Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population
We aimed to improve the diagnostic accuracy of myocardial perfusion SPECT (MPS) by integrating clinical data and quantitative image features with machine learning (ML) algorithms. 1,181 rest 201Tl/stress 99mTc-sestamibi dual-isotope MPS studies [713 consecutive cases with correlating invasive corona...
        Saved in:
      
    
          | Published in | Journal of nuclear cardiology Vol. 20; no. 4; pp. 553 - 562 | 
|---|---|
| Main Authors | , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Boston
          Elsevier Inc
    
        01.08.2013
     Springer US Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1071-3581 1532-6551 1532-6551  | 
| DOI | 10.1007/s12350-013-9706-2 | 
Cover
| Abstract | We aimed to improve the diagnostic accuracy of myocardial perfusion SPECT (MPS) by integrating clinical data and quantitative image features with machine learning (ML) algorithms.
1,181 rest 201Tl/stress 99mTc-sestamibi dual-isotope MPS studies [713 consecutive cases with correlating invasive coronary angiography (ICA) and suspected coronary artery disease (CAD) and 468 with low likelihood (LLk) of CAD <5%] were considered. Cases with stenosis <70% by ICA and LLk of CAD were considered normal. Total stress perfusion deficit (TPD) for supine/prone data, stress/rest perfusion change, and transient ischemic dilatation were derived by automated perfusion quantification software and were combined with age, sex, and post-electrocardiogram CAD probability by a boosted ensemble ML algorithm (LogitBoost). The diagnostic accuracy of the model for prediction of obstructive CAD ≥70% was compared to standard prone/supine quantification and to visual analysis by two experienced readers utilizing all imaging, quantitative, and clinical data. Tenfold stratified cross-validation was performed.
The diagnostic accuracy of ML (87.3% ± 2.1%) was similar to Expert 1 (86.0% ± 2.1%), but superior to combined supine/prone TPD (82.8% ± 2.2%) and Expert 2 (82.1% ± 2.2%) (P < .01). The receiver operator characteristic areas under curve for ML algorithm (0.94 ± 0.01) were higher than those for TPD and both visual readers (P < .001). The sensitivity of ML algorithm (78.9% ± 4.2%) was similar to TPD (75.6% ± 4.4%) and Expert 1 (76.3% ± 4.3%), but higher than that of Expert 2 (71.1% ± 4.6%), (P < .01). The specificity of ML algorithm (92.1% ± 2.2%) was similar to Expert 1 (91.4% ± 2.2%) and Expert 2 (88.3% ± 2.5%), but higher than TPD (86.8% ± 2.6%), (P < .01).
ML significantly improves diagnostic performance of MPS by computational integration of quantitative perfusion and clinical data to the level rivaling expert analysis. | 
    
|---|---|
| AbstractList | We aimed to improve the diagnostic accuracy of myocardial perfusion SPECT (MPS) by integrating clinical data and quantitative image features with machine learning (ML) algorithms. 1,181 rest ^sup 201^Tl/stress ^sup 99m^Tc-sestamibi dual-isotope MPS studies [713 consecutive cases with correlating invasive coronary angiography (ICA) and suspected coronary artery disease (CAD) and 468 with low likelihood (LLk) of CAD <5%] were considered. Cases with stenosis <70% by ICA and LLk of CAD were considered normal. Total stress perfusion deficit (TPD) for supine/prone data, stress/rest perfusion change, and transient ischemic dilatation were derived by automated perfusion quantification software and were combined with age, sex, and post-electrocardiogram CAD probability by a boosted ensemble ML algorithm (LogitBoost). The diagnostic accuracy of the model for prediction of obstructive CAD >=70% was compared to standard prone/supine quantification and to visual analysis by two experienced readers utilizing all imaging, quantitative, and clinical data. Tenfold stratified cross-validation was performed. The diagnostic accuracy of ML (87.3% ± 2.1%) was similar to Expert 1 (86.0% ± 2.1%), but superior to combined supine/prone TPD (82.8% ± 2.2%) and Expert 2 (82.1% ± 2.2%) (P < .01). The receiver operator characteristic areas under curve for ML algorithm (0.94 ± 0.01) were higher than those for TPD and both visual readers (P < .001). The sensitivity of ML algorithm (78.9% ± 4.2%) was similar to TPD (75.6% ± 4.4%) and Expert 1 (76.3% ± 4.3%), but higher than that of Expert 2 (71.1% ± 4.6%), (P < .01). The specificity of ML algorithm (92.1% ± 2.2%) was similar to Expert 1 (91.4% ± 2.2%) and Expert 2 (88.3% ± 2.5%), but higher than TPD (86.8% ± 2.6%), (P < .01). ML significantly improves diagnostic performance of MPS by computational integration of quantitative perfusion and clinical data to the level rivaling expert analysis.[PUBLICATION ABSTRACT] We aimed to improve the diagnostic accuracy of myocardial perfusion SPECT (MPS) by integrating clinical data and quantitative image features with machine learning (ML) algorithms.OBJECTIVEWe aimed to improve the diagnostic accuracy of myocardial perfusion SPECT (MPS) by integrating clinical data and quantitative image features with machine learning (ML) algorithms.1,181 rest (201)Tl/stress (99m)Tc-sestamibi dual-isotope MPS studies [713 consecutive cases with correlating invasive coronary angiography (ICA) and suspected coronary artery disease (CAD) and 468 with low likelihood (LLk) of CAD <5%] were considered. Cases with stenosis <70% by ICA and LLk of CAD were considered normal. Total stress perfusion deficit (TPD) for supine/prone data, stress/rest perfusion change, and transient ischemic dilatation were derived by automated perfusion quantification software and were combined with age, sex, and post-electrocardiogram CAD probability by a boosted ensemble ML algorithm (LogitBoost). The diagnostic accuracy of the model for prediction of obstructive CAD ≥70% was compared to standard prone/supine quantification and to visual analysis by two experienced readers utilizing all imaging, quantitative, and clinical data. Tenfold stratified cross-validation was performed.METHODS1,181 rest (201)Tl/stress (99m)Tc-sestamibi dual-isotope MPS studies [713 consecutive cases with correlating invasive coronary angiography (ICA) and suspected coronary artery disease (CAD) and 468 with low likelihood (LLk) of CAD <5%] were considered. Cases with stenosis <70% by ICA and LLk of CAD were considered normal. Total stress perfusion deficit (TPD) for supine/prone data, stress/rest perfusion change, and transient ischemic dilatation were derived by automated perfusion quantification software and were combined with age, sex, and post-electrocardiogram CAD probability by a boosted ensemble ML algorithm (LogitBoost). The diagnostic accuracy of the model for prediction of obstructive CAD ≥70% was compared to standard prone/supine quantification and to visual analysis by two experienced readers utilizing all imaging, quantitative, and clinical data. Tenfold stratified cross-validation was performed.The diagnostic accuracy of ML (87.3% ± 2.1%) was similar to Expert 1 (86.0% ± 2.1%), but superior to combined supine/prone TPD (82.8% ± 2.2%) and Expert 2 (82.1% ± 2.2%) (P < .01). The receiver operator characteristic areas under curve for ML algorithm (0.94 ± 0.01) were higher than those for TPD and both visual readers (P < .001). The sensitivity of ML algorithm (78.9% ± 4.2%) was similar to TPD (75.6% ± 4.4%) and Expert 1 (76.3% ± 4.3%), but higher than that of Expert 2 (71.1% ± 4.6%), (P < .01). The specificity of ML algorithm (92.1% ± 2.2%) was similar to Expert 1 (91.4% ± 2.2%) and Expert 2 (88.3% ± 2.5%), but higher than TPD (86.8% ± 2.6%), (P < .01).RESULTSThe diagnostic accuracy of ML (87.3% ± 2.1%) was similar to Expert 1 (86.0% ± 2.1%), but superior to combined supine/prone TPD (82.8% ± 2.2%) and Expert 2 (82.1% ± 2.2%) (P < .01). The receiver operator characteristic areas under curve for ML algorithm (0.94 ± 0.01) were higher than those for TPD and both visual readers (P < .001). The sensitivity of ML algorithm (78.9% ± 4.2%) was similar to TPD (75.6% ± 4.4%) and Expert 1 (76.3% ± 4.3%), but higher than that of Expert 2 (71.1% ± 4.6%), (P < .01). The specificity of ML algorithm (92.1% ± 2.2%) was similar to Expert 1 (91.4% ± 2.2%) and Expert 2 (88.3% ± 2.5%), but higher than TPD (86.8% ± 2.6%), (P < .01).ML significantly improves diagnostic performance of MPS by computational integration of quantitative perfusion and clinical data to the level rivaling expert analysis.CONCLUSIONML significantly improves diagnostic performance of MPS by computational integration of quantitative perfusion and clinical data to the level rivaling expert analysis. We aimed to improve the diagnostic accuracy of myocardial perfusion SPECT (MPS) by integrating clinical data and quantitative image features with machine learning (ML) algorithms. 1,181 rest 201Tl/stress 99mTc-sestamibi dual-isotope MPS studies [713 consecutive cases with correlating invasive coronary angiography (ICA) and suspected coronary artery disease (CAD) and 468 with low likelihood (LLk) of CAD <5%] were considered. Cases with stenosis <70% by ICA and LLk of CAD were considered normal. Total stress perfusion deficit (TPD) for supine/prone data, stress/rest perfusion change, and transient ischemic dilatation were derived by automated perfusion quantification software and were combined with age, sex, and post-electrocardiogram CAD probability by a boosted ensemble ML algorithm (LogitBoost). The diagnostic accuracy of the model for prediction of obstructive CAD ≥70% was compared to standard prone/supine quantification and to visual analysis by two experienced readers utilizing all imaging, quantitative, and clinical data. Tenfold stratified cross-validation was performed. The diagnostic accuracy of ML (87.3% ± 2.1%) was similar to Expert 1 (86.0% ± 2.1%), but superior to combined supine/prone TPD (82.8% ± 2.2%) and Expert 2 (82.1% ± 2.2%) (P < .01). The receiver operator characteristic areas under curve for ML algorithm (0.94 ± 0.01) were higher than those for TPD and both visual readers (P < .001). The sensitivity of ML algorithm (78.9% ± 4.2%) was similar to TPD (75.6% ± 4.4%) and Expert 1 (76.3% ± 4.3%), but higher than that of Expert 2 (71.1% ± 4.6%), (P < .01). The specificity of ML algorithm (92.1% ± 2.2%) was similar to Expert 1 (91.4% ± 2.2%) and Expert 2 (88.3% ± 2.5%), but higher than TPD (86.8% ± 2.6%), (P < .01). ML significantly improves diagnostic performance of MPS by computational integration of quantitative perfusion and clinical data to the level rivaling expert analysis. We aimed to improve the diagnostic accuracy of myocardial perfusion SPECT (MPS) by integrating clinical data and quantitative image features with machine learning (ML) algorithms. 1,181 rest (201)Tl/stress (99m)Tc-sestamibi dual-isotope MPS studies [713 consecutive cases with correlating invasive coronary angiography (ICA) and suspected coronary artery disease (CAD) and 468 with low likelihood (LLk) of CAD <5%] were considered. Cases with stenosis <70% by ICA and LLk of CAD were considered normal. Total stress perfusion deficit (TPD) for supine/prone data, stress/rest perfusion change, and transient ischemic dilatation were derived by automated perfusion quantification software and were combined with age, sex, and post-electrocardiogram CAD probability by a boosted ensemble ML algorithm (LogitBoost). The diagnostic accuracy of the model for prediction of obstructive CAD ≥70% was compared to standard prone/supine quantification and to visual analysis by two experienced readers utilizing all imaging, quantitative, and clinical data. Tenfold stratified cross-validation was performed. The diagnostic accuracy of ML (87.3% ± 2.1%) was similar to Expert 1 (86.0% ± 2.1%), but superior to combined supine/prone TPD (82.8% ± 2.2%) and Expert 2 (82.1% ± 2.2%) (P < .01). The receiver operator characteristic areas under curve for ML algorithm (0.94 ± 0.01) were higher than those for TPD and both visual readers (P < .001). The sensitivity of ML algorithm (78.9% ± 4.2%) was similar to TPD (75.6% ± 4.4%) and Expert 1 (76.3% ± 4.3%), but higher than that of Expert 2 (71.1% ± 4.6%), (P < .01). The specificity of ML algorithm (92.1% ± 2.2%) was similar to Expert 1 (91.4% ± 2.2%) and Expert 2 (88.3% ± 2.5%), but higher than TPD (86.8% ± 2.6%), (P < .01). ML significantly improves diagnostic performance of MPS by computational integration of quantitative perfusion and clinical data to the level rivaling expert analysis. Objective We aimed to improve the diagnostic accuracy of myocardial perfusion SPECT (MPS) by integrating clinical data and quantitative image features with machine learning (ML) algorithms. Methods 1,181 rest 201 Tl/stress 99m Tc-sestamibi dual-isotope MPS studies [713 consecutive cases with correlating invasive coronary angiography (ICA) and suspected coronary artery disease (CAD) and 468 with low likelihood (LLk) of CAD <5%] were considered. Cases with stenosis <70% by ICA and LLk of CAD were considered normal. Total stress perfusion deficit (TPD) for supine/prone data, stress/rest perfusion change, and transient ischemic dilatation were derived by automated perfusion quantification software and were combined with age, sex, and post-electrocardiogram CAD probability by a boosted ensemble ML algorithm (LogitBoost). The diagnostic accuracy of the model for prediction of obstructive CAD ≥70% was compared to standard prone/supine quantification and to visual analysis by two experienced readers utilizing all imaging, quantitative, and clinical data. Tenfold stratified cross-validation was performed. Results The diagnostic accuracy of ML (87.3% ± 2.1%) was similar to Expert 1 (86.0% ± 2.1%), but superior to combined supine/prone TPD (82.8% ± 2.2%) and Expert 2 (82.1% ± 2.2%) ( P < .01). The receiver operator characteristic areas under curve for ML algorithm (0.94 ± 0.01) were higher than those for TPD and both visual readers ( P < .001). The sensitivity of ML algorithm (78.9% ± 4.2%) was similar to TPD (75.6% ± 4.4%) and Expert 1 (76.3% ± 4.3%), but higher than that of Expert 2 (71.1% ± 4.6%), ( P < .01). The specificity of ML algorithm (92.1% ± 2.2%) was similar to Expert 1 (91.4% ± 2.2%) and Expert 2 (88.3% ± 2.5%), but higher than TPD (86.8% ± 2.6%), ( P < .01). Conclusion ML significantly improves diagnostic performance of MPS by computational integration of quantitative perfusion and clinical data to the level rivaling expert analysis.  | 
    
