Noncoding RNAs in Vascular Cell Biology and Restenosis

In-stent restenosis (ISR), characterised by ≥50% re-narrowing of the target vessel, is a common complication following stent implantation and remains a significant challenge to the long-term success of angioplasty procedures. Considering the global burden of cardiovascular diseases, improving angiop...

Full description

Saved in:
Bibliographic Details
Published inBiology (Basel, Switzerland) Vol. 12; no. 1; p. 24
Main Authors Efovi, Denis, Xiao, Qingzhong
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 22.12.2022
MDPI
Subjects
Online AccessGet full text
ISSN2079-7737
2079-7737
DOI10.3390/biology12010024

Cover

Abstract In-stent restenosis (ISR), characterised by ≥50% re-narrowing of the target vessel, is a common complication following stent implantation and remains a significant challenge to the long-term success of angioplasty procedures. Considering the global burden of cardiovascular diseases, improving angioplasty patient outcomes remains a key priority. Noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) have been extensively implicated in vascular cell biology and ISR through multiple, both distinct and overlapping, mechanisms. Vascular smooth muscle cells, endothelial cells and macrophages constitute the main cell types involved in the multifactorial pathophysiology of ISR. The identification of critical regulators exemplified by ncRNAs in all these cell types and processes makes them an exciting therapeutic target in the field of restenosis. In this review, we will comprehensively explore the potential functions and underlying molecular mechanisms of ncRNAs in vascular cell biology in the context of restenosis, with an in-depth focus on vascular cell dysfunction during restenosis development and progression. We will also discuss the diagnostic biomarker and therapeutic target potential of ncRNAs in ISR. Finally, we will discuss the current shortcomings, challenges, and perspectives toward the clinical application of ncRNAs.
AbstractList In-stent restenosis (ISR), characterised by ≥50% re-narrowing of the target vessel, is a common complication following stent implantation and remains a significant challenge to the long-term success of angioplasty procedures. Considering the global burden of cardiovascular diseases, improving angioplasty patient outcomes remains a key priority. Noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) have been extensively implicated in vascular cell biology and ISR through multiple, both distinct and overlapping, mechanisms. Vascular smooth muscle cells, endothelial cells and macrophages constitute the main cell types involved in the multifactorial pathophysiology of ISR. The identification of critical regulators exemplified by ncRNAs in all these cell types and processes makes them an exciting therapeutic target in the field of restenosis. In this review, we will comprehensively explore the potential functions and underlying molecular mechanisms of ncRNAs in vascular cell biology in the context of restenosis, with an in-depth focus on vascular cell dysfunction during restenosis development and progression. We will also discuss the diagnostic biomarker and therapeutic target potential of ncRNAs in ISR. Finally, we will discuss the current shortcomings, challenges, and perspectives toward the clinical application of ncRNAs.In-stent restenosis (ISR), characterised by ≥50% re-narrowing of the target vessel, is a common complication following stent implantation and remains a significant challenge to the long-term success of angioplasty procedures. Considering the global burden of cardiovascular diseases, improving angioplasty patient outcomes remains a key priority. Noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) have been extensively implicated in vascular cell biology and ISR through multiple, both distinct and overlapping, mechanisms. Vascular smooth muscle cells, endothelial cells and macrophages constitute the main cell types involved in the multifactorial pathophysiology of ISR. The identification of critical regulators exemplified by ncRNAs in all these cell types and processes makes them an exciting therapeutic target in the field of restenosis. In this review, we will comprehensively explore the potential functions and underlying molecular mechanisms of ncRNAs in vascular cell biology in the context of restenosis, with an in-depth focus on vascular cell dysfunction during restenosis development and progression. We will also discuss the diagnostic biomarker and therapeutic target potential of ncRNAs in ISR. Finally, we will discuss the current shortcomings, challenges, and perspectives toward the clinical application of ncRNAs.
Simple SummaryAngioplasty is a procedure where a stent is inserted to open a blocked blood vessel that is causing issues for a patient. Restenosis is a medical condition that reverses the benefits of angioplasty, and it is caused by injury from the stent, with inflammation, excessive smooth muscle cell growth and the movement of cells to accumulate inside the vessel, as part of a disproportionate healing response to the foreign object. The current treatments for restenosis stop the growth of all cells in the area, which is an issue as endothelial cells are required to keep growing in order to heal the inner layer of the blood vessel, which was damaged by the stent, and prevent issues in the future, such as blood clots. Noncoding RNAs are small pieces of genetic material that are not translated into proteins; however, they are important in controlling different biological processes, some of which are the growth and movement of specific cells involved in restenosis. Therefore, we may be able to target certain noncoding RNAs to only slow down the growth and movement of the type of cell causing the condition, namely smooth muscle cells, while allowing for endothelial cells to keep growing and healing the blood vessel.AbstractIn-stent restenosis (ISR), characterised by ≥50% re-narrowing of the target vessel, is a common complication following stent implantation and remains a significant challenge to the long-term success of angioplasty procedures. Considering the global burden of cardiovascular diseases, improving angioplasty patient outcomes remains a key priority. Noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) have been extensively implicated in vascular cell biology and ISR through multiple, both distinct and overlapping, mechanisms. Vascular smooth muscle cells, endothelial cells and macrophages constitute the main cell types involved in the multifactorial pathophysiology of ISR. The identification of critical regulators exemplified by ncRNAs in all these cell types and processes makes them an exciting therapeutic target in the field of restenosis. In this review, we will comprehensively explore the potential functions and underlying molecular mechanisms of ncRNAs in vascular cell biology in the context of restenosis, with an in-depth focus on vascular cell dysfunction during restenosis development and progression. We will also discuss the diagnostic biomarker and therapeutic target potential of ncRNAs in ISR. Finally, we will discuss the current shortcomings, challenges, and perspectives toward the clinical application of ncRNAs.
In-stent restenosis (ISR), characterised by ≥50% re-narrowing of the target vessel, is a common complication following stent implantation and remains a significant challenge to the long-term success of angioplasty procedures. Considering the global burden of cardiovascular diseases, improving angioplasty patient outcomes remains a key priority. Noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) have been extensively implicated in vascular cell biology and ISR through multiple, both distinct and overlapping, mechanisms. Vascular smooth muscle cells, endothelial cells and macrophages constitute the main cell types involved in the multifactorial pathophysiology of ISR. The identification of critical regulators exemplified by ncRNAs in all these cell types and processes makes them an exciting therapeutic target in the field of restenosis. In this review, we will comprehensively explore the potential functions and underlying molecular mechanisms of ncRNAs in vascular cell biology in the context of restenosis, with an in-depth focus on vascular cell dysfunction during restenosis development and progression. We will also discuss the diagnostic biomarker and therapeutic target potential of ncRNAs in ISR. Finally, we will discuss the current shortcomings, challenges, and perspectives toward the clinical application of ncRNAs.
