doi: 10.1016/S1071-3581(96)90003-3
– volume: 28
  start-page: 337
  year: 2000
  ident: 10.1007/s12350-013-9706-2_bib27
  article-title: Additive logistic regression: A statistical view of boosting (With discussion and a rejoinder by the authors)
  publication-title: Ann Stat
  doi: 10.1214/aos/1016218223
– volume: 6
  start-page: 257
  year: 1999
  ident: 10.1007/s12350-013-9706-2_bib35
  article-title: Interpretive reproducibility of stress Tc-99m sestamibi tomographic myocardial perfusion imaging
  publication-title: J Nucl Cardiol
  doi: 10.1016/S1071-3581(99)90037-5
– volume: 300
  start-page: 1350
  year: 1979
  ident: 10.1007/s12350-013-9706-2_bib21
  article-title: Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJM197906143002402
– volume: 22
  start-page: 1455
  year: 1993
  ident: 10.1007/s12350-013-9706-2_bib15
  article-title: Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: A clinical validation study
  publication-title: J Am Coll Cardiol
  doi: 10.1016/0735-1097(93)90557-H
– volume: 19
  start-page: 1061
  year: 2003
  ident: 10.1007/s12350-013-9706-2_bib30
  article-title: Boosting for tumor classification with gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btf867
– volume: 11
  start-page: 10
  year: 2009
  ident: 10.1007/s12350-013-9706-2_bib28
  article-title: The WEKA data mining software: An update
  publication-title: SIGKDD Explor
  doi: 10.1145/1656274.1656278
– volume: 44
  start-page: 1633
  year: 2003
  ident: 10.1007/s12350-013-9706-2_bib16
  article-title: Prognostic implications of combined prone and supine acquisitions in patients with equivocal or abnormal supine myocardial perfusion SPECT
  publication-title: J Nucl Med
– volume: 50
  start-page: 1418
  year: 2009
  ident: 10.1007/s12350-013-9706-2_bib18
  article-title: Automated quality control for segmentation of myocardial perfusion SPECT
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.108.061333
– volume: 9
  start-page: 263
  year: 2002
  ident: 10.1007/s12350-013-9706-2_bib8
  article-title: Visual assessment of left ventricular perfusion and function with electrocardiography-gated SPECT has high intraobserver and interobserver reproducibility among experienced nuclear cardiologists and cardiology trainees
  publication-title: J Nucl Cardiol
  doi: 10.1067/mnc.2002.121233
– volume: 32
  start-page: 1987
  year: 1998
  ident: 10.1007/s12350-013-9706-2_bib9
  article-title: Comparative prognostic value of automatic quantitative analysis versus semiquantitative visual analysis of exercise myocardial perfusion single-photon emission computed tomography
  publication-title: J Am Coll Cardiol
  doi: 10.1016/S0735-1097(98)00501-4
– year: 1993
  ident: 10.1007/s12350-013-9706-2_bib31
  article-title: Predictive inference: An introduction
– volume: 108
  start-page: 1404
  year: 2003
  ident: 10.1007/s12350-013-9706-2_bib34
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000080946.42225.4D
– ident: 10.1007/s12350-013-9706-2_bib29
– volume: 36
  start-page: 1107
  year: 1995
  ident: 10.1007/s12350-013-9706-2_bib17
  article-title: Automatic reorientation of three-dimensional, transaxial myocardial perfusion SPECT images
  publication-title: J Nucl Med
– volume: 30
  start-page: 1641
  year: 1997
  ident: 10.1007/s12350-013-9706-2_bib6
  article-title: Postischemic stunning can affect left ventricular ejection fraction and regional wall motion on post-stress gated sestamibi tomograms
  publication-title: J Am Coll Cardiol
  doi: 10.1016/S0735-1097(97)00388-4
– volume: 15
  start-page: 427
  year: 2004
  ident: 10.1007/s12350-013-9706-2_bib40
  article-title: Integration of clinical and imaging data to predict the presence of coronary artery disease with the use of neural networks
  publication-title: Coron Artery Dis
  doi: 10.1097/00019501-200411000-00010
– volume: 47
  start-page: 51
  year: 2006
  ident: 10.1007/s12350-013-9706-2_bib14
  article-title: Combined supine and prone quantitative myocardial perfusion SPECT: Method development and clinical validation in patients with no known coronary artery disease
  publication-title: J Nucl Med
– volume: 13
  start-page: 642
  year: 2006
  ident: 10.1007/s12350-013-9706-2_bib22
  article-title: Simplified normal limits and automated quantitative assessment for attenuation-corrected myocardial perfusion SPECT
  publication-title: J Nucl Cardiol
  doi: 10.1016/j.nuclcard.2006.06.131
– volume: 42
  start-page: 1818
  year: 2003
  ident: 10.1007/s12350-013-9706-2_bib5
  article-title: Transient ischemic dilation ratio of the left ventricle is a significant predictor of future cardiac events in patients with otherwise normal myocardial perfusion SPECT
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2003.07.010
– volume: 1
  start-page: 113
  year: 2011
  ident: 10.1007/s12350-013-9706-2_bib42
  article-title: Structures of the recurrence plot of heart rate variability signal as a tool for predicting the onset of paroxysmal atrial fibrillation
  publication-title: J Med Signals Sens
  doi: 10.4103/2228-7477.95295
– volume: 12
  start-page: 66
  year: 2005
  ident: 10.1007/s12350-013-9706-2_bib4
  article-title: Automated quantification of myocardial perfusion SPECT using simplified normal limits
  publication-title: J Nucl Cardiol
  doi: 10.1016/j.nuclcard.2004.10.006
– volume: 17
  start-page: 941
  year: 2010
  ident: 10.1007/s12350-013-9706-2_bib7
  article-title: Single photon-emission computed tomography
  publication-title: J Nucl Cardiol
  doi: 10.1007/s12350-010-9246-y
– volume: 105
  start-page: 539
  year: 2002
  ident: 10.1007/s12350-013-9706-2_bib26
  article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association
  publication-title: Circulation
  doi: 10.1161/hc0402.102975
– volume: 80
  start-page: 132
  year: 1997
  ident: 10.1007/s12350-013-9706-2_bib2
  article-title: Identification of severe or extensive coronary artery disease in women by adenosine technetium-99m sestamibi SPECT
  publication-title: Am J Cardiol
  doi: 10.1016/S0002-9149(97)00306-8
– volume: 17
  start-page: 591
  year: 2010
  ident: 10.1007/s12350-013-9706-2_bib33
  article-title: Combined quantitative analysis of attenuation corrected and non-corrected myocardial perfusion SPECT: Method development and clinical validation
  publication-title: J Nucl Cardiol
  doi: 10.1007/s12350-010-9220-8
– volume: 42
  start-page: 1185
  year: 2001
  ident: 10.1007/s12350-013-9706-2_bib39
  article-title: Diagnostic performance of an expert system for the interpretation of myocardial perfusion SPECT studies
  publication-title: J Nucl Med
– volume: 31
  start-page: 261
  year: 2004
  ident: 10.1007/s12350-013-9706-2_bib1
  article-title: Myocardial perfusion scintigraphy: the evidence
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-003-1344-5
– volume: 51
  start-page: 204
  year: 2010
  ident: 10.1007/s12350-013-9706-2_bib23
  article-title: Improved quantification and normal limits for myocardial perfusion stress-rest change
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.109.067736
– volume: 19
  start-page: 465
  year: 2012
  ident: 10.1007/s12350-013-9706-2_bib25
  article-title: Transient ischemic dilation for coronary artery disease in quantitative analysis of same-day sestamibi myocardial perfusion SPECT
  publication-title: J Nucl Cardiol
  doi: 10.1007/s12350-012-9527-8
– volume: 73
  year: 2012
  ident: 10.1007/s12350-013-9706-2_bib43
  article-title: Computational gene mapping to analyze continuous automated physiologic monitoring data in neuro-trauma intensive care
  publication-title: J Trauma Acute Care Surg
  doi: 10.1097/TA.0b013e31825ff59a
– volume: 42
  start-page: 687
  year: 2001
  ident: 10.1007/s12350-013-9706-2_bib19
  article-title: Quantitative assessment of motion artifacts and validation of a new motion-correction program for myocardial perfusion SPECT
  publication-title: J Nucl Med
– volume: 54
  start-page: 221
  year: 2013
  ident: 10.1007/s12350-013-9706-2_bib37
  article-title: Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.112.108969
SSID ssj0009399
Score 2.4030101
Snippet We aimed to improve the diagnostic accuracy of myocardial perfusion SPECT (MPS) by integrating clinical data and quantitative image features with machine...