| Author | Arsanjani, Reza Dey, Damini Hayes, Sean Nakanishi, Rine Germano, Guido Slomka, Piotr J. Xu, Yuan Berman, Daniel Fish, Mathews Vahistha, Vishal Shalev, Aryeh  | 
    
| AuthorAffiliation | a Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA c Oregon Heart and Vascular Institute, Sacred Heart Medical Center, Springfield, OR b David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA  | 
    
| AuthorAffiliation_xml | – name: b David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA – name: c Oregon Heart and Vascular Institute, Sacred Heart Medical Center, Springfield, OR – name: a Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA  | 
    
| Author_xml | – sequence: 1 givenname: Reza surname: Arsanjani fullname: Arsanjani, Reza organization: Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Taper A238 90048 Los Angeles, CA, USA – sequence: 2 givenname: Yuan surname: Xu fullname: Xu, Yuan organization: Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Taper A238 90048 Los Angeles, CA, USA – sequence: 3 givenname: Damini surname: Dey fullname: Dey, Damini organization: Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Taper A238 90048 Los Angeles, CA, USA – sequence: 4 givenname: Vishal surname: Vahistha fullname: Vahistha, Vishal organization: Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Taper A238 90048 Los Angeles, CA, USA – sequence: 5 givenname: Aryeh surname: Shalev fullname: Shalev, Aryeh organization: Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Taper A238 90048 Los Angeles, CA, USA – sequence: 6 givenname: Rine surname: Nakanishi fullname: Nakanishi, Rine organization: Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Taper A238 90048 Los Angeles, CA, USA – sequence: 7 givenname: Sean surname: Hayes fullname: Hayes, Sean organization: Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Taper A238 90048 Los Angeles, CA, USA – sequence: 8 givenname: Mathews surname: Fish fullname: Fish, Mathews organization: Oregon Heart and Vascular Institute, Sacred Heart Medical Center, Springfield, OR, USA – sequence: 9 givenname: Daniel surname: Berman fullname: Berman, Daniel organization: Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Taper A238 90048 Los Angeles, CA, USA – sequence: 10 givenname: Guido surname: Germano fullname: Germano, Guido organization: Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Taper A238 90048 Los Angeles, CA, USA – sequence: 11 givenname: Piotr J. surname: Slomka fullname: Slomka, Piotr J. email: slomkap@cshs.org, piotr.slomka@cshs.org organization: Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Taper A238 90048 Los Angeles, CA, USA  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23703378$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkktv1DAUhSNURB_wA9ggS2zYBPwgsSMkpGrUlkqVQKKsrRv7ZuoqsYOdDJotvxzPAyhdjFjZ8v3O9fG5Pi2OfPBYFC8Zfcsole8S46KiJWWibCStS_6kOGGV4GVdVewo76lkpagUOy5OU7qnlDaiaZ4Vx1xIKoRUJ8XP62GMYYWWgDFzBLMmoSPDOhiI1kFPRozdnFzw5OuXi8Ut6UIkFic00-YssybE4CGuCcQJ82JdQkhI2jUZwNw5j6RHiN75JXGeAOkhLpGMYZx72DR5XjztoE_4Yr-eFd8uL24Xn8qbz1fXi_Ob0lRKTaVggjeWqQraxlYKlJIVqg5k25iKt6IxtDVoO9q0UBvZNVLxXKib1lqJQomzgu_6zn6E9Q_oez1GN2TrmlG9CVTvAtU5UL0JVPMs-rgTjXM7oDXopwh_hQGc_rfi3Z1ehpUWUnC6vfXNvkEM32dMkx5cMtj34DHMSbM8EV6_l1v09SP0PszR50w2lKqZYJJl6tVDR3-s_J5pBuQOMDGkFLHTxk3bpLNB1x98LHuk_J-A9qmmzPolxgemD4g-7ESY571yWZSMQ5_H52L-WdoGd0D9CyBh6l8 | 
    
| CitedBy_id | crossref_primary_10_1016_j_jcmg_2017_07_024 crossref_primary_10_32604_cmes_2024_055599 crossref_primary_10_15420_icr_2020_04 crossref_primary_10_1007_s12350_019_01873_y crossref_primary_10_3389_fcvm_2021_736223 crossref_primary_10_1007_s12350_022_03166_3 crossref_primary_10_1007_s12410_019_9490_8 crossref_primary_10_1016_j_cjca_2018_04_032 crossref_primary_10_1007_s12265_022_10339_5 crossref_primary_10_1016_j_chest_2020_03_074 crossref_primary_10_1007_s11356_023_31779_9 crossref_primary_10_1007_s12350_022_03049_7 crossref_primary_10_18137_cardiometry_2022_22_136142 crossref_primary_10_1016_j_remnie_2019_04_005 crossref_primary_10_1007_s12350_015_0150_3 crossref_primary_10_1186_s12872_022_03022_9 crossref_primary_10_1007_s12350_018_1432_3 crossref_primary_10_1016_j_compbiomed_2019_103346 crossref_primary_10_1007_s12350_018_1284_x crossref_primary_10_1186_s41824_019_0052_8 crossref_primary_10_1038_s41598_019_43951_8 crossref_primary_10_1093_eurheartj_ehy404 crossref_primary_10_1007_s42058_022_00091_9 crossref_primary_10_3390_jcm11133918 crossref_primary_10_1186_s13550_024_01179_2 crossref_primary_10_1007_s11936_020_00838_6 crossref_primary_10_3389_fcvm_2022_956147 crossref_primary_10_1007_s12149_022_01762_4 crossref_primary_10_1007_s12350_020_02187_0 crossref_primary_10_17996_anc_22_00155 crossref_primary_10_1016_j_cjca_2021_09_030 crossref_primary_10_1007_s12350_014_0027_x crossref_primary_10_7759_cureus_68472 crossref_primary_10_1093_ehjci_jez177 crossref_primary_10_1007_s10554_021_02209_z crossref_primary_10_18038_estubtda_581811 crossref_primary_10_1155_2024_2991243 crossref_primary_10_1007_s12350_023_03333_0 crossref_primary_10_1007_s00259_021_05341_z crossref_primary_10_1007_s11936_020_0805_5 crossref_primary_10_1007_s12350_020_02459_9 crossref_primary_10_1016_j_hfc_2023_03_005 crossref_primary_10_1186_s12872_021_02314_w crossref_primary_10_1097_CRD_0000000000000294 crossref_primary_10_1111_jocs_15934 crossref_primary_10_3390_jcm14062095 crossref_primary_10_1177_2058460121990296 crossref_primary_10_1155_2022_9288452 crossref_primary_10_1016_j_jscai_2024_102558 crossref_primary_10_1007_s12410_019_9480_x crossref_primary_10_1007_s43657_023_00137_7 crossref_primary_10_1016_j_ccl_2015_08_003 crossref_primary_10_1002_jcu_23215 crossref_primary_10_1007_s12350_014_9895_3 crossref_primary_10_18663_tjcl_1252801 crossref_primary_10_3390_app14052171 crossref_primary_10_1007_s00330_017_5223_z crossref_primary_10_1016_j_pcad_2020_03_003 crossref_primary_10_1097_RTI_0000000000000584 crossref_primary_10_1007_s13665_023_00334_9 crossref_primary_10_1016_j_remn_2019_04_002 crossref_primary_10_15212_CVIA_2016_0052 crossref_primary_10_1038_s41598_022_06604_x crossref_primary_10_2174_1570159X19666211108141446 crossref_primary_10_1016_j_compbiomed_2020_104095 crossref_primary_10_3389_fcvm_2020_00001 crossref_primary_10_15420_ecr_2022_11 crossref_primary_10_1007_s12350_017_0884_1 crossref_primary_10_1007_s12350_018_1304_x crossref_primary_10_1007_s12350_016_0582_4 crossref_primary_10_3390_app11146362 crossref_primary_10_1016_j_jcmg_2020_08_024 crossref_primary_10_1259_bjro_20220021 crossref_primary_10_1016_j_knosys_2022_108877 crossref_primary_10_1038_s41598_023_33500_9 crossref_primary_10_3390_healthcare10020232 crossref_primary_10_1148_ryct_2021200512 crossref_primary_10_3389_fcvm_2022_839400 crossref_primary_10_1007_s13139_021_00733_3 crossref_primary_10_1080_17434440_2017_1300057 crossref_primary_10_1016_j_cpcardiol_2023_102349 crossref_primary_10_1016_j_ijcard_2021_04_009 crossref_primary_10_1007_s12350_015_0291_4 crossref_primary_10_17352_2455_2976_000187 crossref_primary_10_1016_j_cmpb_2020_105343 crossref_primary_10_3389_fcvm_2021_765693 crossref_primary_10_1007_s12350_020_02173_6 crossref_primary_10_1080_17434440_2020_1777855 crossref_primary_10_1007_s12149_018_1306_4 crossref_primary_10_1016_j_jcct_2015_03_005 crossref_primary_10_1016_j_mayocp_2020_01_038 crossref_primary_10_1016_j_jcmg_2018_01_020 crossref_primary_10_1136_heartjnl_2015_308670 crossref_primary_10_1007_s12471_019_01311_1 crossref_primary_10_1038_s41598_023_42142_w crossref_primary_10_1088_1742_6596_1246_1_012030 crossref_primary_10_3389_fcvm_2022_945726 crossref_primary_10_3390_medsci11010020 crossref_primary_10_1161_CIRCIMAGING_117_007217 crossref_primary_10_1007_s12350_017_1057_y crossref_primary_10_1007_s12350_022_02942_5 crossref_primary_10_1109_TSP_2016_2626250 crossref_primary_10_15420_usc_2019_19_2 crossref_primary_10_1016_j_compbiomed_2020_103893 crossref_primary_10_1016_j_jjcc_2021_11_017 crossref_primary_10_2967_jnumed_118_213538 crossref_primary_10_1007_s40336_014_0070_2 crossref_primary_10_20517_2574_1209_2023_123 crossref_primary_10_1016_j_jacc_2018_12_054  | 
    