Author Efovi, Denis
Xiao, Qingzhong
AuthorAffiliation 2 Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
1 William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
AuthorAffiliation_xml – name: 1 William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
– name: 2 Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
Author_xml – sequence: 1
  givenname: Denis
  surname: Efovi
  fullname: Efovi, Denis
– sequence: 2
  givenname: Qingzhong
  orcidid: 0000-0001-9101-0498
  surname: Xiao
  fullname: Xiao, Qingzhong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36671717$$D View this record in MEDLINE/PubMed
BookMark eNqFkklrHDEQhUVwiJf4nFtoyMWXsbUvl4AzZDEYB0ySq1BL1RMNPZIjdQf8793tsY09ECIdVEjvfSqV6hDtpZwAoXcEnzJm8Fkbc59Xt4RigjHlr9ABxcoslGJq71m8j45rXeNpKEwlk2_QPpNSkWkeIHmVk88hplVzfXVem5iaX676sXelWULfN5-2lzQuheYa6gAp11jfoted6yscP6xH6OeXzz-W3xaX379eLM8vF15oOSw8wVQAlZh67JwHxjoujAmtkEEIIJ0E4LjVypsWc2AhGIad963nxuAW2BG62HJDdmt7U-LGlVubXbT3G7msrCtD9D1Y6RVQo4MA57jowLWd1qElhDpOA1cT6-OWdTO2Gwge0lBc_wL68iTF33aV_1qjhZBCTICTB0DJf8apFnYTq5-K5BLksVqqtZIUU8P-L1VSU04om9P6sCNd57GkqaqzShHNMJ-B758n_5T1409OArEV-JJrLdBZHwc3xDy_JfaWYDs3jd1pmsl3tuN7RP_LcQcRUMRi
CitedBy_id crossref_primary_10_1007_s12012_024_09914_w
crossref_primary_10_1016_j_ejphar_2023_175761
crossref_primary_10_2196_65366
crossref_primary_10_1016_j_atherosclerosis_2024_118527
crossref_primary_10_1536_ihj_24_062
Cites_doi 10.1097/SHK.0000000000001410
10.1159/000480212
10.1038/s41569-021-00668-4
10.1039/D2BM00536K
10.1093/eurheartj/ehab892
10.1016/j.jacbts.2021.04.008
10.3390/genes12030418
10.1161/CIRCULATIONAHA.115.021019
10.1371/journal.pone.0175061
10.1080/15476286.2021.1894025
10.1056/NEJMoa0912321
10.1016/j.yjmcc.2015.10.017
10.1016/j.biopha.2015.06.009
10.1093/jb/mvn068
10.1093/cvr/cvv160
10.1590/1678-4685-gmb-2020-0124
10.1161/CIRCRESAHA.114.303265
10.12659/MSM.915681
10.1038/nature11247
10.1203/00006450-199604001-02042
10.1016/S0735-1097(99)00486-6
10.1016/j.molimm.2019.04.011
10.7150/ijbs.36995
10.1073/pnas.93.13.6536
10.1093/cvr/cvt082
10.1161/CIRCULATIONAHA.117.027799
10.1038/nri3088
10.1002/jcp.28284
10.1038/mtna.2014.40
10.7150/thno.24677
10.1161/CIRCRESAHA.108.185363
10.1002/sim.6600
10.3390/cells8091015
10.1093/nar/gkz1062
10.1002/cbin.11758
10.1038/embor.2010.172
10.1161/CIRCRESAHA.111.240150
10.1161/CIRCRESAHA.109.197517
10.1038/s41569-019-0185-2
10.1016/j.bbamcr.2014.07.022
10.1002/iub.298
10.1016/j.omtn.2019.11.006
10.1152/ajpheart.00660.2016
10.1038/cdd.2014.206
10.1038/s41598-019-54917-1
10.4070/kcj.2014.44.4.255
10.1089/dna.2017.3682
10.1016/j.bbrc.2017.10.068
10.1096/fj.201800243RRR
10.1074/jbc.M502149200
10.1093/hmg/ddab304
10.1136/jitc-2020-002319
10.1038/s41586-020-2105-3
10.1161/CIRCGENETICS.110.958702
10.1016/S0022-2828(03)00110-X
10.2217/epi.13.73
10.4161/cc.6.19.4767
10.1161/ATVBAHA.115.305597
10.1016/j.bbadis.2019.05.022
10.1101/gr.214205.116
10.1161/CIRCRESAHA.113.301306
10.1097/MOH.0b013e3283523e57
10.1161/CIRCRESAHA.116.308434
10.1161/CIRCRESAHA.117.311441
10.1002/jbm.a.35357
10.1073/pnas.1803725115
10.1161/ATVBAHA.114.305212
10.1161/CIRCULATIONAHA.108.790485
10.1161/CIRCULATIONAHA.113.002887
10.1016/bs.apha.2016.07.002
10.1186/s12943-019-1002-6
10.3389/fcvm.2021.784044
10.1038/srep36340
10.1093/nar/gkv1252
10.1083/jcb.200912096
10.1371/journal.pone.0058760
10.1016/j.bbrc.2020.06.067
10.1161/CIRCRESAHA.120.316489
10.1016/j.omtn.2019.10.023
10.1016/j.omto.2021.11.005
10.1161/CIRCRESAHA.116.302521
10.1016/j.jacc.2018.09.089
10.1038/emboj.2009.370
10.3390/ijms20235975
10.1172/JCI26505
10.1080/17482940701263285
10.1038/nature07086
10.1111/cpr.13143
10.1186/1476-4598-13-127
10.3389/fgene.2021.652129
10.1038/onc.2008.373
10.1016/j.tibs.2016.07.003
10.1172/JCI147031
10.1161/CIRCRESAHA.106.141986
10.1253/circj.CJ-14-0086
10.5551/jat.44024
10.1038/srep41916
10.1172/JCI124508
10.2174/138920210793175895
10.1186/s12951-019-0517-8
10.1016/j.jid.2019.12.030
10.1097/MD.0000000000024114
10.4330/wjc.v9.i8.640
10.1161/CIRCULATIONAHA.113.001720
10.18632/oncotarget.23230
10.1002/jcb.25011
10.1161/CIRCRESAHA.116.305178
10.1007/978-3-319-22380-3_4
10.1002/stem.1448
10.1161/CIRCRESAHA.119.314876
10.2337/db17-1434
10.1016/j.bioadv.2022.213140
10.1161/ATVBAHA.114.303240
10.1002/path.5574
10.1038/mt.2016.41
10.1002/1873-3468.12606
10.1016/j.yexcr.2016.03.001
10.1136/jcp.2005.025742
10.1186/s12859-019-2861-y
10.3390/biom10050783
10.3389/fphar.2014.00036
10.1016/j.jss.2014.05.045
10.1161/JAHA.116.004629
10.1159/000250095
10.1016/j.yexcr.2018.05.039
10.1126/scisignal.2000610
10.1186/s40659-019-0266-z
10.1016/j.omtn.2021.07.020
10.21037/jtd.2016.10.93
10.1016/j.ymthe.2021.01.032
10.1080/21655979.2021.1964891
10.1186/s13287-020-01989-w
10.1016/j.cell.2018.01.011
10.12659/MSM.904352
10.1016/j.yjmcc.2015.03.011
10.18632/oncotarget.17998
10.1152/ajpcell.00592.2005
10.1007/s00424-018-2219-8
10.1161/01.ATV.21.3.327
10.1161/01.ATV.0000165656.65359.23
10.1016/j.yexcr.2013.03.010
10.3390/mps4010010
10.3389/fonc.2019.00587
10.1161/ATVBAHA.110.221952
10.1152/ajpcell.00011.2013
10.1016/j.abb.2003.11.007
10.1371/journal.pone.0112043
10.1161/01.ATV.0000105902.89459.09
10.1016/j.ymthe.2021.09.017
10.1371/journal.pone.0186245
10.7555/JBR.28.20130130
10.1073/pnas.0703890104
10.1093/cvr/cvs223
10.1161/CIRCULATIONAHA.114.011675
10.1038/ncomms12429
10.1038/cgt.2009.88
10.1016/j.atherosclerosis.2016.03.036
10.1161/CIRCRESAHA.116.309799
10.1002/iub.1751
10.1093/cvr/cvv141
10.1073/pnas.1810729116
10.1161/ATVBAHA.116.307879
10.1002/jcb.20199
10.1074/jbc.M000828200
10.1038/35025203
10.1186/s13075-017-1447-1
10.1007/s00204-016-1828-2
10.1002/jcb.25183
10.1161/CIRCULATIONAHA.118.033042
10.1161/ATVBAHA.117.310020
10.1101/gad.314856.118
10.1155/2015/356893
10.4068/cmj.2017.53.1.14
10.1161/CIRCRESAHA.110.233999
10.1016/j.yjmcc.2007.06.001
10.1016/j.bbrc.2017.01.011
10.1016/j.biomaterials.2019.02.016
10.1161/CIRCRESAHA.118.314240
10.1136/heartjnl-2015-307821
10.1016/j.cell.2013.02.012
10.1161/CIRCULATIONAHA.120.049715
10.1002/jcp.29577
10.1186/s12943-020-01286-3
10.1063/1.5110807
10.1111/febs.15357
10.1136/heartasia-2018-011134
10.1038/nature08195
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7QP
7TK
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/biology12010024
DatabaseName CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
Biological Sciences
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
AGRICOLA

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2079-7737
ExternalDocumentID oai_doaj_org_article_6c7e298d5eaa45feabf88db112a42d47
PMC9855655
36671717
10_3390_biology12010024
Genre Journal Article
Review
GrantInformation_xml – fundername: British Heart Foundation
  grantid: PG/15/11/31279
– fundername: British Heart Foundation
  grantid: PG/15/86/31723
– fundername: British Heart Foundation
  grantid: PG/16/1/31892
– fundername: British Heart Foundation
  grantid: PG/20/10458
– fundername: National Institute for Health Research Biomedical Research Centre at Barts
– fundername: British Heart Foundation
  grantid: PG/15/11/31279; PG/15/86/31723; PG/16/1/31892; PG/20/10458
GroupedDBID 2XV
53G
5VS
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
EBD
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PQGLB
7QP
7TK
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
RC3
7X8
PUEGO
7S9
L.6
5PM
ID FETCH-LOGICAL-c586t-c1025e2602c0aace33f4599db56d55e1f6ee40b87c9b04e3dd930accbc4990be3
IEDL.DBID M48
ISSN 2079-7737
IngestDate Wed Aug 27 01:25:36 EDT 2025
Thu Aug 21 18:39:07 EDT 2025
Thu Sep 04 22:59:24 EDT 2025
Fri Sep 05 07:09:26 EDT 2025
Fri Jul 25 11:55:42 EDT 2025
Mon Jul 21 05:18:27 EDT 2025
Tue Jul 01 01:28:56 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords microRNAs
smooth muscle cells
vascular cells
cardiovascular disease
circRNAs
endothelial cells
restenosis
long noncoding RNAs
in-stent restenosis
noncoding RNAs
neointimal hyperplasia
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c586t-c1025e2602c0aace33f4599db56d55e1f6ee40b87c9b04e3dd930accbc4990be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9101-0498
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/biology12010024
PMID 36671717
PQID 2767183043
PQPubID 2032427
ParticipantIDs doaj_primary_oai_doaj_org_article_6c7e298d5eaa45feabf88db112a42d47
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9855655
proquest_miscellaneous_2887620293
proquest_miscellaneous_2768241237
proquest_journals_2767183043
pubmed_primary_36671717
crossref_citationtrail_10_3390_biology12010024
crossref_primary_10_3390_biology12010024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221222
PublicationDateYYYYMMDD 2022-12-22
PublicationDate_xml – month: 12
  year: 2022
  text: 20221222
  day: 22
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biology (Basel, Switzerland)
PublicationTitleAlternate Biology (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ji (ref_50) 2007; 100
Wang (ref_115) 2008; 144
Chappell (ref_16) 2016; 119
Wassmann (ref_114) 2007; 43
Lv (ref_140) 2018; 497
Wada (ref_146) 2000; 275
Cheng (ref_105) 2009; 105
Holdt (ref_160) 2016; 7
Su (ref_157) 2015; 2015
Rangrez (ref_76) 2011; 4
Liu (ref_141) 2020; 12
Goodfellow (ref_22) 2007; 6
Xiao (ref_161) 2021; 54
Rong (ref_163) 2019; 18
Chen (ref_60) 2015; 89
Tang (ref_65) 2017; 313
Afzal (ref_83) 2016; 5
Wu (ref_142) 2014; 130
Li (ref_152) 2016; 6
Feng (ref_62) 2019; 15
Kee (ref_47) 2014; 44
Arita (ref_199) 2013; 33
Yan (ref_190) 2015; 34
Zheng (ref_95) 2022; 142
Lawrence (ref_179) 2011; 11
Kovacic (ref_110) 2019; 73
Viereck (ref_200) 2017; 120
Zou (ref_132) 2015; 74
Curcio (ref_24) 2014; 78
Iaconetti (ref_52) 2015; 107
Wang (ref_194) 2017; 23
Deng (ref_61) 2019; 12
Sun (ref_78) 2011; 12
Michalik (ref_126) 2014; 114
ref_72
Baumann (ref_117) 2021; 9
Mitra (ref_11) 2006; 59
McDonald (ref_39) 2006; 116
Bell (ref_133) 2014; 34
ref_150
Pang (ref_18) 2018; 8
Macfarlane (ref_23) 2010; 11
Hall (ref_167) 2019; 124
Zhu (ref_73) 2018; 25
Huang (ref_90) 2017; 42
Tang (ref_123) 2019; 1865
Kibos (ref_13) 2007; 9
Akao (ref_205) 2010; 17
Kim (ref_74) 2015; 116
Wang (ref_79) 2012; 95
He (ref_129) 2017; 36
Batista (ref_120) 2013; 152
Wang (ref_128) 2019; 11
Chen (ref_171) 2017; 494
Orr (ref_108) 2010; 47
Ahmed (ref_130) 2018; 115
ref_143
Torella (ref_81) 2018; 67
Wu (ref_178) 2021; 26
Huang (ref_177) 2021; 12
Grewe (ref_12) 2000; 35
Song (ref_180) 2022; 30
Li (ref_86) 2013; 99
Yu (ref_97) 2015; 22
Yang (ref_136) 2020; 24
Goossens (ref_187) 2018; 115
Torella (ref_70) 2011; 109
Lekshmi (ref_196) 2017; 53
Timmis (ref_1) 2022; 43
Wu (ref_158) 2017; 9
Liu (ref_174) 2013; 128
Tsaousi (ref_67) 2011; 108
Uchida (ref_119) 2015; 116
Aufiero (ref_33) 2019; 16
Zhou (ref_34) 2020; 19
Zernecke (ref_109) 2009; 2
Yang (ref_51) 2018; 137
Miano (ref_40) 2015; 29
Zhang (ref_64) 2017; 37
Jansen (ref_66) 2013; 128
Zhao (ref_92) 2015; 35
Lockhart (ref_198) 2021; 29
Su (ref_159) 2019; 18
ref_204
Li (ref_26) 2020; 19
Zhang (ref_53) 2020; 19
Quero (ref_118) 2017; 19
Zhang (ref_46) 2020; 26
Suzuki (ref_42) 2005; 25
Li (ref_87) 2013; 113
Chen (ref_31) 2016; 41
Banning (ref_4) 2015; 101
Vacca (ref_91) 2016; 15
ref_201
Song (ref_125) 2018; 9
Ghai (ref_189) 2016; 90
Duan (ref_206) 2014; 13
Zhu (ref_137) 2019; 471
Abid (ref_154) 2005; 280
Chan (ref_54) 2010; 29
Lee (ref_56) 2015; 116
Zuckerbraun (ref_17) 2007; 292
Miano (ref_41) 2003; 35
Wang (ref_197) 2015; 35
Lusis (ref_2) 2000; 407
Wang (ref_58) 2013; 319
Gong (ref_166) 2021; 131
He (ref_82) 2020; 11
Liu (ref_27) 2021; 23
Ye (ref_149) 2018; 369
Yao (ref_172) 2020; 235
Climent (ref_106) 2015; 116
Wang (ref_139) 2020; 53
Huang (ref_57) 2018; 15
Mei (ref_184) 2022; 31
Fu (ref_94) 2022; 10
Cordes (ref_75) 2009; 460
Mariani (ref_175) 1996; 39
Wang (ref_124) 2019; 25
Maguire (ref_38) 2020; 287
Hu (ref_147) 2020; 140
Peng (ref_164) 2020; 529
Zhang (ref_144) 2019; 52
Zhu (ref_122) 2017; 7
Zhou (ref_121) 2019; 234
Hu (ref_88) 2015; 107
Davis (ref_48) 2008; 454
Sun (ref_195) 2018; 18
Liu (ref_84) 2009; 104
Pickard (ref_145) 2009; 28
Cao (ref_45) 2014; 192
Bouzo (ref_203) 2019; 17
Liu (ref_193) 2021; 100
Farina (ref_68) 2020; 126
Tang (ref_148) 2019; 2110
Li (ref_99) 2009; 119
Yang (ref_55) 2017; 8
Cen (ref_151) 2004; 93
Findeisen (ref_93) 2011; 31
Baeten (ref_98) 2017; 78
Kang (ref_71) 2012; 19
Shi (ref_15) 2014; 28
Wang (ref_96) 2021; 6
Huang (ref_36) 2018; 32
Chen (ref_112) 2021; 253
Buccheri (ref_10) 2016; 8
Kreusser (ref_103) 2014; 5
Lyu (ref_156) 2019; 116
Kohno (ref_101) 2013; 305
Chaabane (ref_102) 2015; 1853
Luo (ref_19) 2020; 48
Zheng (ref_44) 2010; 62
Zeng (ref_85) 2019; 129
Stavrou (ref_5) 2016; 249
Zhao (ref_29) 2015; 44
Boulberdaa (ref_155) 2016; 24
Wang (ref_43) 2014; 6
Santulli (ref_107) 2015; 887
Alshanwani (ref_49) 2018; 70
Tong (ref_182) 2021; 18
Cipollone (ref_14) 2001; 21
Luo (ref_111) 2013; 31
Sun (ref_162) 2017; 121
Zhang (ref_131) 2019; 11
Ullrich (ref_9) 2021; 118
Dunham (ref_20) 2012; 489
Saini (ref_21) 2007; 104
Neylon (ref_192) 2019; 11
Sedding (ref_77) 2016; 134
Morais (ref_181) 2021; 12
Seo (ref_202) 2019; 201
Tan (ref_116) 2021; 6
Zhao (ref_127) 2016; 36
Dahariya (ref_32) 2019; 112
Yuan (ref_59) 2021; 44
Moon (ref_153) 2004; 421
Yin (ref_183) 2020; 580
ref_169
Zheng (ref_80) 2015; 82
Choe (ref_63) 2017; 591
Kopp (ref_28) 2018; 172
Zhu (ref_207) 2015; 103
Brott (ref_6) 2010; 363
Alraies (ref_8) 2017; 9
Liang (ref_186) 2019; 9
Zeng (ref_69) 2019; 19
Engelen (ref_3) 2022; 19
Delafontaine (ref_176) 2004; 24
Quintavalle (ref_104) 2010; 189
Roberts (ref_25) 2014; 3
Zeng (ref_170) 2021; 143
ref_37
Mattioli (ref_30) 2017; 27
Huang (ref_89) 2018; 137
Zaphiropoulos (ref_35) 1996; 93
Hua (ref_100) 2021; 8
Xu (ref_165) 2019; 33
ref_185
ref_188
Liu (ref_138) 2019; 11
Huang (ref_168) 2022; 46
ref_191
Ballantyne (ref_134) 2016; 133
Nie (ref_113) 2016; 342
Mahmoud (ref_135) 2019; 125
Lyrer (ref_7) 2020; 2
Bretones (ref_173) 2019; 9
References_xml – volume: 53
  start-page: 723
  year: 2020
  ident: ref_139
  article-title: LncRNA-Ang362 Promotes Pulmonary Arterial Hypertension by Regulating miR-221 and miR-222
  publication-title: Shock
  doi: 10.1097/SHK.0000000000001410
– volume: 42
  start-page: 2492
  year: 2017
  ident: ref_90
  article-title: Mir-22-3p Inhibits Arterial Smooth Muscle Cell Proliferation and Migration and Neointimal Hyperplasia by Targeting HMGB1 in Arteriosclerosis Obliterans
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000480212
– volume: 19
  start-page: 522
  year: 2022
  ident: ref_3
  article-title: Therapeutic strategies targeting inflammation and immunity in atherosclerosis: How to proceed?
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-021-00668-4
– volume: 10
  start-page: 3612
  year: 2022
  ident: ref_94
  article-title: Mir-22-incorporated polyelectrolyte coating prevents intima hyperplasia after balloon-induced vascular injury
  publication-title: Biomater. Sci.
  doi: 10.1039/D2BM00536K
– volume: 43
  start-page: 716
  year: 2022
  ident: ref_1
  article-title: European Society of Cardiology: Cardiovascular disease statistics 2021
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehab892
– volume: 6
  start-page: 693
  year: 2021
  ident: ref_116
  article-title: Macrophage Polarization as a Novel Therapeutic Target for Endovascular Intervention in Peripheral Artery Disease
  publication-title: JACC Basic Transl. Sci.
  doi: 10.1016/j.jacbts.2021.04.008
– ident: ref_169
  doi: 10.3390/genes12030418
– volume: 133
  start-page: 2050
  year: 2016
  ident: ref_134
  article-title: Smooth Muscle Enriched Long Noncoding RNA (SMILR) Regulates Cell Proliferation
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.021019
– volume: 26
  start-page: e924625
  year: 2020
  ident: ref_46
  article-title: miR-18a-5p Promotes Proliferation and Migration of Vascular Smooth Muscle Cells by Activating the AKT/Extracellular Regulated Protein Kinases (ERK) Signaling Pathway
  publication-title: Med. Sci. Monit.
– volume: 11
  start-page: 1835
  year: 2019
  ident: ref_138
  article-title: Long noncoding RNA LINC00341 promotes the vascular smooth muscle cells proliferation and migration via miR-214/FOXO4 feedback loop
  publication-title: Am. J. Transl. Res.
– ident: ref_143
  doi: 10.1371/journal.pone.0175061
– volume: 18
  start-page: 2073
  year: 2021
  ident: ref_182
  article-title: Localization of RNAs in the nucleus: Cis-and trans-regulation
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2021.1894025
– volume: 363
  start-page: 11
  year: 2010
  ident: ref_6
  article-title: Stenting versus Endarterectomy for Treatment of Carotid-Artery Stenosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0912321
– volume: 89
  start-page: 75
  year: 2015
  ident: ref_60
  article-title: miRNA-34a reduces neointima formation through inhibiting smooth muscle cell proliferation and migration
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2015.10.017
– volume: 74
  start-page: 35
  year: 2015
  ident: ref_132
  article-title: Down-regulation of SENCR promotes smooth muscle cells proliferation and migration in db/db mice through up-regulation of FoxO1 and TRPC6
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2015.06.009
– volume: 15
  start-page: 420
  year: 2016
  ident: ref_91
  article-title: MECP2, a multi-talented modulator of chromatin architecture
  publication-title: Brief. Funct. Genom.
– volume: 144
  start-page: 313
  year: 2008
  ident: ref_115
  article-title: Kruppel-like factor 4 is required for the expression of vascular smooth muscle cell differentiation marker genes induced by all-trans retinoic acid
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvn068
– volume: 107
  start-page: 534
  year: 2015
  ident: ref_88
  article-title: MicroRNA-1298 is regulated by DNA methylation and affects vascular smooth muscle cell function by targeting connexin 43
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvv160
– volume: 44
  start-page: e20200124
  year: 2021
  ident: ref_59
  article-title: miR-34a regulates phenotypic modulation of vascular smooth muscle cells in intracranial aneurysm by targeting CXCR3 and MMP-2
  publication-title: Genet. Mol. Biol.
  doi: 10.1590/1678-4685-gmb-2020-0124
– volume: 114
  start-page: 1389
  year: 2014
  ident: ref_126
  article-title: Long Noncoding RNA MALAT1 Regulates Endothelial Cell Function and Vessel Growth
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.114.303265
– volume: 25
  start-page: 7645
  year: 2019
  ident: ref_124
  article-title: Expression of Long Noncoding RNA LIPCAR Promotes Cell Proliferation, Cell Migration, and Change in Phenotype of Vascular Smooth Muscle Cells
  publication-title: Med. Sci. Monit.
  doi: 10.12659/MSM.915681
– volume: 489
  start-page: 57
  year: 2012
  ident: ref_20
  article-title: An integrated encyclopedia of DNA elements in the human genome
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 39
  start-page: 339
  year: 1996
  ident: ref_175
  article-title: Insulin-like growth factor-1 (IGF-1) inhibits nitric oxide (no) production by pulmonary artery smooth muscle cells (PASMC). † 2018
  publication-title: Pediatr. Res.
  doi: 10.1203/00006450-199604001-02042
– volume: 35
  start-page: 157
  year: 2000
  ident: ref_12
  article-title: Acute and chronic tissue response to coronary stent implantation: Pathologic findings in human specimen
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/S0735-1097(99)00486-6
– volume: 112
  start-page: 82
  year: 2019
  ident: ref_32
  article-title: Long non-coding RNA: Classification, biogenesis and functions in blood cells
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2019.04.011
– volume: 15
  start-page: 2615
  year: 2019
  ident: ref_62
  article-title: MiR-93 regulates vascular smooth muscle cell proliferation, and neointimal formation through targeting Mfn2
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.36995
– volume: 93
  start-page: 6536
  year: 1996
  ident: ref_35
  article-title: Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: Correlation with exon skipping
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.13.6536
– volume: 115
  start-page: 1519
  year: 2018
  ident: ref_187
  article-title: Genetic associations and regulation of expression indicate an independent role for 14q32 snoRNAs in human cardiovascular disease
  publication-title: Cardiovasc. Res.
– volume: 99
  start-page: 185
  year: 2013
  ident: ref_86
  article-title: MicroRNA-638 is highly expressed in human vascular smooth muscle cells and inhibits PDGF-BB-induced cell proliferation and migration through targeting orphan nuclear receptor NOR1
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvt082
– volume: 137
  start-page: 1824
  year: 2018
  ident: ref_51
  article-title: miR-22 Is a Novel Mediator of Vascular Smooth Muscle Cell Phenotypic Modulation and Neointima Formation
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.117.027799
– volume: 24
  start-page: 12859
  year: 2020
  ident: ref_136
  article-title: LncRNA UCA1 stimulates the repair of hyperglycemic vascular smooth muscle cells through targeting miR-582-5p
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– volume: 11
  start-page: 750
  year: 2011
  ident: ref_179
  article-title: Transcriptional regulation of macrophage polarization: Enabling diversity with identity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3088
– volume: 234
  start-page: 16205
  year: 2019
  ident: ref_121
  article-title: LncRNA CRNDE regulates the proliferation and migration of vascular smooth muscle cells
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.28284
– volume: 3
  start-page: e188
  year: 2014
  ident: ref_25
  article-title: The MicroRNA Biology of the Mammalian Nucleus
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1038/mtna.2014.40
– volume: 8
  start-page: 2496
  year: 2018
  ident: ref_18
  article-title: Encoding activities of non-coding RNAs
  publication-title: Theranostics
  doi: 10.7150/thno.24677
– volume: 104
  start-page: 476
  year: 2009
  ident: ref_84
  article-title: A Necessary Role of miR-221 and miR-222 in Vascular Smooth Muscle Cell Proliferation and Neointimal Hyperplasia
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.108.185363
– volume: 34
  start-page: 3811
  year: 2015
  ident: ref_190
  article-title: Combining large number of weak biomarkers based on AUC
  publication-title: Stat. Med.
  doi: 10.1002/sim.6600
– ident: ref_204
  doi: 10.3390/cells8091015
– volume: 48
  start-page: D882
  year: 2020
  ident: ref_19
  article-title: New developments on the Encyclopedia of DNA Elements (ENCODE) data portal
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz1062
– volume: 46
  start-page: 628
  year: 2022
  ident: ref_168
  article-title: Circ-Sirt1 inhibits vascular smooth muscle cells proliferation via the c-Myc/cyclin B1 axis
  publication-title: Cell Biol. Int.
  doi: 10.1002/cbin.11758
– volume: 12
  start-page: 56
  year: 2011
  ident: ref_78
  article-title: miR-146a and Krüppel-like factor 4 form a feedback loop to participate in vascular smooth muscle cell proliferation
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2010.172
– volume: 109
  start-page: 880
  year: 2011
  ident: ref_70
  article-title: MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.111.240150
– volume: 105
  start-page: 158
  year: 2009
  ident: ref_105
  article-title: MicroRNA-145, a Novel Smooth Muscle Cell Phenotypic Marker and Modula.ator, Controls Vascular Neointimal Lesion Formation
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.109.197517
– volume: 16
  start-page: 503
  year: 2019
  ident: ref_33
  article-title: Circular RNAs open a new chapter in cardiovascular biology
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-019-0185-2
– volume: 1853
  start-page: 2144
  year: 2015
  ident: ref_102
  article-title: Extracellular S100A4 induces smooth muscle cell phenotypic transition mediated by RAGE
  publication-title: Biochim. Biophys. Acta (BBA) Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2014.07.022
– volume: 62
  start-page: 132
  year: 2010
  ident: ref_44
  article-title: Role of Krüppel-like factor 4 in phenotypic switching and proliferation of vascular smooth muscle cells
  publication-title: IUBMB Life
  doi: 10.1002/iub.298
– volume: 19
  start-page: 132
  year: 2020
  ident: ref_26
  article-title: Identification of ncRNA-Mediated Functions of Nucleus-Localized miR-320 in Cardiomyocytes
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2019.11.006
– volume: 313
  start-page: H641
  year: 2017
  ident: ref_65
  article-title: MicroRNA-124 controls human vascular smooth muscle cell phenotypic switch via Sp1
  publication-title: Am. J. Physiol.Y-Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00660.2016
– volume: 22
  start-page: 1170
  year: 2015
  ident: ref_97
  article-title: Upregulated sirtuin 1 by miRNA-34a is required for smooth muscle cell differentiation from pluripotent stem cells
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2014.206
– volume: 9
  start-page: 18693
  year: 2019
  ident: ref_173
  article-title: Myc stimulates cell cycle progression through the activation of Cdk1 and phosphorylation of p27
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-54917-1
– volume: 44
  start-page: 255
  year: 2014
  ident: ref_47
  article-title: miR-18a-5p MicroRNA Increases Vascular Smooth Muscle Cell Differentiation by Downregulating Syndecan4
  publication-title: Korean Circ. J.
  doi: 10.4070/kcj.2014.44.4.255
– volume: 36
  start-page: 475
  year: 2017
  ident: ref_129
  article-title: Long Noncoding RNA MEG3 Negatively Regulates Proliferation and Angiogenesis in Vascular Endothelial Cells
  publication-title: DNA Cell Biol.
  doi: 10.1089/dna.2017.3682
– volume: 494
  start-page: 126
  year: 2017
  ident: ref_171
  article-title: Circular RNA WDR77 target FGF-2 to regulate vascular smooth muscle cells proliferation and migration by sponging miR-124
  publication-title: Biochem. Biophys Res. Commun.
  doi: 10.1016/j.bbrc.2017.10.068
– volume: 33
  start-page: 2659
  year: 2019
  ident: ref_165
  article-title: circDiaph3 regulates rat vascular smooth muscle cell differentiation, proliferation, and migration
  publication-title: FASEB J.
  doi: 10.1096/fj.201800243RRR
– volume: 280
  start-page: 29864
  year: 2005
  ident: ref_154
  article-title: Forkhead transcription factors inhibit vascular smooth muscle cell proliferation and neointimal hyperplasia
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M502149200
– volume: 31
  start-page: 1051
  year: 2022
  ident: ref_184
  article-title: C/D box snoRNA SNORD113-6/AF357425 plays a dual role in integrin signalling and arterial fibroblast function via pre-mRNA processing and 2’O-ribose methylation
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddab304
– volume: 9
  start-page: e002319
  year: 2021
  ident: ref_117
  article-title: p38 MAPK signaling in M1 macrophages results in selective elimi.ination of M2 macrophages by MEK inhibition
  publication-title: J. Immuno Ther. Cancer
  doi: 10.1136/jitc-2020-002319
– volume: 580
  start-page: 147
  year: 2020
  ident: ref_183
  article-title: U1 snRNP regulates chromatin retention of noncoding RNAs
  publication-title: Nature
  doi: 10.1038/s41586-020-2105-3
– volume: 4
  start-page: 197
  year: 2011
  ident: ref_76
  article-title: miR-143 and miR-145
  publication-title: Circ. Cardiovasc. Genet.
  doi: 10.1161/CIRCGENETICS.110.958702
– volume: 18
  start-page: 1405
  year: 2018
  ident: ref_195
  article-title: Long non-coding RNA SENCR alleviates the inhibitory effects of rapamycin on human umbilical vein endothelial cells
  publication-title: Mol. Med. Rep.
– volume: 35
  start-page: 577
  year: 2003
  ident: ref_41
  article-title: Serum response factor: Toggling between disparate programs of gene expression
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/S0022-2828(03)00110-X
– volume: 6
  start-page: 139
  year: 2014
  ident: ref_43
  article-title: HDAC4: Mechanism of regulation and biological functions
  publication-title: Epigenomics
  doi: 10.2217/epi.13.73
– volume: 6
  start-page: 2323
  year: 2007
  ident: ref_22
  article-title: Regulation of RNA polymerase III transcription during mammalian cell growth
  publication-title: Cell Cycle
  doi: 10.4161/cc.6.19.4767
– volume: 19
  start-page: 2467
  year: 2020
  ident: ref_53
  article-title: MicroRNA-24-3p inhibition prevents cell growth of vascular smooth muscle cells by targeting Bcl-2-like protein 11
  publication-title: Exp. Ther. Med.
– volume: 35
  start-page: 1945
  year: 2015
  ident: ref_197
  article-title: Local MicroRNA Modulation Using a Novel Anti-miR-21-Eluting Stent Effectively Prevents Experimental In-Stent Restenosis
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.115.305597
– volume: 1865
  start-page: 2516
  year: 2019
  ident: ref_123
  article-title: LncRNA GAS5 regulates vascular smooth muscle cell cycle arrest and apoptosis via p53 pathway
  publication-title: Biochim. Biophys. Acta Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2019.05.022
– volume: 27
  start-page: 27
  year: 2017
  ident: ref_30
  article-title: Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs
  publication-title: Genome Res.
  doi: 10.1101/gr.214205.116
– volume: 113
  start-page: 1117
  year: 2013
  ident: ref_87
  article-title: MicroRNA-663 Regulates Human Vascular Smooth Muscle Cell Phenotypic Switch and Vascular Neointimal Formation
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.113.301306
– volume: 19
  start-page: 224
  year: 2012
  ident: ref_71
  article-title: MicroRNA regulation of smooth muscle gene expression and phenotype
  publication-title: Curr. Opin. Hematol.
  doi: 10.1097/MOH.0b013e3283523e57
– volume: 120
  start-page: 381
  year: 2017
  ident: ref_200
  article-title: Circulating Noncoding RNAs as Biomarkers of Cardiovascular Disease and Injury
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.116.308434
– volume: 121
  start-page: 628
  year: 2017
  ident: ref_162
  article-title: A Novel Regulatory Mechanism of Smooth Muscle α-Actin Expression by NRG-1/circACTA2/miR-548f-5p Axis
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.117.311441
– volume: 11
  start-page: 3600
  year: 2019
  ident: ref_128
  article-title: LncRNA MEG3-derived miR-361-5p regulate vascular smooth muscle cells proliferation and apoptosis by targeting ABCA1
  publication-title: Am. J. Transl Res.
– volume: 103
  start-page: 2269
  year: 2015
  ident: ref_207
  article-title: A mechanistic model for drug release in PLGA biodegradable stent coatings coupled with polymer degradation and erosion
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.35357
– volume: 115
  start-page: E8660
  year: 2018
  ident: ref_130
  article-title: Long noncoding RNA NEAT1 (nuclear paraspeckle assembly transcript 1) is critical for phenotypic switching of vascular smooth muscle cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1803725115
– volume: 35
  start-page: 918
  year: 2015
  ident: ref_92
  article-title: MicroRNA-22 Regulates Smooth Muscle Cell Differentiation From Stem Cells by Targeting Methyl CpG–Binding Protein 2
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.114.305212
– volume: 119
  start-page: 2686
  year: 2009
  ident: ref_99
  article-title: Smooth muscle Notch1 mediates neointimal formation after vascular injury
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.108.790485
– volume: 128
  start-page: 2047
  year: 2013
  ident: ref_174
  article-title: Ten-Eleven Translocation-2 (TET2) Is a Master Regulator of Smooth Muscle Cell Plasticity
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.113.002887
– volume: 78
  start-page: 351
  year: 2017
  ident: ref_98
  article-title: Notch Signaling in Vascular Smooth Muscle Cells
  publication-title: Adv. Pharmacol.
  doi: 10.1016/bs.apha.2016.07.002
– volume: 18
  start-page: 90
  year: 2019
  ident: ref_159
  article-title: Circular RNAs in Cancer: Emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-019-1002-6
– volume: 8
  start-page: 784044
  year: 2021
  ident: ref_100
  article-title: Targeting the microRNA-34a as a Novel Therapeutic Strategy for Cardiovascular Diseases
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2021.784044
– volume: 6
  start-page: 36340
  year: 2016
  ident: ref_152
  article-title: lncRNA H19/miR-675 axis regulates cardiomyocyte apoptosis by targeting VDAC1 in diabetic cardiomyopathy
  publication-title: Sci. Rep.
  doi: 10.1038/srep36340
– volume: 44
  start-page: D203
  year: 2015
  ident: ref_29
  article-title: NONCODE 2016: An informative and valuable data source of long non-coding RNAs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1252
– volume: 189
  start-page: 13
  year: 2010
  ident: ref_104
  article-title: MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200912096
– ident: ref_150
  doi: 10.1371/journal.pone.0058760
– volume: 529
  start-page: 753
  year: 2020
  ident: ref_164
  article-title: Suppression of circular RNA circDHCR24 alleviates aortic smooth muscle cell proliferation and migration by targeting miR-149-5p/MMP9 axis
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2020.06.067
– volume: 126
  start-page: e120
  year: 2020
  ident: ref_68
  article-title: miR-128-3p Is a Novel Regulator of Vascular Smooth Muscle Cell Phenotypic Switch and Vascular Diseases
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.120.316489
– volume: 18
  start-page: 999
  year: 2019
  ident: ref_163
  article-title: Suppression of circDcbld1 Alleviates Intimal Hyperplasia in Rat Carotid Artery by Targeting miR-145-3p/Neuropilin-1
  publication-title: Mol. Nucleic Acids
  doi: 10.1016/j.omtn.2019.10.023
– volume: 23
  start-page: 458
  year: 2021
  ident: ref_27
  article-title: Long non-coding RNAs: Biogenesis, functions, and clinical significance in gastric cancer
  publication-title: Mol. Ther. Oncolytics
  doi: 10.1016/j.omto.2021.11.005
– volume: 116
  start-page: 737
  year: 2015
  ident: ref_119
  article-title: Long noncoding RNAs in cardiovascular diseases
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.116.302521
– volume: 73
  start-page: 190
  year: 2019
  ident: ref_110
  article-title: Endothelial to Mesenchymal Transition in Cardiovascular Disease: JACC State-of-the-Art Review
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2018.09.089
– volume: 29
  start-page: 559
  year: 2010
  ident: ref_54
  article-title: Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression
  publication-title: Embo. J.
  doi: 10.1038/emboj.2009.370
– ident: ref_188
  doi: 10.3390/ijms20235975
– volume: 116
  start-page: 36
  year: 2006
  ident: ref_39
  article-title: Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI26505
– volume: 9
  start-page: 111
  year: 2007
  ident: ref_13
  article-title: Pathophysiology of coronary artery in-stent restenosis
  publication-title: Acute Card. Care
  doi: 10.1080/17482940701263285
– volume: 454
  start-page: 56
  year: 2008
  ident: ref_48
  article-title: SMAD proteins control DROSHA-mediated microRNA maturation
  publication-title: Nature
  doi: 10.1038/nature07086
– volume: 54
  start-page: e13143
  year: 2021
  ident: ref_161
  article-title: Circular RNAs in cell cycle regulation: Mechanisms to clinical significance
  publication-title: Cell Prolif.
  doi: 10.1111/cpr.13143
– volume: 13
  start-page: 127
  year: 2014
  ident: ref_206
  article-title: Tumor suppressor miR-24 restrains gastric cancer progression by downregulating RegIV
  publication-title: Mol. Cancer
  doi: 10.1186/1476-4598-13-127
– volume: 12
  start-page: 652129
  year: 2021
  ident: ref_181
  article-title: Spliceosomal snRNA Epitranscriptomics
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2021.652129
– volume: 28
  start-page: 195
  year: 2009
  ident: ref_145
  article-title: GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer
  publication-title: Oncogene
  doi: 10.1038/onc.2008.373
– volume: 41
  start-page: 761
  year: 2016
  ident: ref_31
  article-title: Linking Long Noncoding RNA Localization and Function
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2016.07.003
– volume: 131
  start-page: e147031
  year: 2021
  ident: ref_166
  article-title: Circular RNA circEsyt2 regulates vascular smooth muscle cell remodeling via splicing regulation
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI147031
– volume: 100
  start-page: 1579
  year: 2007
  ident: ref_50
  article-title: MicroRNA Expression Signature and Antisense-Mediated Depletion Reveal an Essential Role of MicroRNA in Vascular Neointimal Lesion Formation
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.106.141986
– volume: 78
  start-page: 567
  year: 2014
  ident: ref_24
  article-title: Emerging role of microRNAs in cardiovascular diseases
  publication-title: Circ. J.
  doi: 10.1253/circj.CJ-14-0086
– volume: 25
  start-page: 1168
  year: 2018
  ident: ref_73
  article-title: MiR-140-3p is Involved in In-Stent Restenosis by Targeting C-Myb and BCL-2 in Peripheral Artery Disease
  publication-title: J. Atheroscler. Thromb.
  doi: 10.5551/jat.44024
– volume: 7
  start-page: 41916
  year: 2017
  ident: ref_122
  article-title: Restenosis Inhibition and Re-differentiation of TGFβ/Smad3-activated Smooth Muscle Cells by Resveratrol
  publication-title: Sci. Rep.
  doi: 10.1038/srep41916
– volume: 129
  start-page: 1372
  year: 2019
  ident: ref_85
  article-title: Platelet-derived miR-223 promotes a phenotypic switch in arterial injury repair
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI124508
– volume: 11
  start-page: 537
  year: 2010
  ident: ref_23
  article-title: MicroRNA: Biogenesis, Function and Role in Cancer
  publication-title: Curr. Genom.
  doi: 10.2174/138920210793175895
– volume: 17
  start-page: 85
  year: 2019
  ident: ref_203
  article-title: Exosome-mimetic nanoplatforms for targeted cancer drug delivery
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-019-0517-8
– volume: 134
  start-page: A19359
  year: 2016
  ident: ref_77
  article-title: Abstract 19359: Inhibition of miR-146a Attenuates Neointima Formation
  publication-title: Circulation
– volume: 140
  start-page: 1629
  year: 2020
  ident: ref_147
  article-title: Long Noncoding RNA GAS5 Regulates Macrophage Polarization and Diabetic Wound Healing
  publication-title: J. Investig. Dermatol.
  doi: 10.1016/j.jid.2019.12.030
– volume: 100
  start-page: e24114
  year: 2021
  ident: ref_193
  article-title: Predictive value of LncRNA on coronary restenosis after percutaneous coronary intervention in patients with coronary heart disease: A protocol for systematic review and meta-analysis
  publication-title: Medicine
  doi: 10.1097/MD.0000000000024114
– volume: 9
  start-page: 640
  year: 2017
  ident: ref_8
  article-title: Diagnosis and management challenges of in-stent restenosis in coronary arteries
  publication-title: World J. Cardiol.
  doi: 10.4330/wjc.v9.i8.640
– volume: 29
  start-page: 3
  year: 2015
  ident: ref_40
  article-title: Myocardin in biology and disease
  publication-title: J. Biomed. Res.
– volume: 128
  start-page: 2026
  year: 2013
  ident: ref_66
  article-title: Endothelial Microparticle–Mediated Transfer of MicroRNA-126 Promotes Vascular Endothelial Cell Repair via SPRED1 and Is Abrogated in Glucose-Damaged Endothelial Microparticles
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.113.001720
– volume: 9
  start-page: 4411
  year: 2018
  ident: ref_125
  article-title: LncRNA MALAT1 regulates smooth muscle cell phenotype switch via activation of autophagy
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.23230
– volume: 116
  start-page: 598
  year: 2015
  ident: ref_56
  article-title: MicroRNA-29b Inhibits Migration and Proliferation of Vascular Smooth Muscle Cells in Neointimal Formation
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.25011
– volume: 116
  start-page: 1753
  year: 2015
  ident: ref_106
  article-title: TGFβ Triggers miR-143/145 Transfer From Smooth Muscle Cells to Endothelial Cells, Thereby Modulating Vessel Stabilization
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.116.305178
– volume: 887
  start-page: 53
  year: 2015
  ident: ref_107
  article-title: microRNAs Distinctively Regulate Vascular Smooth Muscle and Endothelial Cells: Functional Implications in Angiogenesis, Atherosclerosis, and In-Stent Restenosis
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-319-22380-3_4
– volume: 31
  start-page: 1749
  year: 2013
  ident: ref_111
  article-title: MicroRNA-200C and -150 play an important role in endothelial cell differentiation and vasculogenesis by targeting transcription repressor ZEB1
  publication-title: Stem Cells
  doi: 10.1002/stem.1448
– volume: 125
  start-page: 535
  year: 2019
  ident: ref_135
  article-title: The Human-Specific and Smooth Muscle Cell-Enriched LncRNA SMILR Promotes Proliferation by Regulating Mitotic CENPF mRNA and Drives Cell-Cycle Progression Which Can Be Targeted to Limit Vascular Remodeling
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.119.314876
– volume: 67
  start-page: 2554
  year: 2018
  ident: ref_81
  article-title: miRNA Regulation of the Hyperproliferative Phenotype of Vascular Smooth Muscle Cells in Diabetes
  publication-title: Diabetes
  doi: 10.2337/db17-1434
– volume: 142
  start-page: 213140
  year: 2022
  ident: ref_95
  article-title: Inhibition of neointimal hyperplasia in balloon-induced vascular injuries in a rat model by miR-22 loading Laponite hydrogels
  publication-title: Biomater. Adv.
  doi: 10.1016/j.bioadv.2022.213140
– volume: 34
  start-page: 1249
  year: 2014
  ident: ref_133
  article-title: Identification and Initial Functional Characterization of a Human Vascular Cell–Enriched Long Noncoding RNA
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.114.303240
– volume: 253
  start-page: 209
  year: 2021
  ident: ref_112
  article-title: miRNA-200c-3p promotes endothelial to mesenchymal transition and neointimal hyperplasia in artery bypass grafts
  publication-title: J. Pathol.
  doi: 10.1002/path.5574
– volume: 24
  start-page: 978
  year: 2016
  ident: ref_155
  article-title: A Role for the Long Noncoding RNA SENCR in Commitment and Function of Endothelial Cells
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2016.41
– volume: 591
  start-page: 1041
  year: 2017
  ident: ref_63
  article-title: The microRNA miR-124 inhibits vascular smooth muscle cell proliferation by targeting S100 calcium-binding protein A4 (S100A4)
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.12606
– volume: 342
  start-page: 20
  year: 2016
  ident: ref_113
  article-title: SUMOylation of KLF4 acts as a switch in transcriptional programs that control VSMC proliferation
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2016.03.001
– volume: 33
  start-page: 3185
  year: 2013
  ident: ref_199
  article-title: Circulating Long Non-coding RNAs in Plasma of Patients with Gastric Cancer
  publication-title: Anticancer. Res.
– volume: 59
  start-page: 232
  year: 2006
  ident: ref_11
  article-title: In stent restenosis: Bane of the stent era
  publication-title: J. Clin. Pathol.
  doi: 10.1136/jcp.2005.025742
– ident: ref_37
  doi: 10.1186/s12859-019-2861-y
– ident: ref_185
  doi: 10.3390/biom10050783
– volume: 5
  start-page: 36
  year: 2014
  ident: ref_103
  article-title: Integrated mechanisms of CaMKII-dependent ventricular remodeling
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2014.00036
– volume: 192
  start-page: 223
  year: 2014
  ident: ref_45
  article-title: Upregulation of let-7a inhibits vascular smooth muscle cell proliferation in vitro and in vein graft intimal hyperplasia in rats
  publication-title: J. Surg. Res.
  doi: 10.1016/j.jss.2014.05.045
– volume: 5
  start-page: e004629
  year: 2016
  ident: ref_83
  article-title: NCK Associated Protein 1 Modulated by miRNA-214 Determines Vascular Smooth Muscle Cell Migration, Proliferation, and Neointima Hyperplasia
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.116.004629
– volume: 47
  start-page: 168
  year: 2010
  ident: ref_108
  article-title: Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis
  publication-title: J. Vasc. Res.
  doi: 10.1159/000250095
– volume: 369
  start-page: 348
  year: 2018
  ident: ref_149
  article-title: LncRBA GSA5, up-regulated by ox-LDL, aggravates inflammatory response and MMP expression in THP-1 macrophages by acting like a sponge for miR-221
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2018.05.039
– volume: 15
  start-page: 633
  year: 2018
  ident: ref_57
  article-title: MicroRNA-31 promotes arterial smooth muscle cell proliferation and migration by targeting mitofusin-2 in arteriosclerosis obliterans of the lower extremitie
  publication-title: Exp. Ther. Med.
– volume: 2
  start-page: ra81
  year: 2009
  ident: ref_109
  article-title: Delivery of MicroRNA-126 by Apoptotic Bodies Induces CXCL12-Dependent Vascular Protection
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2000610
– volume: 12
  start-page: 1338
  year: 2020
  ident: ref_141
  article-title: LncRNA H19/Runx2 axis promotes VSMCs transition via MAPK pathway
  publication-title: Am. J. Transl. Res.
– volume: 52
  start-page: 59
  year: 2019
  ident: ref_144
  article-title: FOXC2-AS1 regulates phenotypic transition, proliferation and migration of human great saphenous vein smooth muscle cells
  publication-title: Biol. Res.
  doi: 10.1186/s40659-019-0266-z
– volume: 26
  start-page: 374
  year: 2021
  ident: ref_178
  article-title: circGNAQ, a circular RNA enriched in vascular endothelium, inhibits endothelial cell senescence and atherosclerosis progression
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2021.07.020
– volume: 8
  start-page: e1150
  year: 2016
  ident: ref_10
  article-title: Understanding and managing in-stent restenosis: A review of clinical data, from pathogenesis to treatment
  publication-title: J. Thorac. Dis.
  doi: 10.21037/jtd.2016.10.93
– volume: 29
  start-page: 1744
  year: 2021
  ident: ref_198
  article-title: Self-assembled miRNA-switch nanoparticles target denuded regions and prevent restenosis
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2021.01.032
– volume: 12
  start-page: 6759
  year: 2021
  ident: ref_177
  article-title: A circular RNA, circUSP36, accelerates endothelial cell dysfunction in atherosclerosis by adsorbing miR-637 to enhance WNT4 expression
  publication-title: Bioengineered
  doi: 10.1080/21655979.2021.1964891
– volume: 11
  start-page: 465
  year: 2020
  ident: ref_82
  article-title: miR-214-3p-Sufu-GLI1 is a novel regulatory axis controlling inflammatory smooth muscle cell differentiation from stem cells and neointimal hyperplasia
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/s13287-020-01989-w
– volume: 172
  start-page: 393
  year: 2018
  ident: ref_28
  article-title: Functional Classification and Experimental Dissection of Long Noncoding RNAs
  publication-title: Cell
  doi: 10.1016/j.cell.2018.01.011
– volume: 23
  start-page: 4733
  year: 2017
  ident: ref_194
  article-title: Prognostic Value of Plasma Long Noncoding RNA ANRIL for In-Stent Restenosis
  publication-title: Med. Sci. Monit.
  doi: 10.12659/MSM.904352
– volume: 82
  start-page: 201
  year: 2015
  ident: ref_80
  article-title: miR-200c-SUMOylated KLF4 feedback loop acts as a switch in transcriptional programs that control VSMC proliferation
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2015.03.011
– volume: 8
  start-page: 75844
  year: 2017
  ident: ref_55
  article-title: MiR-26a contributes to the PDGF-BB-induced phenotypic switch of vascular smooth muscle cells by suppressing Smad1
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.17998
– volume: 6
  start-page: 4686
  year: 2021
  ident: ref_96
  article-title: miR-22 eluting cardiovascular stent based on a self-healable spongy coating inhibits in-stent restenosis
  publication-title: Bioact. Mater.
– volume: 292
  start-page: C824
  year: 2007
  ident: ref_17
  article-title: Nitric oxide-induced inhibition of smooth muscle cell proliferation involves S-nitrosation and inactivation of RhoA
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00592.2005
– volume: 471
  start-page: 347
  year: 2019
  ident: ref_137
  article-title: Long noncoding RNA UCA1 promotes the proliferation of hypoxic human pulmonary artery smooth muscle cells
  publication-title: Pflügers Arch. Eur. J. Physiol.
  doi: 10.1007/s00424-018-2219-8
– volume: 21
  start-page: 327
  year: 2001
  ident: ref_14
  article-title: Elevated Circulating Levels of Monocyte Chemoattractant Protein-1 in Patients With Restenosis After Coronary Angioplasty
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/01.ATV.21.3.327
– volume: 25
  start-page: 1135
  year: 2005
  ident: ref_42
  article-title: Vascular implications of the Krüppel-like family of transcription factors
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/01.ATV.0000165656.65359.23
– volume: 319
  start-page: 1165
  year: 2013
  ident: ref_58
  article-title: MicroRNA-31 controls phenotypic modulation of human vascular smooth muscle cells by regulating its target gene cellular repressor of E1A-stimulated genes
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2013.03.010
– ident: ref_201
  doi: 10.3390/mps4010010
– volume: 9
  start-page: 587
  year: 2019
  ident: ref_186
  article-title: Small Nucleolar RNAs: Insight Into Their Function in Cancer
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2019.00587
– volume: 12
  start-page: 4253
  year: 2019
  ident: ref_61
  article-title: MicroRNA-92 regulates vascular smooth muscle cell function by targeting KLF4 during vascular restenosis and injury
  publication-title: Int. J. Clin. Exp. Pathol.
– volume: 31
  start-page: 851
  year: 2011
  ident: ref_93
  article-title: Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.110.221952
– volume: 305
  start-page: C591
  year: 2013
  ident: ref_101
  article-title: IQGAP1 links PDGF receptor-β signal to focal adhesions involved in vascular smooth muscle cell migration: Role in neointimal formation after vascular injury
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00011.2013
– volume: 421
  start-page: 267
  year: 2004
  ident: ref_153
  article-title: PTEN induces G1 cell cycle arrest and inhibits MMP-9 expression via the regulation of NF-κB and AP-1 in vascular smooth muscle cells
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2003.11.007
– ident: ref_191
  doi: 10.1371/journal.pone.0112043
– volume: 24
  start-page: 435
  year: 2004
  ident: ref_176
  article-title: Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/01.ATV.0000105902.89459.09
– volume: 30
  start-page: 915
  year: 2022
  ident: ref_180
  article-title: Circular RNA Cdyl promotes abdominal aortic aneurysm formation by inducing M1 macrophage polarization and M1-type inflammation
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2021.09.017
– ident: ref_72
  doi: 10.1371/journal.pone.0186245
– volume: 28
  start-page: 40
  year: 2014
  ident: ref_15
  article-title: Mechanisms simultaneously regulate smooth muscle proliferation and differentiation
  publication-title: J. Biomed. Res.
  doi: 10.7555/JBR.28.20130130
– volume: 118
  start-page: 637
  year: 2021
  ident: ref_9
  article-title: Coronary In-Stent Restenosis: Predictors and Treatment
  publication-title: Dtsch. Arztebl. Int.
– volume: 104
  start-page: 17719
  year: 2007
  ident: ref_21
  article-title: Genomic analysis of human microRNA transcripts
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0703890104
– volume: 95
  start-page: 517
  year: 2012
  ident: ref_79
  article-title: MicroRNA-195 regulates vascular smooth muscle cell phenotype and prevents neointimal formation
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvs223
– volume: 130
  start-page: 1452
  year: 2014
  ident: ref_142
  article-title: LincRNA-p21 Regulates Neointima Formation, Vascular Smooth Muscle Cell Proliferation, Apoptosis, and Atherosclerosis by Enhancing p53 Activity
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.114.011675
– volume: 7
  start-page: 12429
  year: 2016
  ident: ref_160
  article-title: Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12429
– volume: 17
  start-page: 398
  year: 2010
  ident: ref_205
  article-title: Role of anti-oncomirs miR-143 and -145 in human colorectal tumors
  publication-title: Cancer Gene Ther.
  doi: 10.1038/cgt.2009.88
– volume: 249
  start-page: 88
  year: 2016
  ident: ref_5
  article-title: Coronary endarterectomy: The current state of knowledge
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2016.03.036
– volume: 119
  start-page: 1313
  year: 2016
  ident: ref_16
  article-title: Extensive Proliferation of a Subset of Differentiated, yet Plastic, Medial Vascular Smooth Muscle Cells Contributes to Neointimal Formation in Mouse Injury and Atherosclerosis Models
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.116.309799
– volume: 70
  start-page: 649
  year: 2018
  ident: ref_49
  article-title: MicroRNA-21 drives the switch to a synthetic phenotype in human saphenous vein smooth muscle cells
  publication-title: IUBMB Life
  doi: 10.1002/iub.1751
– volume: 107
  start-page: 522
  year: 2015
  ident: ref_52
  article-title: Down-regulation of miR-23b induces phenotypic switching of vascular smooth muscle cells in vitro and in vivo
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvv141
– volume: 116
  start-page: 546
  year: 2019
  ident: ref_156
  article-title: SENCR stabilizes vascular endothelial cell adherens junctions through interaction with CKAP4
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1810729116
– volume: 36
  start-page: 2088
  year: 2016
  ident: ref_127
  article-title: MYOSLID Is a Novel Serum Response Factor-Dependent Long Noncoding RNA That Amplifies the Vascular Smooth Muscle Differentiation Program
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.116.307879
– volume: 93
  start-page: 74
  year: 2004
  ident: ref_151
  article-title: Myocardin/MKL family of SRF coactivators: Key regulators of immediate early and muscle specific gene expression
  publication-title: J. Cell Biochem.
  doi: 10.1002/jcb.20199
– volume: 275
  start-page: 25330
  year: 2000
  ident: ref_146
  article-title: A p300 Protein as a Coactivator of GATA-6 in the Transcription of the Smooth Muscle-Myosin Heavy Chain Gene
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M000828200
– volume: 407
  start-page: 233
  year: 2000
  ident: ref_2
  article-title: Atherosclerosis
  publication-title: Nature
  doi: 10.1038/35025203
– volume: 2
  start-page: Cd000515
  year: 2020
  ident: ref_7
  article-title: Carotid artery stenting versus endarterectomy for treatment of carotid artery stenosis
  publication-title: Cochrane Database Syst. Rev.
– volume: 19
  start-page: 3823
  year: 2019
  ident: ref_69
  article-title: MicroRNA-132 mediates proliferation and migration of pulmonary smooth muscle cells via targeting PTEN
  publication-title: Mol. Med. Rep.
– volume: 19
  start-page: 245
  year: 2017
  ident: ref_118
  article-title: TLR2 stimulation impairs anti-inflammatory activity of M2-like macrophages, generating a chimeric M1/M2 phenotype
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/s13075-017-1447-1
– volume: 90
  start-page: 2959
  year: 2016
  ident: ref_189
  article-title: Recent progress toward the use of circulating microRNAs as clinical biomarkers
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-016-1828-2
– volume: 116
  start-page: 2325
  year: 2015
  ident: ref_74
  article-title: miR-142-3p Is a Regulator of the TGFβ-Mediated Vascular Smooth Muscle Cell Phenotype
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.25183
– volume: 137
  start-page: 1842
  year: 2018
  ident: ref_89
  article-title: miR-22 in Smooth Muscle Cells: A Potential Therapy for Cardiovascular Disease
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.033042
– volume: 37
  start-page: 2182
  year: 2017
  ident: ref_64
  article-title: Novel Pathological Role of hnRNPA1 (Heterogeneous Nuclear Ribonucleoprotein A1) in Vascular Smooth Muscle Cell Function and Neointima Hyperplasia
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.117.310020
– volume: 32
  start-page: 639
  year: 2018
  ident: ref_36
  article-title: A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs
  publication-title: Genes Dev.
  doi: 10.1101/gad.314856.118
– volume: 2015
  start-page: 356893
  year: 2015
  ident: ref_157
  article-title: The Long Noncoding RNA MEG3 Is Downregulated and Inversely Associated with VEGF Levels in Osteoarthritis
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2015/356893
– volume: 53
  start-page: 14
  year: 2017
  ident: ref_196
  article-title: Drug- and Gene-eluting Stents for Preventing Coronary Restenosis
  publication-title: Chonnam Med. J.
  doi: 10.4068/cmj.2017.53.1.14
– volume: 108
  start-page: 427
  year: 2011
  ident: ref_67
  article-title: Wnt4/β-Catenin Signaling Induces VSMC Proliferation and Is Associated With Intimal Thickening
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.110.233999
– volume: 9
  start-page: 3326
  year: 2017
  ident: ref_158
  article-title: Long noncoding RNA MEG3 suppressed endothelial cell proliferation and migration through regulating miR-21
  publication-title: Am. J. Transl. Res.
– volume: 43
  start-page: 301
  year: 2007
  ident: ref_114
  article-title: Induction of p53 by GKLF is essential for inhibition of proliferation of vascular smooth muscle cells
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2007.06.001
– volume: 497
  start-page: 1154
  year: 2018
  ident: ref_140
  article-title: Long noncoding RNA H19-derived miR-675 aggravates restenosis by targeting PTEN
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2017.01.011
– volume: 201
  start-page: 87
  year: 2019
  ident: ref_202
  article-title: Nanoparticle-mediated intratumoral inhibition of miR-21 for improved survival in glioblastoma
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.02.016
– volume: 124
  start-page: 498
  year: 2019
  ident: ref_167
  article-title: Circ_Lrp6, a Circular RNA Enriched in Vascular Smooth Muscle Cells, Acts as a Sponge Regulating miRNA-145 Function
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.118.314240
– volume: 101
  start-page: 1
  year: 2015
  ident: ref_4
  article-title: Percutaneous coronary intervention in the UK: Recommendations for good practice 2015
  publication-title: Heart
  doi: 10.1136/heartjnl-2015-307821
– volume: 152
  start-page: 1298
  year: 2013
  ident: ref_120
  article-title: Long Noncoding RNAs: Cellular Address Codes in Development and Disease
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.012
– volume: 143
  start-page: 354
  year: 2021
  ident: ref_170
  article-title: Circular RNA CircMAP3K5 Acts as a MicroRNA-22-3p Sponge to Promote Resolution of Intimal Hyperplasia Via TET2-Mediated Smooth Muscle Cell Differentiation
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.120.049715
– volume: 11
  start-page: 4481
  year: 2019
  ident: ref_131
  article-title: Linc-POU3F3 is overexpressed in in-stent restenosis patients and induces VSMC phenotypic transformation via POU3F3/miR-449a/KLF4 signaling pathway
  publication-title: Am. J. Transl. Res.
– volume: 235
  start-page: 6831
  year: 2020
  ident: ref_172
  article-title: Circular RNA circTET3 mediates migration of rat vascular smooth muscle cells by targeting miR-351-5p
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.29577
– volume: 19
  start-page: 172
  year: 2020
  ident: ref_34
  article-title: Circular RNA: Metabolism, functions and interactions with proteins
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-020-01286-3
– volume: 2110
  start-page: 020013
  year: 2019
  ident: ref_148
  article-title: LncRNA GAS5 inhibits progression of colorectal cancer by regulating M1/M2 macrophages polarization
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.5110807
– volume: 287
  start-page: 5260
  year: 2020
  ident: ref_38
  article-title: Noncoding RNAs in vascular smooth muscle cell function and neointimal hyperplasia
  publication-title: FEBS J.
  doi: 10.1111/febs.15357
– volume: 11
  start-page: e011134
  year: 2019
  ident: ref_192
  article-title: MiR-93-5p is a novel predictor of coronary in-stent restenosis
  publication-title: Heart Asia
  doi: 10.1136/heartasia-2018-011134
– volume: 460
  start-page: 705
  year: 2009
  ident: ref_75
  article-title: miR-145 and miR-143 regulate smooth muscle cell fate and plasticity
  publication-title: Nature
  doi: 10.1038/nature08195
SSID ssj0000702636
Score 2.2940342
SecondaryResourceType review_article
Snippet In-stent restenosis (ISR), characterised by ≥50% re-narrowing of the target vessel, is a common complication following stent implantation and remains a...
Simple SummaryAngioplasty is a procedure where a stent is inserted to open a blocked blood vessel that is causing issues for a patient. Restenosis is a medical...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 24
SubjectTerms Angina pectoris
Angioplasty
Atherosclerosis
biomarkers
Blood coagulation
Cardiovascular diseases
Cell cycle
circRNAs
Circular RNA
Cyclin-dependent kinases
Cytokines
Cytoplasm
Endothelial cells
Endothelium
Epigenetics
Gene expression
Genomes
Genotype & phenotype
Growth factors
Heart attacks
Implants
Inflammation
Kinases
Localization
long noncoding RNAs
Macrophages
microRNA
MicroRNAs
miRNA
Molecular modelling
Non-coding RNA
noncoding RNAs
Pathophysiology
Patients
Peptides
Proteins
Restenosis
Review
RNA polymerase
Smooth muscle
smooth muscle cells
Therapeutic applications
Therapeutic targets
therapeutics
vascular cells
Veins & arteries
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcEKU8AgUZiQOXUK_fPrYVVVWJPVQU9Rb5MRYrrRzEbg_8e8ZJutqtClxQbvFEsWfszDfx-BtCPuAs0QFUrLytvpUY97Re59zOvNNZgpYO6nnnL3N9cS0vb9TNVqmvmhM20gOPijvW0QB3NinwXqoMPmRrU0CY4CVPcjhHzhzbCqaGb7DB2KLuS1YuH4Fx_fHEaTSru7-Myx03NLD1PwQx72dKbrme86fkyYQZ6cnY1wPyCMozsj9Wkfx1SPS8L7GvPohezU9WdFHotym_lJ7BckknSepLolf1_2bpV4vVc3J9_vnr2UU7lUNoo7J63UbEAgow_uCReR9BiCyVcykonZSCWdYAkgVrogtMgkjJCeZjDBGjGhZAvCB7pS_wilBvtEeskZPISSplvPVguEgxG6VUjA35dKedLk5c4bVkxbLDmKGqs7unzoZ83DzwY6TJ-LPoaVX3RqzyWw830OrdZPXuX1ZvyNGdsbpp0a06bjR6WsGkaMj7TTMul7oH4gv0t4OMRdDChfmLjK0ugiEQasjL0f6b3gqN78CrIWZnZuwMZ7elLL4PtN3OKkTP6vX_GP8b8pjXcxgz3nJ-RPbWP2_hLaKjdXg3LITfyIIQQQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SDYVeSt9xmxYXeujFjVdP-xBCEhJCoaYsTcnNyNKoXVjsJLs55N9n5JXdbmiDb9YY26PR6BuN9A3AJ7IS1aC0gbfVZILinswo77OpKZUXqESJ4bzzt0qdnYuvF_JiC6rhLEzYVjn4xN5Ru86GNfI9phW5UQq--cHlVRaqRoXs6lBCw8TSCm6_pxh7BNvkkmU-ge2jk-r7bFx1IQNnKuQrA8cPp3h_L3IdTUNWOGdiY3rqWfz_BT3v76D8a0o6fQZPI5ZMD9ed_xy2sH0Bj9fVJW9fgqq61nZhbkpn1eEynbfpz7jvND3GxSKNkqlpXToL655tt5wvX8H56cmP47MslknIrCzUKrOEESRSXMJsboxFzr2QZekaqZyUOPUKUeRNoW3Z5AK5cyXPSWGNpWgnb5C_hknbtbgDqdHKEAbxjnsnpNSmMKgZd9ZrKaW1CXwZtFPbyCEeSlksaoolgjrre-pM4PP4wOWaPuP_okdB3aNY4L3ub3TXv-o4jGplNbKycBKNEdKjaXxRuIZAoxHMCZ3A7tBZdRyMy_qP6STwcWymYRRyI6bF7qaXKQjMMK4fkCnC1JETQErgzbr_x6_lit5BVwJ6wzI2fmezpZ3_7um8y0ISqpZvH_70d_CEhZMXU5YxtguT1fUNvic8tGo-RCO_A9qQDQ4
  priority: 102
  providerName: ProQuest
Title Noncoding RNAs in Vascular Cell Biology and Restenosis
URI https://www.ncbi.nlm.nih.gov/pubmed/36671717
https://www.proquest.com/docview/2767183043
https://www.proquest.com/docview/2768241237
https://www.proquest.com/docview/2887620293
https://pubmed.ncbi.nlm.nih.gov/PMC9855655
https://doaj.org/article/6c7e298d5eaa45feabf88db112a42d47
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB7ahEIvpe8oTY0KPfSiVN6ndCglCQmhUFNMXXITq93Z1mBWqe1A8u87K8luHZxQdJNGWml2RvN9-5gBeE9WomqUNuZtNZkg3pMZ5X02NKXyApUoMe53_jpS5xPx5UJe_C0H1CtwsZXaxXpSk_ns8Pr3zWdy-E-RcRJl_9inKxrGiV0KOQ9ht50siuv4eqzf_pY10Y22ZCDLdUmokusu1c-2Z2xEqTaZ_zYEensh5T-R6ewpPOkhZXrU2cAzeIDhOTzqikzevAA1aoJtYohKx6OjRToN6Y9--Wl6grNZ2kumJrh0HIc_Q7OYLl7C5Oz0-8l51ldLyKws1DKzBBUkEj1hNjfGIudeyLJ0tVROShx6hSjyutC2rHOB3LmS58ba2hLpyWvkr2AnNAH3IDVaGYIi3nHvhJTaFAY14856LaW0NoHDlXYq26cSjxUtZhVRiqjO6pY6E_iwvuGyy6Jxt-hxVPdaLKa_bk80859V702VshpZWTiJxgjp0dS-KFxN2NEI5oRO4GDVWdXKpCqmFQVinguewLv1ZfKmOEViAjZXrUxBxsO4vkemiBEkJ5yUwOuu_9dvyxW1QUcCesMyNj5n80qY_mqzepeFJHAt9_-j3TfwmMVdGEOWMXYAO8v5Fb4lbLSsB7B7fDr6Nh60YwuD1gP-ADVIEOI
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gEaMvxm-rqDXRxJdKbz_bB2IAIYdAYy5geCvb_dBLLi3SI4Z_zr_N2d5e9YjyRvrWnbbb2Zmd38zuzgC8RSkRleXa521VCUO_J1HCuWSocuGYFSy3_rzzYSFGx-zzCT9ZgV-LszB-W-ViTuwmatNoHyNfJ1LgNIrON_149iPxVaP86uqihIYKpRXMRpdiLBzs2LeXP9GFazf2PuF4vyNkd-doe5SEKgOJ5pmYJRpNLLcI64lOldKWUsd4npuKC8O5HTphLUurTOq8SpmlxuQ0xe9VGp2FtLIU33sLVpkPoAxgdWun-DLuozyoUET49VGfU4jSPF0PuZWGfhU6JWzJHHZVA_4Fda_u2PzLBO7eh3sBu8abc2F7ACu2fgi359UsLx-BKJpaN94WxuNis40ndfw17HONt-10GgfKWNUmHvs4a920k_YxHN8Iw57AoG5q-wxiJYVCzOMMdYZxLlWmrCTUaCc551pH8GHBnVKHnOW-dMa0RN_Fs7O8ws4I3vcPnM3TdfyfdMuzuyfzeba7G835tzKobSm0tCTPDLdKMe6sqlyWmQpBqmLEMBnB2mKwyqD8bflHVCN40zej2vq1GFXb5qKjyRA8ESqvocm8qUoRkEXwdD7-fW-pwG_gFYFckoyl31luqSffu_ThecYRxfPn13f9NdwZHR0elAd7xf4LuEv8qY8hSQhZg8Hs_MK-RCw2q14FgY_h9KZ17DfTjksr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VViAuiDeBAkECiUvYrJ_JoUJ9rVoKUbWiqLfg-NGutEpKdyvUv8ivYpx1AltBb1Vu8SRxxjOebzz2DMBblBJRWa593laVMPR7EiWcS4YqF45ZwXLrzzt_KcTeEft0zI9X4Fd3FsZvq-zmxHaiNo32a-QDIgVOo-h804EL2yIOd0Yfz34kvoKUj7R25TRUKLNgNtp0Y-GQx4G9_Inu3GxjfwfH_h0ho92v23tJqDiQaJ6JeaLR3HKLEJ_oVCltKXWM57mpuDCc26ET1rK0yqTOq5RZakxOU_xepdFxSCtL8b23YE2i1UdHcG1rtzgc9ys-qFxE-Fipzy9EaZ4OQp6loY9Ip4Qtmca2gsC_YO_V3Zt_mcPRfbgXcGy8uRC8B7Bi64dwe1HZ8vIRiKKpdePtYjwuNmfxpI6_hT2v8badTuNAGavaxGO_5lo3s8nsMRzdCMOewGrd1PYZxEoKhfjHGeoM41yqTFlJqNFOcs61juBDx51Sh_zlvozGtEQ_xrOzvMLOCN73D5wtUnf8n3TLs7sn8zm32xvN-UkZVLgUWlqSZ4ZbpRh3VlUuy0yFgFUxYpiMYL0brDJMBLPyj9hG8KZvRhX2cRlV2-aipckQSBEqr6HJvNlKEZxF8HQx_n1vqcBv4BWBXJKMpd9Zbqknp20q8TzjiOj58-u7_hruoK6Vn_eLgxdwl_gDIEOSELIOq_PzC_sSYdm8ehXkPYbvN61ivwEw609v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noncoding+RNAs+in+Vascular+Cell+Biology+and+Restenosis&rft.jtitle=Biology+%28Basel%2C+Switzerland%29&rft.au=Efovi%2C+Denis&rft.au=Xiao%2C+Qingzhong&rft.date=2022-12-22&rft.issn=2079-7737&rft.eissn=2079-7737&rft.volume=12&rft.issue=1&rft_id=info:doi/10.3390%2Fbiology12010024&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-7737&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-7737&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-7737&client=summon