基于似零范数和混合优化的压缩感知信号快速重构算法
欠定系统(又称超完备系统)的稀疏信号恢复在压缩感知、源信号分离和信号采集等领域中被广泛研究.目前这类问题主要采用l1范数约束结合线性规划优化或贪婪算法进行求解,但这些方法存在收敛速度慢、恢复精度不高等缺陷.提出一种快速恢复稀疏信号的算法,该算法采用一种新的近似l0范数代替l1范数构造代价函数,并融合牛顿法和最陡梯度法推导出寻优迭代式,以获得似零范数代价函数的最优解.仿真实验和真实数据实验结果表明,与经典算法相比,该算法在能提供相同精度、甚至更好精度的条件下,收敛速度更快....
Saved in:
Published in | 自动化学报 Vol. 40; no. 10; pp. 2145 - 2150 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
厦门大学水声通信与海洋信息技术教育部重点实验室 厦门 361005
2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0254-4156 1874-1029 |
DOI | 10.3724/SP.J.1004.2014.02145 |
Cover
Summary: | 欠定系统(又称超完备系统)的稀疏信号恢复在压缩感知、源信号分离和信号采集等领域中被广泛研究.目前这类问题主要采用l1范数约束结合线性规划优化或贪婪算法进行求解,但这些方法存在收敛速度慢、恢复精度不高等缺陷.提出一种快速恢复稀疏信号的算法,该算法采用一种新的近似l0范数代替l1范数构造代价函数,并融合牛顿法和最陡梯度法推导出寻优迭代式,以获得似零范数代价函数的最优解.仿真实验和真实数据实验结果表明,与经典算法相比,该算法在能提供相同精度、甚至更好精度的条件下,收敛速度更快. |
---|---|
Bibliography: | Norm constraint, sparse signal reconstruction, approximate 10 norm, sparse underwater acoustic channel,compressed sensing WU Fei-Yun ZHOU Yue-Hai TONG Feng 1. Key Laboratory of Underwater Acoustic Communication and Marine Information Technique of the Ministry of Education, Xiamen University, Xiamen 361005 Obtaining sparse solutions of under-determined, or over-complete, linear systems of equations has found extensive applications in signal processing of compressive sensing, source separation and signal acquisition. However, the previous approaches to this problem, which generally minimize the 11 norm using linear programming (LP) techniques or greedy methods, are subject to drawbacks such as low accuracy and slow convergence. This paper proposes to replace the 11 norm with a newly defined approximate 10 norm (AL0), the optimization of which leads to the derivation of a hybrid approach by incorporating the steepest descent method with the Newton iteration. Numerical simulations and real data experiment show that |
ISSN: | 0254-4156 1874-1029 |
DOI: | 10.3724/SP.J.1004.2014.02145 |