| Cites_doi | 10.1067/mnc.2002.121233 10.1007/s00259-003-1344-5 10.1016/j.nuclcard.2007.06.008 10.2967/jnumed.108.061333 10.1214/aos/1016218223 10.2307/2531595 10.1097/00019501-200411000-00010 10.1161/hc0402.102975 10.1016/j.nuclcard.2006.06.131 10.1016/j.nuclcard.2004.10.006 10.1007/s12350-010-9220-8 10.1016/S0735-1097(97)00388-4 10.2967/jnumed.109.067736 10.1016/S1071-3581(99)90037-5 10.1007/s12350-012-9527-8 10.1145/1656274.1656278 10.1016/S0002-9149(97)00306-8 10.1016/j.nuclcard.2006.10.021 10.1016/S0735-1097(83)80072-2 10.1016/0735-1097(95)00550-1 10.1161/01.CIR.0000080946.42225.4D 10.1016/j.jacc.2003.07.010 10.1016/S0735-1097(98)00501-4 10.1016/S1071-3581(96)90003-3 10.1007/s12350-010-9246-y 10.1093/bioinformatics/btf867 10.1080/01621459.1984.10478083 10.1016/S0735-1097(03)00085-8 10.1016/0735-1097(93)90557-H 10.1056/NEJM197906143002402 10.2174/1874431101004010136 10.4103/2228-7477.95295 10.1097/TA.0b013e31825ff59a 10.2967/jnumed.112.108969  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2013 American Society of Nuclear Cardiology. Published by ELSEVIER INC. All rights reserved. American Society of Nuclear Cardiology 2013  | 
    
| Copyright_xml | – notice: 2013 American Society of Nuclear Cardiology. Published by ELSEVIER INC. All rights reserved. – notice: American Society of Nuclear Cardiology 2013  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AO 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. KB0 M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1007/s12350-013-9706-2 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Health & Medical Collection (Alumni Edition) Medical Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | ProQuest One Academic Middle East (New) MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1532-6551 | 
    
| EndPage | 562 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:3732038 PMC3732038 3014634001 23703378 10_1007_s12350_013_9706_2 S1071358123033068  | 
    
| Genre | Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01HL089765 – fundername: NHLBI NIH HHS grantid: R01 HL089765 – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL089765 || HL  | 
    
| GroupedDBID | --- --K -EM -Y2 .GJ 06D 0R~ 0VY 199 1B1 1N0 2.D 203 29L 29~ 2JN 2JY 2KG 2LR 2VQ 30V 3V. 4.4 406 408 40D 53G 5GY 5VS 67Z 78A 7RV 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 96X AAAVM AABHQ AABYN AAEDT AAEOY AAFGU AAHNG AAIAL AAJKR AAKSU AALRI AANXM AANZL AAQFI AAQXK AARHV AARTL AATNV AATVU AAUYE AAWCG AAWTL AAXUO AAYFA AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFGW ABFTV ABHLI ABIPD ABJNI ABJOX ABKAS ABKCH ABMAC ABMQK ABMYL ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABXPI ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHVE ACHXU ACIGE ACIHN ACIPQ ACKNC ACMDZ ACMLO ACOKC ACREN ACTTH ACUDM ACVWB ACWMK ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMDM ADMUD ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEEQQ AEFQL AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFAFS AFBBN AFKRA AFLOW AFNRJ AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGKHE AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AITUG AJBLW AJDOV AJRNO AJZVZ AKMHD AKQUC AKRWK ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AZFZN BA0 BBWZM BENPR BGNMA BKEYQ BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN EN4 EO8 EO9 ESBYG EX3 F5P FDB FEDTE FERAY FFXSO FGOYB FIGPU FINBP FNLPD FRRFC FSGXE FYUFA G-Q GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GRRUI HF~ HG6 HMCUK HMJXF HRMNR HVGLF HZ~ IHE IKXTQ IMOTQ ITM IWAJR IXC I~X J-C J0Z J5H JBSCW JZLTJ KOV KPH LLZTM M1P M41 M4Y MA- N2Q N9A NAPCQ NDZJH NF0 NQ- NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P9S PQQKQ PROAC PSQYO PT4 PT5 Q2X R2- R89 R9I RHV RIG RNI ROL RPZ RSV RZK S1Z S26 S27 S28 S37 S3B SCLPG SDE SDG SDH SEW SHX SISQX SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD SSZ STPWE SV3 SZ9 SZN T13 T16 TSG TT1 U2A U9L UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 WOW Z45 Z7U Z7X Z7Y Z82 Z87 ZMTXR ZOVNA ~A9 AAJBT AAYZH ABQSL ABWVN ACRPL ADNMO AFJKZ ALIPV AMRAJ H13 NPVJJ SJN AAYXX ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHPBZ AHWEU AIGII AIXLP APXCP AYFIA CITATION EFKBS PHGZM PHGZT PJZUB PPXIY CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM ADTOC AFFHD UNPAY  | 
    
| ID | FETCH-LOGICAL-c588t-31329d185ab9d58a8875e8fa7b9c52b39c0bcedf09ba6c7f9782c5269bdd7e383 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1071-3581 1532-6551  | 
    
| IngestDate | Wed Oct 29 11:36:24 EDT 2025 Tue Sep 30 16:54:36 EDT 2025 Mon Sep 29 04:47:54 EDT 2025 Tue Oct 07 05:30:44 EDT 2025 Wed Feb 19 02:03:34 EST 2025 Thu Apr 24 23:05:33 EDT 2025 Sat Oct 25 05:40:01 EDT 2025 Fri Feb 21 02:36:10 EST 2025 Sat Mar 16 16:12:22 EDT 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | coronary artery disease automated quantification total perfusion deficit Myocardial perfusion imaging: SPECT machine learning  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c588t-31329d185ab9d58a8875e8fa7b9c52b39c0bcedf09ba6c7f9782c5269bdd7e383 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://doi.org/10.1007/s12350-013-9706-2 | 
    
| PMID | 23703378 | 
    
| PQID | 1398613171 | 
    
| PQPubID | 54088 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s12350_013_9706_2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3732038 proquest_miscellaneous_1399264738 proquest_journals_1398613171 pubmed_primary_23703378 crossref_citationtrail_10_1007_s12350_013_9706_2 crossref_primary_10_1007_s12350_013_9706_2 springer_journals_10_1007_s12350_013_9706_2 elsevier_sciencedirect_doi_10_1007_s12350_013_9706_2  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2013-08-01 | 
    
| PublicationDateYYYYMMDD | 2013-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Boston | 
    
| PublicationPlace_xml | – name: Boston – name: United States – name: New York  | 
    
| PublicationTitle | Journal of nuclear cardiology | 
    
| PublicationTitleAbbrev | J. Nucl. Cardiol | 
    
| PublicationTitleAlternate | J Nucl Cardiol | 
    
| PublicationYear | 2013 | 
    
| Publisher | Elsevier Inc Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Elsevier Inc – name: Springer US – name: Springer Nature B.V  | 
    