Objective We aimed to improve the diagnostic accuracy of myocardial perfusion SPECT (MPS) by integrating clinical data and quantitative image features with...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 553
SubjectTerms Aged
Algorithms
Artificial Intelligence
automated quantification
Cardiology
Coronary Angiography - methods
coronary artery disease
Coronary Artery Disease - diagnostic imaging
Electrocardiography - methods
Female
Humans
Imaging
machine learning
Male
Medicine
Medicine & Public Health
Middle Aged
Myocardial Ischemia - pathology
Myocardial Perfusion Imaging - methods
Myocardial perfusion imaging: SPECT
Nuclear Medicine
Observer Variation
Original Article
Pattern Recognition, Automated
Perfusion
Radiology
Radiopharmaceuticals
Reproducibility of Results
ROC Curve
Technetium Tc 99m Sestamibi
Tomography, Emission-Computed, Single-Photon - methods
total perfusion deficit
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9wwEBbpBvo4lL6zbVpU6KnB1JaslX0opQ0bQiFLaBPIzejlNOB4N9s1xdf-8s7IsjchZHtcJC-WZ6T5pBl9HyEfGE_BqiqOXGLSKBUuiXJbimiC2IDFwlmOd4ePZpPD0_T7mTjbIrP-LgyWVfZrol-o7dzgGfknQCoZhJ5EJl8WVxGqRmF2tZfQUEFawX72FGP3yDZDZqwR2f42nR3_WNPwcq8oCXueJELmrz7P6S_TMS6wSItHuYRtNrsrUt1GorcLKoes6iPyoKkXqv2jqupa4Dp4Qh4HxEm_di7ylGy5-hm5fxRy6s_J3-5cwVkKw2uWyrR0XtLLFoIcOk9FF25ZNnioRn8eT_dPKMBcat3K13DV2NcgC4JattTXh7Y0JH2obumlr9V0NIhTnNOLmipaYfk5XQzaYS_I6cH0ZP8wCsoMkRFZtoqQ7zG3EOqVzq3IFKxUwmWlkjo3gmmem1gbZ8s412piZAlbVWZQy1xbKx1sil-SUT2v3Q6hDn4zZvM0K20qtFbIljixjEkpJGCPMYl7KxQm0JajekZVrAmX0XAFGK5AwxVsTD4Ojyw6zo5NndPetEUAHR2YKCCmbHpst3eDIsz638XaR8fk_dAM8xWTMKp288b3yQGESp6NyavOa4aXZBzWXy6hRd7wp6EDcoHfbKkvfnlOcC45i_E_93rPu_Zadw9ib3DO_3-p15uH_IY8ZF4qBIsjd8lotWzcWwBsK_0uzMJ_sEI7JA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZlA30c-n5smxYVempQakuWZR9DSAiFhECzkJ6MXm5DHe-ya1PcY395Z_xK0m0SejQaC1kaS580n74h5AMXEYyqDpgPbcQi6UOWulyyGLEBD6R3Au8OHx7FB7Po86k8vTjv-Ct8_2mFVzmROSVYqmDvC5PtRiwBdU_IxuzoeOdrRykMGcp4ddKonMWAAoYA5r_quG4JWoeY60zJMVz6gNyry4VufuqiuLQi7T_q5JFWrZAhElF-bNeV2ba_1mUeb_3Yx-RhD0vpTudHT8gdXz4ldw_7wPsz8rs7fPCOamvrpbYNnef0vIGVED2soAu_zGs8eaNfjvd2TyhgYep81RK9SrS1KJWglw1tSaQN7SND1DT0vCV0etpnsPhGz0qqaYEcdboYE4w9J7P9vZPdA9anb2BWJknFUBQydYAHtEmdTDRMZ9InuVYmtZIbkdrAWO_yIDU6tiqH_Sy3mPDcOKc87JxfkEk5L_0rQj08c-7SKMldJI3RKKkYO86VkgoAypQEw4hmttc2xxQbRXahyox9m0HfZti3GZ-Sj-Mri07Y4ybjaHCTrEcmHeLIYAxvem1zcKmsnxpWGUDuBDBUqMIpeT8Ww0-NkRpd-nnd2qSAVJVIpuRl54FjI7mASVooKFFXfHM0QMHwqyXl2fdWOFwowQOsc2vw4kvNuv4jtkZHv72nXv-X9Rtyn7fpRZBQuUkm1bL2bwHkVeZd_3__AYi1RDM
  priority: 102
  providerName: Unpaywall
Title Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population
URI https://dx.doi.org/10.1007/s12350-013-9706-2
https://link.springer.com/article/10.1007/s12350-013-9706-2
https://www.ncbi.nlm.nih.gov/pubmed/23703378
https://www.proquest.com/docview/1398613171
https://www.proquest.com/docview/1399264738
https://pubmed.ncbi.nlm.nih.gov/PMC3732038
http://doi.org/10.1007/s12350-013-9706-2
UnpaywallVersion submittedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1532-6551
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009399
  issn: 1532-6551
  databaseCode: AKRWK
  dateStart: 19950101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1532-6551
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009399
  issn: 1532-6551
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1532-6551
  dateEnd: 20190131
  omitProxy: true
  ssIdentifier: ssj0009399
  issn: 1532-6551
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1532-6551
  dateEnd: 20190131
  omitProxy: true
  ssIdentifier: ssj0009399
  issn: 1532-6551
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1532-6551
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009399
  issn: 1532-6551
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1532-6551
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009399
  issn: 1532-6551
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9tAEF7aBHo8hN51m5gt9KlBIO1qvdKjHeyElhjTxuA8ib3UBhTZOBZFr_3lndHlhBylT0LswUozu_Ptzuw3hHxmPASpKt9zgQm9ULjAi20qvAFiA-YLZzneHT6dDk7m4deFWDT3uK_aaPfWJVmt1NvLbowLDKLiXixhGwzr7q5ANi9Q4jkbbpl2eZU0ErY1gYfkXq0r864u7jNGt8Hm7ZjJznH6nDwt8pUqf6ssu2abJi_IXgMq6bDWgpfkkctfkSenjdv8NflTHx04S5UxxVqZki5TelmCHUP9yOjKrdMCz83oj9n46IwCkqXWbaowrRzrGiQ6UOuSViGgJW38OlSX9LIKx3S0yT_xk17kVNEMI8zpqksP9obMJ-OzoxOvSb7gGRFFGw8pHWML1lzp2IpIwWIkXJQqqWMjmOax8bVxNvVjrQZGprAbZQbTlWtrpYN971uyky9z955QB--M2TiMUhsKrRUSIg4sY1IKCfCiR_xWColpmMkxQUaWbDmVUXAJCC5BwSWsR750TVY1LcdDlcNWtEmDK2q8kIDZeKjZfqsGSTOxrxIAzBEgoEAGPfKpK4YpiX4WlbtlUdWJAWdKHvXIu1prukEyDkssl1Aib-hTVwHpvm-W5Be_KtpvLjnzsc_DVvOuDev-jzjslPPff-rDf_X9kTxjVXIQDIfcJzubdeEOAKJtdJ88lgvZJ7vDyWg0xefx-bcxPEfj6ex7v5qw8DafzobnfwEzHzhf
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGJrFxQHxTGGAkuDBFpHZcJ4cJwejUsbWaoJN2C47tjElZGrpGU678YfxtvJc66aZp5bRjZCdK8p7fh9_z70fIO8YDkKryPdvVgRcI2_Uikwqvh7EB84U1HM8OD0e9wVHw7Vgcr5C_zVkYbKtsbGJtqM1E4x75R4hUQnA9Xdn9VPz2kDUKq6sNhYZy1Apmu4YYcwc79m11ASnc-fbeV5D3e8Z2--OdgedYBjwtwnDmIXZhZMBtqSQyIlSw6oQNUyWTSAuW8Ej7ibYm9aNE9bRMIe1iGnm5E2OkhQQPnnuHrAU8iCD5W_vSHx1-X8D-8prBEnKsrodIY01dtT68x7jApjDuRRLSenaTZ7we-V5v4GyruPfIepkXqrpQWXbJUe4-IPddhEs_z1XyIVmx-SNyd-hq-I_Jn_k-hjUUfmc5Vbqik5SeVeBUUVkzWthpWuImHv1x2N8ZUwirqbGzumcsx7kaURfUtKJ1P2pFXZGJJhU9q3tDLXVkGCf0NKeKZtjuTouWq-wJOboVGT0lq_kkt88JtXDNmImCMDWBSBKF6Iw9w5iUQkKs0yF-I4VYO5h0ZOvI4gXAMwouBsHFKLiYdciH9pZijhGybHLQiDZ2Qc48eInBhy27bbNRg9hZmfN4sSY65G07DPYBiz4qt5OynhNB0Ct52CHP5lrTviTjYO-5hBF5RZ_aCYg9fnUkP_1VY5BzyZmPz9xqNO_Sa938EVutcv7_T71Y_slvyPpgPDyID_ZG-y_JBqtpSrAxc5OszqalfQXB4ix57VYkJT9v2wj8A3dQePw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9wwEBYlhbR9KD2TbZNWhT41mNiStbIfQ5olPRICzULehC63AcdrNjbFr_3lnfG1CTlKH40ObM9I841m9A0hHxmPQao6DHxk4yAWPgpSl4lgitiAhcI7jneHj46nh_P465k46-ucXg7Z7kNIsrvTgCxNRbVbumx3dfGNcYEJVTxIJbjEsAc_jJEnARR6zvZWrLu8LSAJLk4UINHXENa8bYq7DNNN4Hkzf3IMoj4hj-qi1M1vnedX7NTsGXnaA0y612nEc_LAFy_I-lEfQn9J_nTHCN5RbW291Lahi4xeNGDTUFdyWvplVuMZGv1xcrB_SgHVUuerNmWrwL4WSQ_0sqFtOmhD-xgPNQ29aFMzPe1rUfyk5wXVNMdsc1qOpcJekfns4HT_MOgLMQRWJEkVIL1j6sCya5M6kWjYmIRPMi1NagUzPLWhsd5lYWr01MoMPFNmsXS5cU568IFfk7ViUfhNQj08M-bSOMlcLIzRSI44dYxJKSRAjQkJByko27OUY7GMXK34lVFwCgSnUHCKTcincUjZUXTc1zkeRKt6jNFhBwUm5L5hW4MaqH6RXyoAzwmgoUhGE_JhbIbliTEXXfhF3fZJAXNKnkzIRqc140syDtstl9Air-nT2AGpv6-3FOe_WgpwLjkLcc6dQfOuvNbdH7EzKue__9Sb_5r7PVk_-TxT378cf3tLHrO2ZghmSW6RtWpZ-21AbpV5167OvxoqOEY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZlA30c-n5smxYVempQakuWZR9DSAiFhECzkJ6MXm5DHe-ya1PcY395Z_xK0m0SejQaC1kaS580n74h5AMXEYyqDpgPbcQi6UOWulyyGLEBD6R3Au8OHx7FB7Po86k8vTjv-Ct8_2mFVzmROSVYqmDvC5PtRiwBdU_IxuzoeOdrRykMGcp4ddKonMWAAoYA5r_quG4JWoeY60zJMVz6gNyry4VufuqiuLQi7T_q5JFWrZAhElF-bNeV2ba_1mUeb_3Yx-RhD0vpTudHT8gdXz4ldw_7wPsz8rs7fPCOamvrpbYNnef0vIGVED2soAu_zGs8eaNfjvd2TyhgYep81RK9SrS1KJWglw1tSaQN7SND1DT0vCV0etpnsPhGz0qqaYEcdboYE4w9J7P9vZPdA9anb2BWJknFUBQydYAHtEmdTDRMZ9InuVYmtZIbkdrAWO_yIDU6tiqH_Sy3mPDcOKc87JxfkEk5L_0rQj08c-7SKMldJI3RKKkYO86VkgoAypQEw4hmttc2xxQbRXahyox9m0HfZti3GZ-Sj-Mri07Y4ybjaHCTrEcmHeLIYAxvem1zcKmsnxpWGUDuBDBUqMIpeT8Ww0-NkRpd-nnd2qSAVJVIpuRl54FjI7mASVooKFFXfHM0QMHwqyXl2fdWOFwowQOsc2vw4kvNuv4jtkZHv72nXv-X9Rtyn7fpRZBQuUkm1bL2bwHkVeZd_3__AYi1RDM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+accuracy+of+myocardial+perfusion+SPECT+for+detection+of+coronary+artery+disease+by+machine+learning+in+a+large+population&rft.jtitle=Journal+of+nuclear+cardiology&rft.au=Arsanjani%2C+Reza&rft.au=Xu%2C+Yuan&rft.au=Dey%2C+Damini&rft.au=Vahistha%2C+Vishal&rft.date=2013-08-01&rft.issn=1532-6551&rft.eissn=1532-6551&rft.volume=20&rft.issue=4&rft.spage=553&rft_id=info:doi/10.1007%2Fs12350-013-9706-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1071-3581&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1071-3581&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1071-3581&client=summon