基于似零范数和混合优化的压缩感知信号快速重构算法

欠定系统(又称超完备系统)的稀疏信号恢复在压缩感知、源信号分离和信号采集等领域中被广泛研究.目前这类问题主要采用l1范数约束结合线性规划优化或贪婪算法进行求解,但这些方法存在收敛速度慢、恢复精度不高等缺陷.提出一种快速恢复稀疏信号的算法,该算法采用一种新的近似l0范数代替l1范数构造代价函数,并融合牛顿法和最陡梯度法推导出寻优迭代式,以获得似零范数代价函数的最优解.仿真实验和真实数据实验结果表明,与经典算法相比,该算法在能提供相同精度、甚至更好精度的条件下,收敛速度更快....

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 40; no. 10; pp. 2145 - 2150
Main Author 伍飞云 周跃海 童峰
Format Journal Article
LanguageChinese
Published 厦门大学水声通信与海洋信息技术教育部重点实验室 厦门 361005 2014
Subjects
Online AccessGet full text
ISSN0254-4156
1874-1029
DOI10.3724/SP.J.1004.2014.02145

Cover

Abstract 欠定系统(又称超完备系统)的稀疏信号恢复在压缩感知、源信号分离和信号采集等领域中被广泛研究.目前这类问题主要采用l1范数约束结合线性规划优化或贪婪算法进行求解,但这些方法存在收敛速度慢、恢复精度不高等缺陷.提出一种快速恢复稀疏信号的算法,该算法采用一种新的近似l0范数代替l1范数构造代价函数,并融合牛顿法和最陡梯度法推导出寻优迭代式,以获得似零范数代价函数的最优解.仿真实验和真实数据实验结果表明,与经典算法相比,该算法在能提供相同精度、甚至更好精度的条件下,收敛速度更快.
AbstractList 欠定系统(又称超完备系统)的稀疏信号恢复在压缩感知、源信号分离和信号采集等领域中被广泛研究.目前这类问题主要采用l1范数约束结合线性规划优化或贪婪算法进行求解,但这些方法存在收敛速度慢、恢复精度不高等缺陷.提出一种快速恢复稀疏信号的算法,该算法采用一种新的近似l0范数代替l1范数构造代价函数,并融合牛顿法和最陡梯度法推导出寻优迭代式,以获得似零范数代价函数的最优解.仿真实验和真实数据实验结果表明,与经典算法相比,该算法在能提供相同精度、甚至更好精度的条件下,收敛速度更快.
欠定系统(又称超完备系统)的稀疏信号恢复在压缩感知、源信号分离和信号采集等领域中被广泛研究。目前这类问题主要采用l1范数约束结合线性规划优化或贪婪算法进行求解,但这些方法存在收敛速度慢、恢复精度不高等缺陷。提出一种快速恢复稀疏信号的算法,该算法采用一种新的近似l0范数代替l1范数构造代价函数,并融合牛顿法和最陡梯度法推导出寻优迭代式,以获得似零范数代价函数的最优解。仿真实验和真实数据实验结果表明,与经典算法相比,该算法在能提供相同精度、甚至更好精度的条件下,收敛速度更快。
Abstract_FL Obtaining sparse solutions of under-determined, or over-complete, linear systems of equations has found extensive applications in signal processing of compressive sensing, source separation and signal acquisition. However, the previous approaches to this problem, which generally minimize the l1 norm using linear programming (LP) techniques or greedy methods, are subject to drawbacks such as low accuracy and slow convergence. This paper proposes to replace the l1 norm with a newly defined approximate l0 norm (AL0), the optimization of which leads to the derivation of a hybrid approach by incorporating the steepest descent method with the Newton iteration. Numerical simulations and real data experiment show that the proposed algorithm is about two to three orders of magnitude faster than the state-of-the-art interior-point LP solvers, while providing the same (or better) accuracy.