| References | Friedman, Hastie, Tibshirani (bib27) 2000; 28 Arsanjani, Xu, Hayes, Fish, Lemley, Gerlach (bib37) 2013; 54 Xu, Kavanagh, Fish, Gerlach, Ramesh, Lemley (bib18) 2009; 50 Stein, Hu, Chen, Yang, Stansbury, Scalea (bib43) 2012; 73 Scott, Aziz, Yasuda, Gewirtz (bib40) 2004; 15 Nishina, Slomka, Abidov, Yoda, Akincioglu, Kang (bib14) 2006; 47 Berman, Kang, Van Train, Lewin, Cohen, Areeda (bib9) 1998; 32 Berman, Kang, Hayes, Friedman, Cohen, Abidov (bib13) 2003; 41 Golub, McClellan, Herman, Travin, Kline, Aitken (bib36) 1996; 3 DeLong, DeLong, Clarke-Pearson (bib32) 1988; 44 Picaro, Cook (bib46) 1984; 79 Slomka, Nishina, Berman, Kang, Friedman, Hayes (bib3) 2004; 45 Diamond, Forrester (bib21) 1979; 300 Garcia, Cooke, Folks, Santana, Krawczynska, De Braal (bib39) 2001; 42 Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the international joint conference on artificial intelligence, vol 2, Montreal; 1995. p. 1137-43. Xu, Arsanjani, Clond, Hyun, Lemley, Fish (bib25) 2012; 19 Diamond, Staniloff, Forrester, Pollock, Swan (bib11) 1983; 300 Candelieri, Conforti (bib41) 2010; 4 Slomka, Nishina, Abidov, Hayes, Friedman, Berman (bib10) 2007; 14 Underwood, Anagnostopoulos, Cerqueira, Ell, Flint, Harbinson (bib1) 2004; 31 Golub, Ahlberg, McClellan, Herman, Travin, Mather (bib35) 1999; 6 Matsumoto, Berman, Kavanagh, Gerlach, Hayes, Lewin (bib19) 2001; 42 Holly, Abbott, Al-Mallah, Calnon, Cohen, DiFilippo (bib7) 2010; 17 Danias, Ahlberg, Travin, Mahr, Abreu, Marini (bib8) 2002; 9 Cerqueira, Weissman, Dilsizian, Jacobs, Kaul, Laskey (bib26) 2002; 105 Slomka, Fish, Lorenzo, Nishina, Gerlach, Berman (bib22) 2006; 13 Germano, Kavanagh, Slomka, Van Kriekinge, Pollard, Berman (bib20) 2007; 14 Lindahl, Lanke, Lundin, Palmer, Edenbrandt (bib38) 1999; 40 Amanullah, Berman, Hachamovitch, Kiat, Kang, Friedman (bib2) 1997; 80 Berman, Kiat, Friedman, Wang, Van Train, Matzer (bib15) 1993; 22 Geisser (bib31) 1993 Slomka, Nishina, Berman, Akincioglu, Abidov, Friedman (bib4) 2005; 12 Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib28) 2009; 11 Klocke, Baird, Lorell, Bateman, Messer, Berman (bib34) 2003; 108 Johnson, Verdesca, Aude, Xavier, Nott, Campanella (bib6) 1997; 30 Prasad, Slomka, Fish, Kavanagh, Gerlach, Hayes (bib23) 2010; 51 Xu, Fish, Gerlach, Lemley, Berman, Germano (bib33) 2010; 17 Germano, Kavanagh, Su, Mazzanti, Kiat, Hachamovitch (bib17) 1995; 36 Germano, Kiat, Kavanagh, Moriel, Mazzanti, Su (bib24) 1995; 36 Freund Y, Schapire R. Experiments with a new boosting algorithm. In: Machine learning: Proceedings of the thirteenth international conference, Bari; 1996. p. 148-56. Amanullah, Kiat, Friedman, Berman (bib12) 1996; 27 Mohebbi, Ghassemian, Asl (bib42) 2011; 1 Hayes, De Lorenzo, Hachamovitch, Dhar, Hsu, Cohen (bib16) 2003; 44 Dettling, Bühlmann (bib30) 2003; 19 Lu, Wang, Chen, Zhao (bib44) 2013; 20 Abidov, Bax, Hayes, Hachamovitch, Cohen, Gerlach (bib5) 2003; 42 Berman, Kang, Van Train, Lewin, Cohen, Areeda (CR9) 1998; 32 Matsumoto, Berman, Kavanagh, Gerlach, Hayes, Lewin (CR19) 2001; 42 Xu, Fish, Gerlach, Lemley, Berman, Germano (CR33) 2010; 17 Diamond, Forrester (CR21) 1979; 300 Xu, Kavanagh, Fish, Gerlach, Ramesh, Lemley (CR18) 2009; 50 Slomka, Nishina, Abidov, Hayes, Friedman, Berman (CR10) 2007; 14 Germano, Kavanagh, Su, Mazzanti, Kiat, Hachamovitch (CR17) 1995; 36 Stein, Hu, Chen, Yang, Stansbury, Scalea (CR43) 2012; 73 Berman, Kang, Hayes, Friedman, Cohen, Abidov (CR13) 2003; 41 Amanullah, Kiat, Friedman, Berman (CR12) 1996; 27 Holly, Abbott, Al-Mallah, Calnon, Cohen, DiFilippo (CR7) 2010; 17 Golub, McClellan, Herman, Travin, Kline, Aitken (CR36) 1996; 3 Klocke, Baird, Lorell, Bateman, Messer, Berman (CR34) 2003; 108 Dettling, Bühlmann (CR30) 2003; 19 Friedman, Hastie, Tibshirani (CR27) 2000; 28 Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (CR28) 2009; 11 Johnson, Verdesca, Aude, Xavier, Nott, Campanella (CR6) 1997; 30 Berman, Kiat, Friedman, Wang, Van Train, Matzer (CR15) 1993; 22 Scott, Aziz, Yasuda, Gewirtz (CR40) 2004; 15 Geisser (CR31) 1993 Xu, Arsanjani, Clond, Hyun, Lemley, Fish (CR25) 2012; 19 Golub, Ahlberg, McClellan, Herman, Travin, Mather (CR35) 1999; 6 Germano, Kiat, Kavanagh, Moriel, Mazzanti, Su (CR24) 1995; 36 Underwood, Anagnostopoulos, Cerqueira, Ell, Flint, Harbinson (CR1) 2004; 31 Lindahl, Lanke, Lundin, Palmer, Edenbrandt (CR38) 1999; 40 Danias, Ahlberg, Travin, Mahr, Abreu, Marini (CR8) 2002; 9 Diamond, Staniloff, Forrester, Pollock, Swan (CR11) 1983; 300 Hayes, De Lorenzo, Hachamovitch, Dhar, Hsu, Cohen (CR16) 2003; 44 Slomka, Nishina, Berman, Kang, Friedman, Hayes (CR3) 2004; 45 Lu, Wang, Chen, Zhao (CR44) 2013; 20 CR29 Garcia, Cooke, Folks, Santana, Krawczynska, De Braal (CR39) 2001; 42 Prasad, Slomka, Fish, Kavanagh, Gerlach, Hayes (CR23) 2010; 51 Mohebbi, Ghassemian, Asl (CR42) 2011; 1 Germano, Kavanagh, Slomka, Van Kriekinge, Pollard, Berman (CR20) 2007; 14 Slomka, Nishina, Berman, Akincioglu, Abidov, Friedman (CR4) 2005; 12 Picaro, Cook (CR46) 1984; 79 DeLong, DeLong, Clarke-Pearson (CR32) 1988; 44 Arsanjani, Xu, Hayes, Fish, Lemley, Gerlach (CR37) 2013; 54 CR45 Amanullah, Berman, Hachamovitch, Kiat, Kang, Friedman (CR2) 1997; 80 Abidov, Bax, Hayes, Hachamovitch, Cohen, Gerlach (CR5) 2003; 42 Nishina, Slomka, Abidov, Yoda, Akincioglu, Kang (CR14) 2006; 47 Cerqueira, Weissman, Dilsizian, Jacobs, Kaul, Laskey (CR26) 2002; 105 Slomka, Fish, Lorenzo, Nishina, Gerlach, Berman (CR22) 2006; 13 Candelieri, Conforti (CR41) 2010; 4 Picaro (10.1007/s12350-013-9706-2_bib46) 1984; 79 Underwood (10.1007/s12350-013-9706-2_bib1) 2004; 31 Xu (10.1007/s12350-013-9706-2_bib33) 2010; 17 Danias (10.1007/s12350-013-9706-2_bib8) 2002; 9 Klocke (10.1007/s12350-013-9706-2_bib34) 2003; 108 Slomka (10.1007/s12350-013-9706-2_bib4) 2005; 12 Arsanjani (10.1007/s12350-013-9706-2_bib37) 2013; 54 Berman (10.1007/s12350-013-9706-2_bib9) 1998; 32 Lu (10.1007/s12350-013-9706-2_bib44) 2013; 20 Johnson (10.1007/s12350-013-9706-2_bib6) 1997; 30 Slomka (10.1007/s12350-013-9706-2_bib3) 2004; 45 10.1007/s12350-013-9706-2_bib45 Hayes (10.1007/s12350-013-9706-2_bib16) 2003; 44 Slomka (10.1007/s12350-013-9706-2_bib22) 2006; 13 Berman (10.1007/s12350-013-9706-2_bib15) 1993; 22 Stein (10.1007/s12350-013-9706-2_bib43) 2012; 73 DeLong (10.1007/s12350-013-9706-2_bib32) 1988; 44 Xu (10.1007/s12350-013-9706-2_bib18) 2009; 50 Diamond (10.1007/s12350-013-9706-2_bib21) 1979; 300 Germano (10.1007/s12350-013-9706-2_bib17) 1995; 36 Matsumoto (10.1007/s12350-013-9706-2_bib19) 2001; 42 Prasad (10.1007/s12350-013-9706-2_bib23) 2010; 51 Amanullah (10.1007/s12350-013-9706-2_bib2) 1997; 80 Lindahl (10.1007/s12350-013-9706-2_bib38) 1999; 40 Garcia (10.1007/s12350-013-9706-2_bib39) 2001; 42 Golub (10.1007/s12350-013-9706-2_bib35) 1999; 6 Candelieri (10.1007/s12350-013-9706-2_bib41) 2010; 4 Dettling (10.1007/s12350-013-9706-2_bib30) 2003; 19 Diamond (10.1007/s12350-013-9706-2_bib11) 1983; 300 Mohebbi (10.1007/s12350-013-9706-2_bib42) 2011; 1 Berman (10.1007/s12350-013-9706-2_bib13) 2003; 41 Hall (10.1007/s12350-013-9706-2_bib28) 2009; 11 Geisser (10.1007/s12350-013-9706-2_bib31) 1993 Cerqueira (10.1007/s12350-013-9706-2_bib26) 2002; 105 Amanullah (10.1007/s12350-013-9706-2_bib12) 1996; 27 Germano (10.1007/s12350-013-9706-2_bib20) 2007; 14 Nishina (10.1007/s12350-013-9706-2_bib14) 2006; 47 Golub (10.1007/s12350-013-9706-2_bib36) 1996; 3 Holly (10.1007/s12350-013-9706-2_bib7) 2010; 17 Abidov (10.1007/s12350-013-9706-2_bib5) 2003; 42 10.1007/s12350-013-9706-2_bib29 Scott (10.1007/s12350-013-9706-2_bib40) 2004; 15 Slomka (10.1007/s12350-013-9706-2_bib10) 2007; 14 Germano (10.1007/s12350-013-9706-2_bib24) 1995; 36 Friedman (10.1007/s12350-013-9706-2_bib27) 2000; 28 Xu (10.1007/s12350-013-9706-2_bib25) 2012; 19  | 
    
| References_xml | – volume: 19 start-page: 1061 year: 2003 end-page: 1069 ident: bib30 article-title: Boosting for tumor classification with gene expression data publication-title: Bioinformatics – volume: 42 start-page: 1185 year: 2001 end-page: 1191 ident: bib39 article-title: Diagnostic performance of an expert system for the interpretation of myocardial perfusion SPECT studies publication-title: J Nucl Med – volume: 12 start-page: 66 year: 2005 end-page: 77 ident: bib4 article-title: Automated quantification of myocardial perfusion SPECT using simplified normal limits publication-title: J Nucl Cardiol – volume: 36 start-page: 2138 year: 1995 end-page: 2147 ident: bib24 article-title: Automatic quantification of ejection fraction from gated myocardial perfusion SPECT publication-title: J Nucl Med – volume: 14 start-page: 44 year: 2007 end-page: 52 ident: bib10 article-title: Combined quantitative supine-prone myocardial perfusion SPECT improves detection of coronary artery disease and normalcy rates in women publication-title: J Nucl Cardiol – volume: 80 start-page: 132 year: 1997 end-page: 137 ident: bib2 article-title: Identification of severe or extensive coronary artery disease in women by adenosine technetium-99m sestamibi SPECT publication-title: Am J Cardiol – volume: 50 start-page: 1418 year: 2009 end-page: 1426 ident: bib18 article-title: Automated quality control for segmentation of myocardial perfusion SPECT publication-title: J Nucl Med – volume: 42 start-page: 687 year: 2001 end-page: 694 ident: bib19 article-title: Quantitative assessment of motion artifacts and validation of a new motion-correction program for myocardial perfusion SPECT publication-title: J Nucl Med – volume: 300 start-page: 1350 year: 1979 end-page: 1358 ident: bib21 article-title: Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease publication-title: N Engl J Med – volume: 42 start-page: 1818 year: 2003 end-page: 1825 ident: bib5 article-title: Transient ischemic dilation ratio of the left ventricle is a significant predictor of future cardiac events in patients with otherwise normal myocardial perfusion SPECT publication-title: J Am Coll Cardiol – volume: 27 start-page: 803 year: 1996 end-page: 809 ident: bib12 article-title: Adenosine technetium-99m sestamibi myocardial perfusion SPECT in women: Diagnostic efficacy in detection of coronary artery disease publication-title: J Am Coll Cardiol – volume: 44 start-page: 1633 year: 2003 end-page: 1640 ident: bib16 article-title: Prognostic implications of combined prone and supine acquisitions in patients with equivocal or abnormal supine myocardial perfusion SPECT publication-title: J Nucl Med – volume: 36 start-page: 1107 year: 1995 end-page: 1114 ident: bib17 article-title: Automatic reorientation of three-dimensional, transaxial myocardial perfusion SPECT images publication-title: J Nucl Med – volume: 30 start-page: 1641 year: 1997 end-page: 1648 ident: bib6 article-title: Postischemic stunning can affect left ventricular ejection fraction and regional wall motion on post-stress gated sestamibi tomograms publication-title: J Am Coll Cardiol – volume: 45 start-page: 183 year: 2004 end-page: 191 ident: bib3 article-title: Automatic quantification of myocardial perfusion stress-rest change: A new measure of ischemia publication-title: J Nucl Med – volume: 17 start-page: 591 year: 2010 end-page: 599 ident: bib33 article-title: Combined quantitative analysis of attenuation corrected and non-corrected myocardial perfusion SPECT: Method development and clinical validation publication-title: J Nucl Cardiol – volume: 1 start-page: 113 year: 2011 end-page: 121 ident: bib42 article-title: Structures of the recurrence plot of heart rate variability signal as a tool for predicting the onset of paroxysmal atrial fibrillation publication-title: J Med Signals Sens – volume: 19 start-page: 465 year: 2012 end-page: 473 ident: bib25 article-title: Transient ischemic dilation for coronary artery disease in quantitative analysis of same-day sestamibi myocardial perfusion SPECT publication-title: J Nucl Cardiol – volume: 22 start-page: 1455 year: 1993 end-page: 1464 ident: bib15 article-title: Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: A clinical validation study publication-title: J Am Coll Cardiol – volume: 79 start-page: 575 year: 1984 end-page: 583 ident: bib46 article-title: Cross-validation of regression models publication-title: J Am Stat Assoc – volume: 6 start-page: 257 year: 1999 end-page: 269 ident: bib35 article-title: Interpretive reproducibility of stress Tc-99m sestamibi tomographic myocardial perfusion imaging publication-title: J Nucl Cardiol – volume: 54 start-page: 221 year: 2013 ident: bib37 article-title: Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population publication-title: J Nucl Med – volume: 14 start-page: 433 year: 2007 end-page: 454 ident: bib20 article-title: Quantitation in gated perfusion SPECT imaging: The Cedars-Sinai approach publication-title: J Nucl Cardiol – volume: 13 start-page: 642 year: 2006 end-page: 651 ident: bib22 article-title: Simplified normal limits and automated quantitative assessment for attenuation-corrected myocardial perfusion SPECT publication-title: J Nucl Cardiol – volume: 105 start-page: 539 year: 2002 end-page: 542 ident: bib26 article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association publication-title: Circulation – year: 1993 ident: bib31 article-title: Predictive inference: An introduction publication-title: Predictive inference: An introduction – volume: 73 year: 2012 ident: bib43 article-title: Computational gene mapping to analyze continuous automated physiologic monitoring data in neuro-trauma intensive care publication-title: J Trauma Acute Care Surg – volume: 300 start-page: 444 year: 1983 end-page: 455 ident: bib11 article-title: Computer-assisted diagnosis in the noninvasive evaluation of patients with suspected coronary artery disease publication-title: J Am Coll Cardiol – volume: 15 start-page: 427 year: 2004 end-page: 434 ident: bib40 article-title: Integration of clinical and imaging data to predict the presence of coronary artery disease with the use of neural networks publication-title: Coron Artery Dis – volume: 4 start-page: 136 year: 2010 end-page: 140 ident: bib41 article-title: A hyper-solution framework for SVM classification: Application for predicting destabilizations in chronic heart failure patients publication-title: Open Med Inform J – volume: 17 start-page: 941 year: 2010 end-page: 973 ident: bib7 article-title: Single photon-emission computed tomography publication-title: J Nucl Cardiol – volume: 31 start-page: 261 year: 2004 end-page: 291 ident: bib1 article-title: Myocardial perfusion scintigraphy: the evidence publication-title: Eur J Nucl Med Mol Imaging – volume: 9 start-page: 263 year: 2002 end-page: 270 ident: bib8 article-title: Visual assessment of left ventricular perfusion and function with electrocardiography-gated SPECT has high intraobserver and interobserver reproducibility among experienced nuclear cardiologists and cardiology trainees publication-title: J Nucl Cardiol – reference: Freund Y, Schapire R. Experiments with a new boosting algorithm. In: Machine learning: Proceedings of the thirteenth international conference, Bari; 1996. p. 148-56. – volume: 108 start-page: 1404 year: 2003 end-page: 1418 ident: bib34 article-title: ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging) publication-title: Circulation – volume: 3 start-page: 114 year: 1996 end-page: 118 ident: bib36 article-title: Effectiveness of nuclear cardiology training guidelines: A comparison of trainees with experienced readers publication-title: J Nucl Cardiol – reference: Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the international joint conference on artificial intelligence, vol 2, Montreal; 1995. p. 1137-43. – volume: 32 start-page: 1987 year: 1998 end-page: 1995 ident: bib9 article-title: Comparative prognostic value of automatic quantitative analysis versus semiquantitative visual analysis of exercise myocardial perfusion single-photon emission computed tomography publication-title: J Am Coll Cardiol – volume: 28 start-page: 337 year: 2000 end-page: 407 ident: bib27 article-title: Additive logistic regression: A statistical view of boosting (With discussion and a rejoinder by the authors) publication-title: Ann Stat – volume: 51 start-page: 204 year: 2010 end-page: 209 ident: bib23 article-title: Improved quantification and normal limits for myocardial perfusion stress-rest change publication-title: J Nucl Med – volume: 44 start-page: 837 year: 1988 end-page: 845 ident: bib32 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach publication-title: Biometrics – volume: 41 start-page: 1125 year: 2003 end-page: 1133 ident: bib13 article-title: Adenosine myocardial perfusion single-photon emission computed tomography in women compared with men. Impact of diabetes mellitus on incremental prognostic value and effect on patient management publication-title: J Am Coll Cardiol – volume: 47 start-page: 51 year: 2006 end-page: 58 ident: bib14 article-title: Combined supine and prone quantitative myocardial perfusion SPECT: Method development and clinical validation in patients with no known coronary artery disease publication-title: J Nucl Med – volume: 20 start-page: 346 year: 2013 end-page: 351 ident: bib44 article-title: Computational methods for DNA-binding protein and binding residue prediction publication-title: Protein Peptide Lett – volume: 11 start-page: 10 year: 2009 end-page: 18 ident: bib28 article-title: The WEKA data mining software: An update publication-title: SIGKDD Explor – volume: 40 start-page: 96 year: 1999 end-page: 101 ident: bib38 article-title: Improved classifications of myocardial bull’s-eye scintigrams with computer-based decision support system publication-title: J Nucl Med – volume: 9 start-page: 263 year: 2002 end-page: 270 ident: CR8 article-title: Visual assessment of left ventricular perfusion and function with electrocardiography-gated SPECT has high intraobserver and interobserver reproducibility among experienced nuclear cardiologists and cardiology trainees publication-title: J Nucl Cardiol doi: 10.1067/mnc.2002.121233 – ident: CR45 – volume: 36 start-page: 2138 year: 1995 end-page: 2147 ident: CR24 article-title: Automatic quantification of ejection fraction from gated myocardial perfusion SPECT publication-title: J Nucl Med – volume: 73 start-page: 419 year: 2012 end-page: 5 ident: CR43 article-title: Computational gene mapping to analyze continuous automated physiologic monitoring data in neuro-trauma intensive care publication-title: J Trauma Acute Care Surg – volume: 31 start-page: 261 year: 2004 end-page: 291 ident: CR1 article-title: Myocardial perfusion scintigraphy: the evidence publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-003-1344-5 – volume: 14 start-page: 433 year: 2007 end-page: 454 ident: CR20 article-title: Quantitation in gated perfusion SPECT imaging: The Cedars-Sinai approach publication-title: J Nucl Cardiol doi: 10.1016/j.nuclcard.2007.06.008 – volume: 50 start-page: 1418 year: 2009 end-page: 1426 ident: CR18 article-title: Automated quality control for segmentation of myocardial perfusion SPECT publication-title: J Nucl Med doi: 10.2967/jnumed.108.061333 – volume: 44 start-page: 1633 year: 2003 end-page: 1640 ident: CR16 article-title: Prognostic implications of combined prone and supine acquisitions in patients with equivocal or abnormal supine myocardial perfusion SPECT publication-title: J Nucl Med – volume: 28 start-page: 337 year: 2000 end-page: 407 ident: CR27 article-title: Additive logistic regression: A statistical view of boosting (With discussion and a rejoinder by the authors) publication-title: Ann Stat doi: 10.1214/aos/1016218223 – volume: 44 start-page: 837 year: 1988 end-page: 845 ident: CR32 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 – volume: 15 start-page: 427 year: 2004 end-page: 434 ident: CR40 article-title: Integration of clinical and imaging data to predict the presence of coronary artery disease with the use of neural networks publication-title: Coron Artery Dis doi: 10.1097/00019501-200411000-00010 – volume: 105 start-page: 539 year: 2002 end-page: 542 ident: CR26 article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association publication-title: Circulation doi: 10.1161/hc0402.102975 – volume: 13 start-page: 642 year: 2006 end-page: 651 ident: CR22 article-title: Simplified normal limits and automated quantitative assessment for attenuation-corrected myocardial perfusion SPECT publication-title: J Nucl Cardiol doi: 10.1016/j.nuclcard.2006.06.131 – volume: 42 start-page: 1185 year: 2001 end-page: 1191 ident: CR39 article-title: Diagnostic performance of an expert system for the interpretation of myocardial perfusion SPECT studies publication-title: J Nucl Med – ident: CR29 – volume: 12 start-page: 66 year: 2005 end-page: 77 ident: CR4 article-title: Automated quantification of myocardial perfusion SPECT using simplified normal limits publication-title: J Nucl Cardiol doi: 10.1016/j.nuclcard.2004.10.006 – volume: 17 start-page: 591 year: 2010 end-page: 599 ident: CR33 article-title: Combined quantitative analysis of attenuation corrected and non-corrected myocardial perfusion SPECT: Method development and clinical validation publication-title: J Nucl Cardiol doi: 10.1007/s12350-010-9220-8 – volume: 30 start-page: 1641 year: 1997 end-page: 1648 ident: CR6 article-title: Postischemic stunning can affect left ventricular ejection fraction and regional wall motion on post-stress gated sestamibi tomograms publication-title: J Am Coll Cardiol doi: 10.1016/S0735-1097(97)00388-4 – volume: 36 start-page: 1107 year: 1995 end-page: 1114 ident: CR17 article-title: Automatic reorientation of three-dimensional, transaxial myocardial perfusion SPECT images publication-title: J Nucl Med – volume: 51 start-page: 204 year: 2010 end-page: 209 ident: CR23 article-title: Improved quantification and normal limits for myocardial perfusion stress-rest change publication-title: J Nucl Med doi: 10.2967/jnumed.109.067736 – volume: 42 start-page: 687 year: 2001 end-page: 694 ident: CR19 article-title: Quantitative assessment of motion artifacts and validation of a new motion-correction program for myocardial perfusion SPECT publication-title: J Nucl Med – volume: 40 start-page: 96 year: 1999 end-page: 101 ident: CR38 article-title: Improved classifications of myocardial bull’s-eye scintigrams with computer-based decision support system publication-title: J Nucl Med – volume: 6 start-page: 257 year: 1999 end-page: 269 ident: CR35 article-title: Interpretive reproducibility of stress Tc-99m sestamibi tomographic myocardial perfusion imaging publication-title: J Nucl Cardiol doi: 10.1016/S1071-3581(99)90037-5 – volume: 19 start-page: 465 year: 2012 end-page: 473 ident: CR25 article-title: Transient ischemic dilation for coronary artery disease in quantitative analysis of same-day sestamibi myocardial perfusion SPECT publication-title: J Nucl Cardiol doi: 10.1007/s12350-012-9527-8 – volume: 11 start-page: 10 year: 2009 end-page: 18 ident: CR28 article-title: The WEKA data mining software: An update publication-title: SIGKDD Explor doi: 10.1145/1656274.1656278 – volume: 1 start-page: 113 year: 2011 end-page: 121 ident: CR42 article-title: Structures of the recurrence plot of heart rate variability signal as a tool for predicting the onset of paroxysmal atrial fibrillation publication-title: J Med Signals Sens – volume: 47 start-page: 51 year: 2006 end-page: 58 ident: CR14 article-title: Combined supine and prone quantitative myocardial perfusion SPECT: Method development and clinical validation in patients with no known coronary artery disease publication-title: J Nucl Med – volume: 80 start-page: 132 year: 1997 end-page: 137 ident: CR2 article-title: Identification of severe or extensive coronary artery disease in women by adenosine technetium-99m sestamibi SPECT publication-title: Am J Cardiol doi: 10.1016/S0002-9149(97)00306-8 – volume: 14 start-page: 44 year: 2007 end-page: 52 ident: CR10 article-title: Combined quantitative supine-prone myocardial perfusion SPECT improves detection of coronary artery disease and normalcy rates in women publication-title: J Nucl Cardiol doi: 10.1016/j.nuclcard.2006.10.021 – volume: 300 start-page: 444 year: 1983 end-page: 455 ident: CR11 article-title: Computer-assisted diagnosis in the noninvasive evaluation of patients with suspected coronary artery disease publication-title: J Am Coll Cardiol doi: 10.1016/S0735-1097(83)80072-2 – volume: 20 start-page: 346 year: 2013 end-page: 51 ident: CR44 article-title: Computational methods for DNA-binding protein and binding residue prediction publication-title: Protein Peptide Lett – volume: 27 start-page: 803 year: 1996 end-page: 809 ident: CR12 article-title: Adenosine technetium-99m sestamibi myocardial perfusion SPECT in women: Diagnostic efficacy in detection of coronary artery disease publication-title: J Am Coll Cardiol doi: 10.1016/0735-1097(95)00550-1 – volume: 45 start-page: 183 year: 2004 end-page: 191 ident: CR3 article-title: Automatic quantification of myocardial perfusion stress-rest change: A new measure of ischemia publication-title: J Nucl Med – volume: 108 start-page: 1404 year: 2003 end-page: 1418 ident: CR34 article-title: ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging) publication-title: Circulation doi: 10.1161/01.CIR.0000080946.42225.4D – year: 1993 ident: CR31 publication-title: Predictive inference: An introduction – volume: 4 start-page: 136 year: 2010 end-page: 140 ident: CR41 article-title: A hyper-solution framework for SVM classification: Application for predicting destabilizations in chronic heart failure patients publication-title: Open Med Inform J – volume: 42 start-page: 1818 year: 2003 end-page: 1825 ident: CR5 article-title: Transient ischemic dilation ratio of the left ventricle is a significant predictor of future cardiac events in patients with otherwise normal myocardial perfusion SPECT publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2003.07.010 – volume: 32 start-page: 1987 year: 1998 end-page: 1995 ident: CR9 article-title: Comparative prognostic value of automatic quantitative analysis versus semiquantitative visual analysis of exercise myocardial perfusion single-photon emission computed tomography publication-title: J Am Coll Cardiol doi: 10.1016/S0735-1097(98)00501-4 – volume: 3 start-page: 114 year: 1996 end-page: 118 ident: CR36 article-title: Effectiveness of nuclear cardiology training guidelines: A comparison of trainees with experienced readers publication-title: J Nucl Cardiol doi: 10.1016/S1071-3581(96)90003-3 – volume: 17 start-page: 941 year: 2010 end-page: 973 ident: CR7 article-title: Single photon-emission computed tomography publication-title: J Nucl Cardiol doi: 10.1007/s12350-010-9246-y – volume: 19 start-page: 1061 year: 2003 end-page: 1069 ident: CR30 article-title: Boosting for tumor classification with gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btf867 – volume: 79 start-page: 575 year: 1984 end-page: 583 ident: CR46 article-title: Cross-validation of regression models publication-title: J Am Stat Assoc doi: 10.1080/01621459.1984.10478083 – volume: 41 start-page: 1125 year: 2003 end-page: 1133 ident: CR13 article-title: Adenosine myocardial perfusion single-photon emission computed tomography in women compared with men. Impact of diabetes mellitus on incremental prognostic value and effect on patient management publication-title: J Am Coll Cardiol doi: 10.1016/S0735-1097(03)00085-8 – volume: 54 start-page: 221 year: 2013 ident: CR37 article-title: Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population publication-title: J Nucl Med – volume: 22 start-page: 1455 year: 1993 end-page: 1464 ident: CR15 article-title: Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: A clinical validation study publication-title: J Am Coll Cardiol doi: 10.1016/0735-1097(93)90557-H – volume: 300 start-page: 1350 year: 1979 end-page: 1358 ident: CR21 article-title: Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease publication-title: N Engl J Med doi: 10.1056/NEJM197906143002402 – volume: 79 start-page: 575 year: 1984 ident: 10.1007/s12350-013-9706-2_bib46 article-title: Cross-validation of regression models publication-title: J Am Stat Assoc doi: 10.1080/01621459.1984.10478083 – volume: 40 start-page: 96 year: 1999 ident: 10.1007/s12350-013-9706-2_bib38 article-title: Improved classifications of myocardial bull’s-eye scintigrams with computer-based decision support system publication-title: J Nucl Med – volume: 41 start-page: 1125 year: 2003 ident: 10.1007/s12350-013-9706-2_bib13 article-title: Adenosine myocardial perfusion single-photon emission computed tomography in women compared with