线性均方一致性问题的偏差估计
多智能体协同在传感网、社交网、分布式控制等诸多领域有着广泛的实际应用背景,一致性问题作为多智能体协同的基础,受到越来越多研究者的关注.在实际环境中,由于设备、通信干扰等诸多原因,信息在传递过程中通常会携有噪声,本文对噪声条件下一致性问题的系统偏差进行了研究,将求解一致性协议噪声偏差问题转化成矩阵范数的积分问题,根据矩阵迹与特征值的关系,利用范数不等式及积分中值定理,给出仅与增益函数和网络结构相关的一致性协议噪声偏差上界,为一致性系统在实际应用中的噪声估计奠定了理论基础....
        Saved in:
      
    
          | Published in | 自动化学报 Vol. 43; no. 4; pp. 568 - 575 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            山东工商学院计算机与技术学院 烟台264005
    
        2017
     山东省车联网工程技术中心 烟台264005%山东工商学院数学与信息科学学院 烟台264005%山东工商学院计算机与技术学院 烟台264005%中国科学院计算技术研究所 北京100190  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0254-4156 1874-1029  | 
| DOI | 10.16383/j.aas.2017.c160064 | 
Cover
| Summary: | 多智能体协同在传感网、社交网、分布式控制等诸多领域有着广泛的实际应用背景,一致性问题作为多智能体协同的基础,受到越来越多研究者的关注.在实际环境中,由于设备、通信干扰等诸多原因,信息在传递过程中通常会携有噪声,本文对噪声条件下一致性问题的系统偏差进行了研究,将求解一致性协议噪声偏差问题转化成矩阵范数的积分问题,根据矩阵迹与特征值的关系,利用范数不等式及积分中值定理,给出仅与增益函数和网络结构相关的一致性协议噪声偏差上界,为一致性系统在实际应用中的噪声估计奠定了理论基础. | 
|---|---|
| Bibliography: | Multi-agent cooperation has found applications in many fields such as sensor network, social network, distributed control, etc. The consistency problem is the basis for multi-agent cooperation, and receives much attention from more and more researchers. In real circumstances, because of equipment and communication interference, the information often carries noise during the transfer process. The paper studies the system deviation of consistency problem under noise condition, and the solution of noise deviation problem under consistency protocol is transformed into the integral of matrix norm. According to the relationship of trace and eigenvalue of the matrix, and based on the norm inequation and mean value theorem of integrals, the upper bound of noise deviation under consistency protocol which is only related with gain function and network structure is given, which establishes a theoretical basis for noise evaluation of consistent systems in real application. Collective intelligence; multi-agents system; con  | 
| ISSN: | 0254-4156 1874-1029  | 
| DOI: | 10.16383/j.aas.2017.c160064 |