Author 伍飞云 周跃海 童峰
AuthorAffiliation 厦门大学水声通信与海洋信息技术教育部重点实验室,厦门361005
AuthorAffiliation_xml – name: 厦门大学水声通信与海洋信息技术教育部重点实验室 厦门 361005
Author_FL ZHOU Yue-Hai
WU Fei-Yun
TONG Feng
Author_FL_xml – sequence: 1
  fullname: WU Fei-Yun
– sequence: 2
  fullname: ZHOU Yue-Hai
– sequence: 3
  fullname: TONG Feng
Author_xml – sequence: 1
  fullname: 伍飞云 周跃海 童峰
BookMark eNotkE1LAkEcxocoyMxv0KlDt93-MzuzO3MMqSyEgrzL7MuoUWsp0cspSCjILAIrClo6dIgggiBBFvwyu2t-izbs9Fx-PG8zaNKv-x5Ccxh0wyJ0cWtTX9cxANUJYKoDwZRNoAzmFtUwEDGJMkAY1Shm5jTKNZs1G7BFLUEMyKBCHPSjficKw9HT90_7LOl-xrftpNeLby6i8CFu3w0fW3Hnchi-Ja1gGLxGg5f4uhcP3kenwej8KnluDT_uk6_uLJpScqfp5f41i0ory6V8QSturK7ll4qawzjXHNdWyhEmU-AJSCtaysFEOkwaNniUg3CJAAkulwK7ynGpxbGbzjAxUUxSI4sWxraH0lfSr5S36wcNPw0sn7jVI_vvgvQL4Ck4Pwadat2v7NdSdK9R25WN47JpEsYFYDB-AeG4dlc
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3724/SP.J.1004.2014.02145
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate A Fast Sparse Signal Recovery Algorithm Based on Approximate l0 Norm and Hybrid Optimization
DocumentTitle_FL A Fast Sparse Signal Recovery Algorithm Based on Approximate l 0 Norm and Hybrid Optimization
EISSN 1874-1029
EndPage 2150
ExternalDocumentID zdhxb201410008
662589010
GrantInformation_xml – fundername: 国家自然科学基金; 教育部高等学校博士点专项基金(20120121110030)资助Supported by National Natural Science Foundation of China; the Specialized Research Fund for the Doctoral Program of Higher Education of China
  funderid: (11274259); (11274259); (20120121110030)
GroupedDBID --K
-0Y
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5GY
5VS
5XA
5XJ
7-5
71M
8P~
92H
92I
92L
AAIKJ
AALRI
AAQFI
AAXUO
ACGFS
ADEZE
ADTZH
AECPX
AEKER
AFTJW
AGHFR
AGYEJ
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
BLXMC
CCEZO
CQIGP
CS3
CUBFJ
CW9
EBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
ABWVN
ACRPL
ADNMO
PSX
ID FETCH-LOGICAL-c588-cdbffc965f0e908747fc12ac5a3b0e4809d290a0d8a91dfcd4781d102612f5a43
ISSN 0254-4156
IngestDate Thu May 29 04:10:30 EDT 2025
Wed Feb 14 10:36:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords compressed sensing
稀疏水声信通
sparse signal reconstruction
压缩感知
sparse underwater acoustic channel
approximate l0 norm
范数约束
似零范数
稀疏信号恢复
Norm constraint
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c588-cdbffc965f0e908747fc12ac5a3b0e4809d290a0d8a91dfcd4781d102612f5a43
Notes Norm constraint, sparse signal reconstruction, approximate 10 norm, sparse underwater acoustic channel,compressed sensing
WU Fei-Yun ZHOU Yue-Hai TONG Feng 1. Key Laboratory of Underwater Acoustic Communication and Marine Information Technique of the Ministry of Education, Xiamen University, Xiamen 361005
Obtaining sparse solutions of under-determined, or over-complete, linear systems of equations has found extensive applications in signal processing of compressive sensing, source separation and signal acquisition. However, the previous approaches to this problem, which generally minimize the 11 norm using linear programming (LP) techniques or greedy methods, are subject to drawbacks such as low accuracy and slow convergence. This paper proposes to replace the 11 norm with a newly defined approximate 10 norm (AL0), the optimization of which leads to the derivation of a hybrid approach by incorporating the steepest descent method with the Newton iteration. Numerical simulations and real data experiment show that
PageCount 6
ParticipantIDs wanfang_journals_zdhxb201410008
chongqing_primary_662589010
PublicationCentury 2000
PublicationDate 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationTitle 自动化学报
PublicationTitleAlternate Acta Automatica Sinica
PublicationTitle_FL Acta Automatica Sinica
PublicationYear 2014
Publisher 厦门大学水声通信与海洋信息技术教育部重点实验室 厦门 361005
Publisher_xml – name: 厦门大学水声通信与海洋信息技术教育部重点实验室 厦门 361005
SSID ssib017479230
ssib001102911
ssib006576350
ssib051375349
ssib007293330
ssj0059721
ssib007290157
ssib023646446
ssib005904210
Score 2.0678358
Snippet 欠定系统(又称超完备系统)的稀疏信号恢复在压缩感知、源信号分离和信号采集等领域中被广泛研究.目前这类问题主要采用l1范数约束结合线性规划优化或贪婪算法进行求解,但这...