men. Impact of diabetes mellitus on incremental prognostic value and effect on patient management publication-title: J Am Coll Cardiol doi: 10.1016/S0735-1097(03)00085-8 – volume: 4 start-page: 136 year: 2010 ident: 10.1007/s12350-013-9706-2_bib41 article-title: A hyper-solution framework for SVM classification: Application for predicting destabilizations in chronic heart failure patients publication-title: Open Med Inform J doi: 10.2174/1874431101004010136 – volume: 14 start-page: 433 year: 2007 ident: 10.1007/s12350-013-9706-2_bib20 article-title: Quantitation in gated perfusion SPECT imaging: The Cedars-Sinai approach publication-title: J Nucl Cardiol doi: 10.1016/j.nuclcard.2007.06.008 – volume: 44 start-page: 837 year: 1988 ident: 10.1007/s12350-013-9706-2_bib32 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 – volume: 27 start-page: 803 year: 1996 ident: 10.1007/s12350-013-9706-2_bib12 article-title: Adenosine technetium-99m sestamibi myocardial perfusion SPECT in women: Diagnostic efficacy in detection of coronary artery disease publication-title: J Am Coll Cardiol doi: 10.1016/0735-1097(95)00550-1 – volume: 20 start-page: 346 year: 2013 ident: 10.1007/s12350-013-9706-2_bib44 article-title: Computational methods for DNA-binding protein and binding residue prediction publication-title: Protein Peptide Lett – volume: 36 start-page: 2138 year: 1995 ident: 10.1007/s12350-013-9706-2_bib24 article-title: Automatic quantification of ejection fraction from gated myocardial perfusion SPECT publication-title: J Nucl Med – volume: 14 start-page: 44 year: 2007 ident: 10.1007/s12350-013-9706-2_bib10 article-title: Combined quantitative supine-prone myocardial perfusion SPECT improves detection of coronary artery disease and normalcy rates in women publication-title: J Nucl Cardiol doi: 10.1016/j.nuclcard.2006.10.021 – ident: 10.1007/s12350-013-9706-2_bib45 – volume: 45 start-page: 183 year: 2004 ident: 10.1007/s12350-013-9706-2_bib3 article-title: Automatic quantification of myocardial perfusion stress-rest change: A new measure of ischemia publication-title: J Nucl Med – volume: 300 start-page: 444 year: 1983 ident: 10.1007/s12350-013-9706-2_bib11 article-title: Computer-assisted diagnosis in the noninvasive evaluation of patients with suspected coronary artery disease publication-title: J Am Coll Cardiol doi: 10.1016/S0735-1097(83)80072-2 – volume: 3 start-page: 114 year: 1996 ident: 10.1007/s12350-013-9706-2_bib36 article-title: Effectiveness of nuclear cardiology training guidelines: A comparison of trainees with experienced readers publication-title: J Nucl Cardiol doi: 10.1016/S1071-3581(96)90003-3 – volume: 28 start-page: 337 year: 2000 ident: 10.1007/s12350-013-9706-2_bib27 article-title: Additive logistic regression: A statistical view of boosting (With discussion and a rejoinder by the authors) publication-title: Ann Stat doi: 10.1214/aos/1016218223 – volume: 6 start-page: 257 year: 1999 ident: 10.1007/s12350-013-9706-2_bib35 article-title: Interpretive reproducibility of stress Tc-99m sestamibi tomographic myocardial perfusion imaging publication-title: J Nucl Cardiol doi: 10.1016/S1071-3581(99)90037-5 – volume: 300 start-page: 1350 year: 1979 ident: 10.1007/s12350-013-9706-2_bib21 article-title: Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease publication-title: N Engl J Med doi: 10.1056/NEJM197906143002402 – volume: 22 start-page: 1455 year: 1993 ident: 10.1007/s12350-013-9706-2_bib15 article-title: Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: A clinical validation study publication-title: J Am Coll Cardiol doi: 10.1016/0735-1097(93)90557-H – volume: 19 start-page: 1061 year: 2003 ident: 10.1007/s12350-013-9706-2_bib30 article-title: Boosting for tumor classification with gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btf867 – volume: 11 start-page: 10 year: 2009 ident: 10.1007/s12350-013-9706-2_bib28 article-title: The WEKA data mining software: An update publication-title: SIGKDD Explor doi: 10.1145/1656274.1656278 – volume: 44 start-page: 1633 year: 2003 ident: 10.1007/s12350-013-9706-2_bib16 article-title: Prognostic implications of combined prone and supine acquisitions in patients with equivocal or abnormal supine myocardial perfusion SPECT publication-title: J Nucl Med – volume: 50 start-page: 1418 year: 2009 ident: 10.1007/s12350-013-9706-2_bib18 article-title: Automated quality control for segmentation of myocardial perfusion SPECT publication-title: J Nucl Med doi: 10.2967/jnumed.108.061333 – volume: 9 start-page: 263 year: 2002 ident: 10.1007/s12350-013-9706-2_bib8 article-title: Visual assessment of left ventricular perfusion and function with electrocardiography-gated SPECT has high intraobserver and interobserver reproducibility among experienced nuclear cardiologists and cardiology trainees publication-title: J Nucl Cardiol doi: 10.1067/mnc.2002.121233 – volume: 32 start-page: 1987 year: 1998 ident: 10.1007/s12350-013-9706-2_bib9 article-title: Comparative prognostic value of automatic quantitative analysis versus semiquantitative visual analysis of exercise myocardial perfusion single-photon emission computed tomography publication-title: J Am Coll Cardiol doi: 10.1016/S0735-1097(98)00501-4 – year: 1993 ident: 10.1007/s12350-013-9706-2_bib31 article-title: Predictive inference: An introduction – volume: 108 start-page: 1404 year: 2003 ident: 10.1007/s12350-013-9706-2_bib34 publication-title: Circulation doi: 10.1161/01.CIR.0000080946.42225.4D – ident: 10.1007/s12350-013-9706-2_bib29 – volume: 36 start-page: 1107 year: 1995 ident: 10.1007/s12350-013-9706-2_bib17 article-title: Automatic reorientation of three-dimensional, transaxial myocardial perfusion SPECT images publication-title: J Nucl Med – volume: 30 start-page: 1641 year: 1997 ident: 10.1007/s12350-013-9706-2_bib6 article-title: Postischemic stunning can affect left ventricular ejection fraction and regional wall motion on post-stress gated sestamibi tomograms publication-title: J Am Coll Cardiol doi: 10.1016/S0735-1097(97)00388-4 – volume: 15 start-page: 427 year: 2004 ident: 10.1007/s12350-013-9706-2_bib40 article-title: Integration of clinical and imaging data to predict the presence of coronary artery disease with the use of neural networks publication-title: Coron Artery Dis doi: 10.1097/00019501-200411000-00010 – volume: 47 start-page: 51 year: 2006 ident: 10.1007/s12350-013-9706-2_bib14 article-title: Combined supine and prone quantitative myocardial perfusion SPECT: Method development and clinical validation in patients with no known coronary artery disease publication-title: J Nucl Med – volume: 13 start-page: 642 year: 2006 ident: 10.1007/s12350-013-9706-2_bib22 article-title: Simplified normal limits and automated quantitative assessment for attenuation-corrected myocardial perfusion SPECT publication-title: J Nucl Cardiol doi: 10.1016/j.nuclcard.2006.06.131 – volume: 42 start-page: 1818 year: 2003 ident: 10.1007/s12350-013-9706-2_bib5 article-title: Transient ischemic dilation ratio of the left ventricle is a significant predictor of future cardiac events in patients with otherwise normal myocardial perfusion SPECT publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2003.07.010 – volume: 1 start-page: 113 year: 2011 ident: 10.1007/s12350-013-9706-2_bib42 article-title: Structures of the recurrence plot of heart rate variability signal as a tool for predicting the onset of paroxysmal atrial fibrillation publication-title: J Med Signals Sens doi: 10.4103/2228-7477.95295 – volume: 12 start-page: 66 year: 2005 ident: 10.1007/s12350-013-9706-2_bib4 article-title: Automated quantification of myocardial perfusion SPECT using simplified normal limits publication-title: J Nucl Cardiol doi: 10.1016/j.nuclcard.2004.10.006 – volume: 17 start-page: 941 year: 2010 ident: 10.1007/s12350-013-9706-2_bib7 article-title: Single photon-emission computed tomography publication-title: J Nucl Cardiol doi: 10.1007/s12350-010-9246-y – volume: 105 start-page: 539 year: 2002 ident: 10.1007/s12350-013-9706-2_bib26 article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association publication-title: Circulation doi: 10.1161/hc0402.102975 – volume: 80 start-page: 132 year: 1997 ident: 10.1007/s12350-013-9706-2_bib2 article-title: Identification of severe or extensive coronary artery disease in women by adenosine technetium-99m sestamibi SPECT publication-title: Am J Cardiol doi: 10.1016/S0002-9149(97)00306-8 – volume: 17 start-page: 591 year: 2010 ident: 10.1007/s12350-013-9706-2_bib33 article-title: Combined quantitative analysis of attenuation corrected and non-corrected myocardial perfusion SPECT: Method development and clinical validation publication-title: J Nucl Cardiol doi: 10.1007/s12350-010-9220-8 – volume: 42 start-page: 1185 year: 2001 ident: 10.1007/s12350-013-9706-2_bib39 article-title: Diagnostic performance of an expert system for the interpretation of myocardial perfusion SPECT studies publication-title: J Nucl Med – volume: 31 start-page: 261 year: 2004 ident: 10.1007/s12350-013-9706-2_bib1 article-title: Myocardial perfusion scintigraphy: the evidence publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-003-1344-5 – volume: 51 start-page: 204 year: 2010 ident: 10.1007/s12350-013-9706-2_bib23 article-title: Improved quantification and normal limits for myocardial perfusion stress-rest change publication-title: J Nucl Med doi: 10.2967/jnumed.109.067736 – volume: 19 start-page: 465 year: 2012 ident: 10.1007/s12350-013-9706-2_bib25 article-title: Transient ischemic dilation for coronary artery disease in quantitative analysis of same-day sestamibi myocardial perfusion SPECT publication-title: J Nucl Cardiol doi: 10.1007/s12350-012-9527-8 – volume: 73 year: 2012 ident: 10.1007/s12350-013-9706-2_bib43 article-title: Computational gene mapping to analyze continuous automated physiologic monitoring data in neuro-trauma intensive care publication-title: J Trauma Acute Care Surg doi: 10.1097/TA.0b013e31825ff59a – volume: 42 start-page: 687 year: 2001 ident: 10.1007/s12350-013-9706-2_bib19 article-title: Quantitative assessment of motion artifacts and validation of a new motion-correction program for myocardial perfusion SPECT publication-title: J Nucl Med – volume: 54 start-page: 221 year: 2013 ident: 10.1007/s12350-013-9706-2_bib37 article-title: Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population publication-title: J Nucl Med doi: 10.2967/jnumed.112.108969  | 
    
| SSID | ssj0009399 | 
    
| Score | 2.4030101 | 
    
| Snippet | We aimed to improve the diagnostic accuracy of myocardial perfusion SPECT (MPS) by integrating clinical data and quantitative image features with machine... Objective We aimed to improve the diagnostic accuracy of myocardial perfusion SPECT (MPS) by integrating clinical data and quantitative image features with...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 553 | 
    
| SubjectTerms | Aged Algorithms Artificial Intelligence automated quantification Cardiology Coronary Angiography - methods coronary artery disease Coronary Artery Disease - diagnostic imaging Electrocardiography - methods Female Humans Imaging machine learning Male Medicine Medicine & Public Health Middle Aged Myocardial Ischemia - pathology Myocardial Perfusion Imaging - methods Myocardial perfusion imaging: SPECT Nuclear Medicine Observer Variation Original Article Pattern Recognition, Automated Perfusion Radiology Radiopharmaceuticals Reproducibility of Results ROC Curve Technetium Tc 99m Sestamibi Tomography, Emission-Computed, Single-Photon - methods total perfusion deficit  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9wwEBbpBvo4lL6zbVpU6KnB1JaslX0opQ0bQiFLaBPIzejlNOB4N9s1xdf-8s7IsjchZHtcJC-WZ6T5pBl9HyEfGE_BqiqOXGLSKBUuiXJbimiC2IDFwlmOd4ePZpPD0_T7mTjbIrP-LgyWVfZrol-o7dzgGfknQCoZhJ5EJl8WVxGqRmF2tZfQUEFawX72FGP3yDZDZqwR2f42nR3_WNPwcq8oCXueJELmrz7P6S_TMS6wSItHuYRtNrsrUt1GorcLKoes6iPyoKkXqv2jqupa4Dp4Qh4HxEm_di7ylGy5-hm5fxRy6s_J3-5cwVkKw2uWyrR0XtLLFoIcOk9FF25ZNnioRn8eT_dPKMBcat3K13DV2NcgC4JattTXh7Y0JH2obumlr9V0NIhTnNOLmipaYfk5XQzaYS_I6cH0ZP8wCsoMkRFZtoqQ7zG3EOqVzq3IFKxUwmWlkjo3gmmem1gbZ8s412piZAlbVWZQy1xbKx1sil-SUT2v3Q6hDn4zZvM0K20qtFbIljixjEkpJGCPMYl7KxQm0JajekZVrAmX0XAFGK5AwxVsTD4Ojyw6zo5NndPetEUAHR2YKCCmbHpst3eDIsz638XaR8fk_dAM8xWTMKp288b3yQGESp6NyavOa4aXZBzWXy6hRd7wp6EDcoHfbKkvfnlOcC45i_E_93rPu_Zadw9ib3DO_3-p15uH_IY8ZF4qBIsjd8lotWzcWwBsK_0uzMJ_sEI7JA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZlA30c-n5smxYVempQakuWZR9DSAiFhECzkJ6MXm5DHe-ya1PcY395Z_xK0m0SejQaC1kaS580n74h5AMXEYyqDpgPbcQi6UOWulyyGLEBD6R3Au8OHx7FB7Po86k8vTjv-Ct8_2mFVzmROSVYqmDvC5PtRiwBdU_IxuzoeOdrRykMGcp4ddKonMWAAoYA5r_quG4JWoeY60zJMVz6gNyry4VufuqiuLQi7T_q5JFWrZAhElF-bNeV2ba_1mUeb_3Yx-RhD0vpTudHT8gdXz4ldw_7wPsz8rs7fPCOamvrpbYNnef0vIGVED2soAu_zGs8eaNfjvd2TyhgYep81RK9SrS1KJWglw1tSaQN7SND1DT0vCV0etpnsPhGz0qqaYEcdboYE4w9J7P9vZPdA9anb2BWJknFUBQydYAHtEmdTDRMZ9InuVYmtZIbkdrAWO_yIDU6tiqH_Sy3mPDcOKc87JxfkEk5L_0rQj08c-7SKMldJI3RKKkYO86VkgoAypQEw4hmttc2xxQbRXahyox9m0HfZti3GZ-Sj-Mri07Y4ybjaHCTrEcmHeLIYAxvem1zcKmsnxpWGUDuBDBUqMIpeT8Ww0-NkRpd-nnd2qSAVJVIpuRl54FjI7mASVooKFFXfHM0QMHwqyXl2fdWOFwowQOsc2vw4kvNuv4jtkZHv72nXv-X9Rtyn7fpRZBQuUkm1bL2bwHkVeZd_3__AYi1RDM priority: 102 providerName: Unpaywall  | 
    
| Title | Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population | 
    
| URI | https://dx.doi.org/10.1007/s12350-013-9706-2 https://link.springer.com/article/10.1007/s12350-013-9706-2 https://www.ncbi.nlm.nih.gov/pubmed/23703378 https://www.proquest.com/docview/1398613171 https://www.proquest.com/docview/1399264738 https://pubmed.ncbi.nlm.nih.gov/PMC3732038 http://doi.org/10.1007/s12350-013-9706-2  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 20 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1532-6551 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009399 issn: 1532-6551 databaseCode: AKRWK dateStart: 19950101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1532-6551 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009399 issn: 1532-6551 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1532-6551 dateEnd: 20190131 omitProxy: true ssIdentifier: ssj0009399 issn: 1532-6551 databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1532-6551 dateEnd: 20190131 omitProxy: true ssIdentifier: ssj0009399 issn: 1532-6551 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1532-6551 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009399 issn: 1532-6551 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1532-6551 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009399 issn: 1532-6551 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9tAEF7aBHo8hN51m5gt9KlBIO1qvdKjHeyElhjTxuA8ib3UBhTZOBZFr_3lndHlhBylT0LswUozu_Ptzuw3hHxmPASpKt9zgQm9ULjAi20qvAFiA-YLZzneHT6dDk7m4deFWDT3uK_aaPfWJVmt1NvLbowLDKLiXixhGwzr7q5ANi9Q4jkbbpl2eZU0ErY1gYfkXq0r864u7jNGt8Hm7ZjJznH6nDwt8pUqf6ssu2abJi_IXgMq6bDWgpfkkctfkSenjdv8NflTHx04S5UxxVqZki5TelmCHUP9yOjKrdMCz83oj9n46IwCkqXWbaowrRzrGiQ6UOuSViGgJW38OlSX9LIKx3S0yT_xk17kVNEMI8zpqksP9obMJ-OzoxOvSb7gGRFFGw8pHWML1lzp2IpIwWIkXJQqqWMjmOax8bVxNvVjrQZGprAbZQbTlWtrpYN971uyky9z955QB--M2TiMUhsKrRUSIg4sY1IKCfCiR_xWColpmMkxQUaWbDmVUXAJCC5BwSWsR750TVY1LcdDlcNWtEmDK2q8kIDZeKjZfqsGSTOxrxIAzBEgoEAGPfKpK4YpiX4WlbtlUdWJAWdKHvXIu1prukEyDkssl1Aib-hTVwHpvm-W5Be_KtpvLjnzsc_DVvOuDev-jzjslPPff-rDf_X9kTxjVXIQDIfcJzubdeEOAKJtdJ88lgvZJ7vDyWg0xefx-bcxPEfj6ex7v5qw8DafzobnfwEzHzhf | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGJrFxQHxTGGAkuDBFpHZcJ4cJwejUsbWaoJN2C47tjElZGrpGU678YfxtvJc66aZp5bRjZCdK8p7fh9_z70fIO8YDkKryPdvVgRcI2_Uikwqvh7EB84U1HM8OD0e9wVHw7Vgcr5C_zVkYbKtsbGJtqM1E4x75R4hUQnA9Xdn9VPz2kDUKq6sNhYZy1Apmu4YYcwc79m11ASnc-fbeV5D3e8Z2--OdgedYBjwtwnDmIXZhZMBtqSQyIlSw6oQNUyWTSAuW8Ej7ibYm9aNE9bRMIe1iGnm5E2OkhQQPnnuHrAU8iCD5W_vSHx1-X8D-8prBEnKsrodIY01dtT68x7jApjDuRRLSenaTZ7we-V5v4GyruPfIepkXqrpQWXbJUe4-IPddhEs_z1XyIVmx-SNyd-hq-I_Jn_k-hjUUfmc5Vbqik5SeVeBUUVkzWthpWuImHv1x2N8ZUwirqbGzumcsx7kaURfUtKJ1P2pFXZGJJhU9q3tDLXVkGCf0NKeKZtjuTouWq-wJOboVGT0lq_kkt88JtXDNmImCMDWBSBKF6Iw9w5iUQkKs0yF-I4VYO5h0ZOvI4gXAMwouBsHFKLiYdciH9pZijhGybHLQiDZ2Qc48eInBhy27bbNRg9hZmfN4sSY65G07DPYBiz4qt5OynhNB0Ct52CHP5lrTviTjYO-5hBF5RZ_aCYg9fnUkP_1VY5BzyZmPz9xqNO_Sa938EVutcv7_T71Y_slvyPpgPDyID_ZG-y_JBqtpSrAxc5OszqalfQXB4ix57VYkJT9v2wj8A3dQePw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9wwEBYlhbR9KD2TbZNWhT41mNiStbIfQ5olPRICzULehC63AcdrNjbFr_3lnfG1CTlKH40ObM9I841m9A0hHxmPQao6DHxk4yAWPgpSl4lgitiAhcI7jneHj46nh_P465k46-ucXg7Z7kNIsrvTgCxNRbVbumx3dfGNcYEJVTxIJbjEsAc_jJEnARR6zvZWrLu8LSAJLk4UINHXENa8bYq7DNNN4Hkzf3IMoj4hj-qi1M1vnedX7NTsGXnaA0y612nEc_LAFy_I-lEfQn9J_nTHCN5RbW291Lahi4xeNGDTUFdyWvplVuMZGv1xcrB_SgHVUuerNmWrwL4WSQ_0sqFtOmhD-xgPNQ29aFMzPe1rUfyk5wXVNMdsc1qOpcJekfns4HT_MOgLMQRWJEkVIL1j6sCya5M6kWjYmIRPMi1NagUzPLWhsd5lYWr01MoMPFNmsXS5cU568IFfk7ViUfhNQj08M-bSOMlcLIzRSI44dYxJKSRAjQkJByko27OUY7GMXK34lVFwCgSnUHCKTcincUjZUXTc1zkeRKt6jNFhBwUm5L5hW4MaqH6RXyoAzwmgoUhGE_JhbIbliTEXXfhF3fZJAXNKnkzIRqc140syDtstl9Air-nT2AGpv6-3FOe_WgpwLjkLcc6dQfOuvNbdH7EzKue__9Sb_5r7PVk_-TxT378cf3tLHrO2ZghmSW6RtWpZ-21AbpV5167OvxoqOEY | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZlA30c-n5smxYVempQakuWZR9DSAiFhECzkJ6MXm5DHe-ya1PcY395Z_xK0m0SejQaC1kaS580n74h5AMXEYyqDpgPbcQi6UOWulyyGLEBD6R3Au8OHx7FB7Po86k8vTjv-Ct8_2mFVzmROSVYqmDvC5PtRiwBdU_IxuzoeOdrRykMGcp4ddKonMWAAoYA5r_quG4JWoeY60zJMVz6gNyry4VufuqiuLQi7T_q5JFWrZAhElF-bNeV2ba_1mUeb_3Yx-RhD0vpTudHT8gdXz4ldw_7wPsz8rs7fPCOamvrpbYNnef0vIGVED2soAu_zGs8eaNfjvd2TyhgYep81RK9SrS1KJWglw1tSaQN7SND1DT0vCV0etpnsPhGz0qqaYEcdboYE4w9J7P9vZPdA9anb2BWJknFUBQydYAHtEmdTDRMZ9InuVYmtZIbkdrAWO_yIDU6tiqH_Sy3mPDcOKc87JxfkEk5L_0rQj08c-7SKMldJI3RKKkYO86VkgoAypQEw4hmttc2xxQbRXahyox9m0HfZti3GZ-Sj-Mri07Y4ybjaHCTrEcmHeLIYAxvem1zcKmsnxpWGUDuBDBUqMIpeT8Ww0-NkRpd-nnd2qSAVJVIpuRl54FjI7mASVooKFFXfHM0QMHwqyXl2fdWOFwowQOsc2vw4kvNuv4jtkZHv72nXv-X9Rtyn7fpRZBQuUkm1bL2bwHkVeZd_3__AYi1RDM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+accuracy+of+myocardial+perfusion+SPECT+for+detection+of+coronary+artery+disease+by+machine+learning+in+a+large+population&rft.jtitle=Journal+of+nuclear+cardiology&rft.au=Arsanjani%2C+Reza&rft.au=Xu%2C+Yuan&rft.au=Dey%2C+Damini&rft.au=Vahistha%2C+Vishal&rft.date=2013-08-01&rft.issn=1532-6551&rft.eissn=1532-6551&rft.volume=20&rft.issue=4&rft.spage=553&rft_id=info:doi/10.1007%2Fs12350-013-9706-2&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1071-3581&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1071-3581&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1071-3581&client=summon |