欠定系统(又称超完备系统)的稀疏信号恢复在压缩感知、源信号分离和信号采集等领域中被广泛研究。目前这类问题主要采用l1范数约束结合线性规划优化或贪婪算法进行求解,但这...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 2145
SubjectTerms 似零范数
压缩感知
稀疏信号恢复
稀疏水声信通
范数约束
Title 基于似零范数和混合优化的压缩感知信号快速重构算法
URI http://lib.cqvip.com/qk/90250X/201410/662589010.html
https://d.wanfangdata.com.cn/periodical/zdhxb201410008
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1874-1029
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059721
  issn: 0254-4156
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1874-1029
  dateEnd: 20151031
  omitProxy: true
  ssIdentifier: ssj0059721
  issn: 0254-4156
  databaseCode: .~1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEB5ictGD-MQYHznYp7BxXj3TfezZzBqCiocouS3zTE4bHwlIToIBBWMUISoKLh48iCCCYCAs5B_4K3Z2zb-wqmayM4sBozAMvTXVPV9VzWxX13RXa9oVK8GcJo5Zw3RcNRuc3loYwihFGmYSB9Df53sD3rjpzN625xb4wsiRn5VZS6sr4XS0duC6kv-xKtDArrhK9h8sO2gUCFAG-8IZLAznQ9mY-ZzJBvMU8208C58KdTx8yaTHPIf5gok6ExbzHSY583SqZSIRKJ6LB1J0JkRRXQqkAIOE6i6T0LJNFJ8JDynAoyRWBzoAQJ4GU5yqQ8Eg5kbRMlI8xIOTKhpUcJmYITw-tewy5TPpEh6L5dth7nvMhB8YFLWpmKpi40zNMOUQErjE9x-fQg68iWTKwvvkGpJGyQIyG9ScQKC5gjyA65YsLiJHuTgC8_RqjMQoo6OFbhCIRDlyjMpmyh3CCLr3SJHKIjvkKlEVtUFBkBkLKFSwSesDHpAVcDcKoaEFVGS9oICFpSSdmcwz6RYW4Rlo3aVLkmD4pBmJ2sXHgSjKnvpTnikLHGCdV7oNGPLXcFhefXv1oT4qT-BZ-Dvg8-kH9aWWa9r4Nf_W9BxOpcH4o2FP62XtoSzla_HSw9CkWcO09n7MxPjYqDZ2zbt-R5UOOvizstKjcAmdRsUBdTgmSCx_u_iZv_JdHn5bVjngxd0PnEpAgxsWDL8xoJD7YhxzU1GUtdBJvngWRbt6kGCYYGVpubV4D9xGWsXXSoPWYsXhnD-hHS9GipMqf-1PaiNrS6e0Y5X8oae12ay9093Z7HY6e-9__Np43Nv6lr3a6G1vZy-fdjtvs43X_Xfr2eazfudzb73db3_q7n7MXmxnu1_2HrX3njzvfVjvf33T-751Rptv-PP12VqxNUot4vAnGMVhmkbS4ameSF24tptGhhlEPLBCPbGFLmNQXKDHIpBGnEYxLiiPDcoXmPLAts5qo63lVnJOm5SJiYOagLahT01XpFx3Uhlg6Mcx9WhcmxiopHk3z4DTdByTC5zYNa5dLpTULP4XHzSHH4Xzf-WY0I5iOY9rXtBGV-6vJhfB018JLxWPz289BLvY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E4%BC%BC%E9%9B%B6%E8%8C%83%E6%95%B0%E5%92%8C%E6%B7%B7%E5%90%88%E4%BC%98%E5%8C%96%E7%9A%84%E5%8E%8B%E7%BC%A9%E6%84%9F%E7%9F%A5%E4%BF%A1%E5%8F%B7%E5%BF%AB%E9%80%9F%E9%87%8D%E6%9E%84%E7%AE%97%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E4%BC%8D%E9%A3%9E%E4%BA%91&rft.au=%E5%91%A8%E8%B7%83%E6%B5%B7&rft.au=%E7%AB%A5%E5%B3%B0&rft.date=2014&rft.pub=%E5%8E%A6%E9%97%A8%E5%A4%A7%E5%AD%A6%E6%B0%B4%E5%A3%B0%E9%80%9A%E4%BF%A1%E4%B8%8E%E6%B5%B7%E6%B4%8B%E4%BF%A1%E6%81%AF%E6%8A%80%E6%9C%AF%E6%95%99%E8%82%B2%E9%83%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4+%E5%8E%A6%E9%97%A8+361005&rft.issn=0254-4156&rft.issue=10&rft.spage=2145&rft.epage=2150&rft_id=info:doi/10.3724%2FSP.J.1004.2014.02145&rft.externalDocID=zdhxb201410008
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg