Noncoding RNAs in Vascular Cell Biology and Restenosis
In-stent restenosis (ISR), characterised by ≥50% re-narrowing of the target vessel, is a common complication following stent implantation and remains a significant challenge to the long-term success of angioplasty procedures. Considering the global burden of cardiovascular diseases, improving angiop...
Saved in:
Published in | Biology (Basel, Switzerland) Vol. 12; no. 1; p. 24 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
22.12.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2079-7737 2079-7737 |
DOI | 10.3390/biology12010024 |
Cover
Abstract | In-stent restenosis (ISR), characterised by ≥50% re-narrowing of the target vessel, is a common complication following stent implantation and remains a significant challenge to the long-term success of angioplasty procedures. Considering the global burden of cardiovascular diseases, improving angioplasty patient outcomes remains a key priority. Noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) have been extensively implicated in vascular cell biology and ISR through multiple, both distinct and overlapping, mechanisms. Vascular smooth muscle cells, endothelial cells and macrophages constitute the main cell types involved in the multifactorial pathophysiology of ISR. The identification of critical regulators exemplified by ncRNAs in all these cell types and processes makes them an exciting therapeutic target in the field of restenosis. In this review, we will comprehensively explore the potential functions and underlying molecular mechanisms of ncRNAs in vascular cell biology in the context of restenosis, with an in-depth focus on vascular cell dysfunction during restenosis development and progression. We will also discuss the diagnostic biomarker and therapeutic target potential of ncRNAs in ISR. Finally, we will discuss the current shortcomings, challenges, and perspectives toward the clinical application of ncRNAs. |
---|---|
AbstractList | In-stent restenosis (ISR), characterised by ≥50% re-narrowing of the target vessel, is a common complication following stent implantation and remains a significant challenge to the long-term success of angioplasty procedures. Considering the global burden of cardiovascular diseases, improving angioplasty patient outcomes remains a key priority. Noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) have been extensively implicated in vascular cell biology and ISR through multiple, both distinct and overlapping, mechanisms. Vascular smooth muscle cells, endothelial cells and macrophages constitute the main cell types involved in the multifactorial pathophysiology of ISR. The identification of critical regulators exemplified by ncRNAs in all these cell types and processes makes them an exciting therapeutic target in the field of restenosis. In this review, we will comprehensively explore the potential functions and underlying molecular mechanisms of ncRNAs in vascular cell biology in the context of restenosis, with an in-depth focus on vascular cell dysfunction during restenosis development and progression. We will also discuss the diagnostic biomarker and therapeutic target potential of ncRNAs in ISR. Finally, we will discuss the current shortcomings, challenges, and perspectives toward the clinical application of ncRNAs.In-stent restenosis (ISR), characterised by ≥50% re-narrowing of the target vessel, is a common complication following stent implantation and remains a significant challenge to the long-term success of angioplasty procedures. Considering the global burden of cardiovascular diseases, improving angioplasty patient outcomes remains a key priority. Noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) have been extensively implicated in vascular cell biology and ISR through multiple, both distinct and overlapping, mechanisms. Vascular smooth muscle cells, endothelial cells and macrophages constitute the main cell types involved in the multifactorial pathophysiology of ISR. The identification of critical regulators exemplified by ncRNAs in all these cell types and processes makes them an exciting therapeutic target in the field of restenosis. In this review, we will comprehensively explore the potential functions and underlying molecular mechanisms of ncRNAs in vascular cell biology in the context of restenosis, with an in-depth focus on vascular cell dysfunction during restenosis development and progression. We will also discuss the diagnostic biomarker and therapeutic target potential of ncRNAs in ISR. Finally, we will discuss the current shortcomings, challenges, and perspectives toward the clinical application of ncRNAs. Simple SummaryAngioplasty is a procedure where a stent is inserted to open a blocked blood vessel that is causing issues for a patient. Restenosis is a medical condition that reverses the benefits of angioplasty, and it is caused by injury from the stent, with inflammation, excessive smooth muscle cell growth and the movement of cells to accumulate inside the vessel, as part of a disproportionate healing response to the foreign object. The current treatments for restenosis stop the growth of all cells in the area, which is an issue as endothelial cells are required to keep growing in order to heal the inner layer of the blood vessel, which was damaged by the stent, and prevent issues in the future, such as blood clots. Noncoding RNAs are small pieces of genetic material that are not translated into proteins; however, they are important in controlling different biological processes, some of which are the growth and movement of specific cells involved in restenosis. Therefore, we may be able to target certain noncoding RNAs to only slow down the growth and movement of the type of cell causing the condition, namely smooth muscle cells, while allowing for endothelial cells to keep growing and healing the blood vessel.AbstractIn-stent restenosis (ISR), characterised by ≥50% re-narrowing of the target vessel, is a common complication following stent implantation and remains a significant challenge to the long-term success of angioplasty procedures. Considering the global burden of cardiovascular diseases, improving angioplasty patient outcomes remains a key priority. Noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) have been extensively implicated in vascular cell biology and ISR through multiple, both distinct and overlapping, mechanisms. Vascular smooth muscle cells, endothelial cells and macrophages constitute the main cell types involved in the multifactorial pathophysiology of ISR. The identification of critical regulators exemplified by ncRNAs in all these cell types and processes makes them an exciting therapeutic target in the field of restenosis. In this review, we will comprehensively explore the potential functions and underlying molecular mechanisms of ncRNAs in vascular cell biology in the context of restenosis, with an in-depth focus on vascular cell dysfunction during restenosis development and progression. We will also discuss the diagnostic biomarker and therapeutic target potential of ncRNAs in ISR. Finally, we will discuss the current shortcomings, challenges, and perspectives toward the clinical application of ncRNAs. In-stent restenosis (ISR), characterised by ≥50% re-narrowing of the target vessel, is a common complication following stent implantation and remains a significant challenge to the long-term success of angioplasty procedures. Considering the global burden of cardiovascular diseases, improving angioplasty patient outcomes remains a key priority. Noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) have been extensively implicated in vascular cell biology and ISR through multiple, both distinct and overlapping, mechanisms. Vascular smooth muscle cells, endothelial cells and macrophages constitute the main cell types involved in the multifactorial pathophysiology of ISR. The identification of critical regulators exemplified by ncRNAs in all these cell types and processes makes them an exciting therapeutic target in the field of restenosis. In this review, we will comprehensively explore the potential functions and underlying molecular mechanisms of ncRNAs in vascular cell biology in the context of restenosis, with an in-depth focus on vascular cell dysfunction during restenosis development and progression. We will also discuss the diagnostic biomarker and therapeutic target potential of ncRNAs in ISR. Finally, we will discuss the current shortcomings, challenges, and perspectives toward the clinical application of ncRNAs. |
Author | Efovi, Denis Xiao, Qingzhong |
AuthorAffiliation | 2 Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China 1 William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK |
AuthorAffiliation_xml | – name: 1 William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK – name: 2 Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China |
Author_xml | – sequence: 1 givenname: Denis surname: Efovi fullname: Efovi, Denis – sequence: 2 givenname: Qingzhong orcidid: 0000-0001-9101-0498 surname: Xiao fullname: Xiao, Qingzhong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36671717$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkklrHDEQhUVwiJf4nFtoyMWXsbUvl4AzZDEYB0ySq1BL1RMNPZIjdQf8793tsY09ECIdVEjvfSqV6hDtpZwAoXcEnzJm8Fkbc59Xt4RigjHlr9ABxcoslGJq71m8j45rXeNpKEwlk2_QPpNSkWkeIHmVk88hplVzfXVem5iaX676sXelWULfN5-2lzQuheYa6gAp11jfoted6yscP6xH6OeXzz-W3xaX379eLM8vF15oOSw8wVQAlZh67JwHxjoujAmtkEEIIJ0E4LjVypsWc2AhGIad963nxuAW2BG62HJDdmt7U-LGlVubXbT3G7msrCtD9D1Y6RVQo4MA57jowLWd1qElhDpOA1cT6-OWdTO2Gwge0lBc_wL68iTF33aV_1qjhZBCTICTB0DJf8apFnYTq5-K5BLksVqqtZIUU8P-L1VSU04om9P6sCNd57GkqaqzShHNMJ-B758n_5T1409OArEV-JJrLdBZHwc3xDy_JfaWYDs3jd1pmsl3tuN7RP_LcQcRUMRi |
CitedBy_id | crossref_primary_10_1007_s12012_024_09914_w crossref_primary_10_1016_j_ejphar_2023_175761 crossref_primary_10_2196_65366 crossref_primary_10_1016_j_atherosclerosis_2024_118527 crossref_primary_10_1536_ihj_24_062 |
Cites_doi | 10.1097/SHK.0000000000001410 10.1159/000480212 10.1038/s41569-021-00668-4 10.1039/D2BM00536K 10.1093/eurheartj/ehab892 10.1016/j.jacbts.2021.04.008 10.3390/genes12030418 10.1161/CIRCULATIONAHA.115.021019 10.1371/journal.pone.0175061 10.1080/15476286.2021.1894025 10.1056/NEJMoa0912321 10.1016/j.yjmcc.2015.10.017 10.1016/j.biopha.2015.06.009 10.1093/jb/mvn068 10.1093/cvr/cvv160 10.1590/1678-4685-gmb-2020-0124 10.1161/CIRCRESAHA.114.303265 10.12659/MSM.915681 10.1038/nature11247 10.1203/00006450-199604001-02042 10.1016/S0735-1097(99)00486-6 10.1016/j.molimm.2019.04.011 10.7150/ijbs.36995 10.1073/pnas.93.13.6536 10.1093/cvr/cvt082 10.1161/CIRCULATIONAHA.117.027799 10.1038/nri3088 10.1002/jcp.28284 10.1038/mtna.2014.40 10.7150/thno.24677 10.1161/CIRCRESAHA.108.185363 10.1002/sim.6600 10.3390/cells8091015 10.1093/nar/gkz1062 10.1002/cbin.11758 10.1038/embor.2010.172 10.1161/CIRCRESAHA.111.240150 10.1161/CIRCRESAHA.109.197517 10.1038/s41569-019-0185-2 10.1016/j.bbamcr.2014.07.022 10.1002/iub.298 10.1016/j.omtn.2019.11.006 10.1152/ajpheart.00660.2016 10.1038/cdd.2014.206 10.1038/s41598-019-54917-1 10.4070/kcj.2014.44.4.255 10.1089/dna.2017.3682 10.1016/j.bbrc.2017.10.068 10.1096/fj.201800243RRR 10.1074/jbc.M502149200 10.1093/hmg/ddab304 10.1136/jitc-2020-002319 10.1038/s41586-020-2105-3 10.1161/CIRCGENETICS.110.958702 10.1016/S0022-2828(03)00110-X 10.2217/epi.13.73 10.4161/cc.6.19.4767 10.1161/ATVBAHA.115.305597 10.1016/j.bbadis.2019.05.022 10.1101/gr.214205.116 10.1161/CIRCRESAHA.113.301306 10.1097/MOH.0b013e3283523e57 10.1161/CIRCRESAHA.116.308434 10.1161/CIRCRESAHA.117.311441 10.1002/jbm.a.35357 10.1073/pnas.1803725115 10.1161/ATVBAHA.114.305212 10.1161/CIRCULATIONAHA.108.790485 10.1161/CIRCULATIONAHA.113.002887 10.1016/bs.apha.2016.07.002 10.1186/s12943-019-1002-6 10.3389/fcvm.2021.784044 10.1038/srep36340 10.1093/nar/gkv1252 10.1083/jcb.200912096 10.1371/journal.pone.0058760 10.1016/j.bbrc.2020.06.067 10.1161/CIRCRESAHA.120.316489 10.1016/j.omtn.2019.10.023 10.1016/j.omto.2021.11.005 10.1161/CIRCRESAHA.116.302521 10.1016/j.jacc.2018.09.089 10.1038/emboj.2009.370 10.3390/ijms20235975 10.1172/JCI26505 10.1080/17482940701263285 10.1038/nature07086 10.1111/cpr.13143 10.1186/1476-4598-13-127 10.3389/fgene.2021.652129 10.1038/onc.2008.373 10.1016/j.tibs.2016.07.003 10.1172/JCI147031 10.1161/CIRCRESAHA.106.141986 10.1253/circj.CJ-14-0086 10.5551/jat.44024 10.1038/srep41916 10.1172/JCI124508 10.2174/138920210793175895 10.1186/s12951-019-0517-8 10.1016/j.jid.2019.12.030 10.1097/MD.0000000000024114 10.4330/wjc.v9.i8.640 10.1161/CIRCULATIONAHA.113.001720 10.18632/oncotarget.23230 10.1002/jcb.25011 10.1161/CIRCRESAHA.116.305178 10.1007/978-3-319-22380-3_4 10.1002/stem.1448 10.1161/CIRCRESAHA.119.314876 10.2337/db17-1434 10.1016/j.bioadv.2022.213140 10.1161/ATVBAHA.114.303240 10.1002/path.5574 10.1038/mt.2016.41 10.1002/1873-3468.12606 10.1016/j.yexcr.2016.03.001 10.1136/jcp.2005.025742 10.1186/s12859-019-2861-y 10.3390/biom10050783 10.3389/fphar.2014.00036 10.1016/j.jss.2014.05.045 10.1161/JAHA.116.004629 10.1159/000250095 10.1016/j.yexcr.2018.05.039 10.1126/scisignal.2000610 10.1186/s40659-019-0266-z 10.1016/j.omtn.2021.07.020 10.21037/jtd.2016.10.93 10.1016/j.ymthe.2021.01.032 10.1080/21655979.2021.1964891 10.1186/s13287-020-01989-w 10.1016/j.cell.2018.01.011 10.12659/MSM.904352 10.1016/j.yjmcc.2015.03.011 10.18632/oncotarget.17998 10.1152/ajpcell.00592.2005 10.1007/s00424-018-2219-8 10.1161/01.ATV.21.3.327 10.1161/01.ATV.0000165656.65359.23 10.1016/j.yexcr.2013.03.010 10.3390/mps4010010 10.3389/fonc.2019.00587 10.1161/ATVBAHA.110.221952 10.1152/ajpcell.00011.2013 10.1016/j.abb.2003.11.007 10.1371/journal.pone.0112043 10.1161/01.ATV.0000105902.89459.09 10.1016/j.ymthe.2021.09.017 10.1371/journal.pone.0186245 10.7555/JBR.28.20130130 10.1073/pnas.0703890104 10.1093/cvr/cvs223 10.1161/CIRCULATIONAHA.114.011675 10.1038/ncomms12429 10.1038/cgt.2009.88 10.1016/j.atherosclerosis.2016.03.036 10.1161/CIRCRESAHA.116.309799 10.1002/iub.1751 10.1093/cvr/cvv141 10.1073/pnas.1810729116 10.1161/ATVBAHA.116.307879 10.1002/jcb.20199 10.1074/jbc.M000828200 10.1038/35025203 10.1186/s13075-017-1447-1 10.1007/s00204-016-1828-2 10.1002/jcb.25183 10.1161/CIRCULATIONAHA.118.033042 10.1161/ATVBAHA.117.310020 10.1101/gad.314856.118 10.1155/2015/356893 10.4068/cmj.2017.53.1.14 10.1161/CIRCRESAHA.110.233999 10.1016/j.yjmcc.2007.06.001 10.1016/j.bbrc.2017.01.011 10.1016/j.biomaterials.2019.02.016 10.1161/CIRCRESAHA.118.314240 10.1136/heartjnl-2015-307821 10.1016/j.cell.2013.02.012 10.1161/CIRCULATIONAHA.120.049715 10.1002/jcp.29577 10.1186/s12943-020-01286-3 10.1063/1.5110807 10.1111/febs.15357 10.1136/heartasia-2018-011134 10.1038/nature08195 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 7QP 7TK 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/biology12010024 |
DatabaseName | CrossRef PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection (via ProQuest) Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Genetics Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database AGRICOLA PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2079-7737 |
ExternalDocumentID | oai_doaj_org_article_6c7e298d5eaa45feabf88db112a42d47 PMC9855655 36671717 10_3390_biology12010024 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: British Heart Foundation grantid: PG/15/11/31279 – fundername: British Heart Foundation grantid: PG/15/86/31723 – fundername: British Heart Foundation grantid: PG/16/1/31892 – fundername: British Heart Foundation grantid: PG/20/10458 – fundername: National Institute for Health Research Biomedical Research Centre at Barts – fundername: British Heart Foundation grantid: PG/15/11/31279; PG/15/86/31723; PG/16/1/31892; PG/20/10458 |
GroupedDBID | 2XV 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION EBD GROUPED_DOAJ HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PQGLB 7QP 7TK 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS RC3 7X8 PUEGO 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c586t-c1025e2602c0aace33f4599db56d55e1f6ee40b87c9b04e3dd930accbc4990be3 |
IEDL.DBID | M48 |
ISSN | 2079-7737 |
IngestDate | Wed Aug 27 01:25:36 EDT 2025 Thu Aug 21 18:39:07 EDT 2025 Thu Sep 04 22:59:24 EDT 2025 Fri Sep 05 07:09:26 EDT 2025 Fri Jul 25 11:55:42 EDT 2025 Mon Jul 21 05:18:27 EDT 2025 Tue Jul 01 01:28:56 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | microRNAs smooth muscle cells vascular cells cardiovascular disease circRNAs endothelial cells restenosis long noncoding RNAs in-stent restenosis noncoding RNAs neointimal hyperplasia |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c586t-c1025e2602c0aace33f4599db56d55e1f6ee40b87c9b04e3dd930accbc4990be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9101-0498 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/biology12010024 |
PMID | 36671717 |
PQID | 2767183043 |
PQPubID | 2032427 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6c7e298d5eaa45feabf88db112a42d47 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9855655 proquest_miscellaneous_2887620293 proquest_miscellaneous_2768241237 proquest_journals_2767183043 pubmed_primary_36671717 crossref_citationtrail_10_3390_biology12010024 crossref_primary_10_3390_biology12010024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221222 |
PublicationDateYYYYMMDD | 2022-12-22 |
PublicationDate_xml | – month: 12 year: 2022 text: 20221222 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Biology (Basel, Switzerland) |
PublicationTitleAlternate | Biology (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Ji (ref_50) 2007; 100 Wang (ref_115) 2008; 144 Chappell (ref_16) 2016; 119 Wassmann (ref_114) 2007; 43 Lv (ref_140) 2018; 497 Wada (ref_146) 2000; 275 Cheng (ref_105) 2009; 105 Holdt (ref_160) 2016; 7 Su (ref_157) 2015; 2015 Rangrez (ref_76) 2011; 4 Liu (ref_141) 2020; 12 Goodfellow (ref_22) 2007; 6 Xiao (ref_161) 2021; 54 Rong (ref_163) 2019; 18 Chen (ref_60) 2015; 89 Tang (ref_65) 2017; 313 Afzal (ref_83) 2016; 5 Wu (ref_142) 2014; 130 Li (ref_152) 2016; 6 Feng (ref_62) 2019; 15 Kee (ref_47) 2014; 44 Arita (ref_199) 2013; 33 Yan (ref_190) 2015; 34 Zheng (ref_95) 2022; 142 Lawrence (ref_179) 2011; 11 Kovacic (ref_110) 2019; 73 Viereck (ref_200) 2017; 120 Zou (ref_132) 2015; 74 Curcio (ref_24) 2014; 78 Iaconetti (ref_52) 2015; 107 Wang (ref_194) 2017; 23 Deng (ref_61) 2019; 12 Sun (ref_78) 2011; 12 Michalik (ref_126) 2014; 114 ref_72 Baumann (ref_117) 2021; 9 Mitra (ref_11) 2006; 59 McDonald (ref_39) 2006; 116 Bell (ref_133) 2014; 34 ref_150 Pang (ref_18) 2018; 8 Macfarlane (ref_23) 2010; 11 Hall (ref_167) 2019; 124 Zhu (ref_73) 2018; 25 Huang (ref_90) 2017; 42 Tang (ref_123) 2019; 1865 Kibos (ref_13) 2007; 9 Akao (ref_205) 2010; 17 Kim (ref_74) 2015; 116 Wang (ref_79) 2012; 95 He (ref_129) 2017; 36 Batista (ref_120) 2013; 152 Wang (ref_128) 2019; 11 Chen (ref_171) 2017; 494 Orr (ref_108) 2010; 47 Ahmed (ref_130) 2018; 115 ref_143 Torella (ref_81) 2018; 67 Wu (ref_178) 2021; 26 Huang (ref_177) 2021; 12 Grewe (ref_12) 2000; 35 Song (ref_180) 2022; 30 Li (ref_86) 2013; 99 Yu (ref_97) 2015; 22 Yang (ref_136) 2020; 24 Goossens (ref_187) 2018; 115 Torella (ref_70) 2011; 109 Lekshmi (ref_196) 2017; 53 Timmis (ref_1) 2022; 43 Wu (ref_158) 2017; 9 Liu (ref_174) 2013; 128 Tsaousi (ref_67) 2011; 108 Uchida (ref_119) 2015; 116 Aufiero (ref_33) 2019; 16 Zhou (ref_34) 2020; 19 Zernecke (ref_109) 2009; 2 Yang (ref_51) 2018; 137 Miano (ref_40) 2015; 29 Zhang (ref_64) 2017; 37 Jansen (ref_66) 2013; 128 Zhao (ref_92) 2015; 35 Lockhart (ref_198) 2021; 29 Su (ref_159) 2019; 18 ref_204 Li (ref_26) 2020; 19 Zhang (ref_53) 2020; 19 Quero (ref_118) 2017; 19 Zhang (ref_46) 2020; 26 Suzuki (ref_42) 2005; 25 Li (ref_87) 2013; 113 Chen (ref_31) 2016; 41 Banning (ref_4) 2015; 101 Vacca (ref_91) 2016; 15 ref_201 Song (ref_125) 2018; 9 Ghai (ref_189) 2016; 90 Duan (ref_206) 2014; 13 Zhu (ref_137) 2019; 471 Abid (ref_154) 2005; 280 Chan (ref_54) 2010; 29 Lee (ref_56) 2015; 116 Zuckerbraun (ref_17) 2007; 292 Miano (ref_41) 2003; 35 Wang (ref_197) 2015; 35 Lusis (ref_2) 2000; 407 Wang (ref_58) 2013; 319 Gong (ref_166) 2021; 131 He (ref_82) 2020; 11 Liu (ref_27) 2021; 23 Ye (ref_149) 2018; 369 Yao (ref_172) 2020; 235 Climent (ref_106) 2015; 116 Wang (ref_139) 2020; 53 Huang (ref_57) 2018; 15 Mei (ref_184) 2022; 31 Fu (ref_94) 2022; 10 Cordes (ref_75) 2009; 460 Mariani (ref_175) 1996; 39 Wang (ref_124) 2019; 25 Maguire (ref_38) 2020; 287 Hu (ref_147) 2020; 140 Peng (ref_164) 2020; 529 Zhang (ref_144) 2019; 52 Zhu (ref_122) 2017; 7 Zhou (ref_121) 2019; 234 Hu (ref_88) 2015; 107 Davis (ref_48) 2008; 454 Sun (ref_195) 2018; 18 Liu (ref_84) 2009; 104 Pickard (ref_145) 2009; 28 Cao (ref_45) 2014; 192 Bouzo (ref_203) 2019; 17 Liu (ref_193) 2021; 100 Farina (ref_68) 2020; 126 Tang (ref_148) 2019; 2110 Li (ref_99) 2009; 119 Yang (ref_55) 2017; 8 Cen (ref_151) 2004; 93 Findeisen (ref_93) 2011; 31 Baeten (ref_98) 2017; 78 Kang (ref_71) 2012; 19 Shi (ref_15) 2014; 28 Wang (ref_96) 2021; 6 Huang (ref_36) 2018; 32 Chen (ref_112) 2021; 253 Buccheri (ref_10) 2016; 8 Kreusser (ref_103) 2014; 5 Lyu (ref_156) 2019; 116 Kohno (ref_101) 2013; 305 Chaabane (ref_102) 2015; 1853 Luo (ref_19) 2020; 48 Zheng (ref_44) 2010; 62 Zeng (ref_85) 2019; 129 Stavrou (ref_5) 2016; 249 Zhao (ref_29) 2015; 44 Boulberdaa (ref_155) 2016; 24 Wang (ref_43) 2014; 6 Santulli (ref_107) 2015; 887 Alshanwani (ref_49) 2018; 70 Tong (ref_182) 2021; 18 Cipollone (ref_14) 2001; 21 Luo (ref_111) 2013; 31 Sun (ref_162) 2017; 121 Zhang (ref_131) 2019; 11 Ullrich (ref_9) 2021; 118 Dunham (ref_20) 2012; 489 Saini (ref_21) 2007; 104 Neylon (ref_192) 2019; 11 Sedding (ref_77) 2016; 134 Morais (ref_181) 2021; 12 Seo (ref_202) 2019; 201 Tan (ref_116) 2021; 6 Zhao (ref_127) 2016; 36 Dahariya (ref_32) 2019; 112 Yuan (ref_59) 2021; 44 Moon (ref_153) 2004; 421 Yin (ref_183) 2020; 580 ref_169 Zheng (ref_80) 2015; 82 Choe (ref_63) 2017; 591 Kopp (ref_28) 2018; 172 Zhu (ref_207) 2015; 103 Brott (ref_6) 2010; 363 Alraies (ref_8) 2017; 9 Liang (ref_186) 2019; 9 Zeng (ref_69) 2019; 19 Engelen (ref_3) 2022; 19 Delafontaine (ref_176) 2004; 24 Quintavalle (ref_104) 2010; 189 Roberts (ref_25) 2014; 3 Zeng (ref_170) 2021; 143 ref_37 Mattioli (ref_30) 2017; 27 Huang (ref_89) 2018; 137 Zaphiropoulos (ref_35) 1996; 93 Hua (ref_100) 2021; 8 Xu (ref_165) 2019; 33 ref_185 ref_188 Liu (ref_138) 2019; 11 Huang (ref_168) 2022; 46 ref_191 Ballantyne (ref_134) 2016; 133 Nie (ref_113) 2016; 342 Mahmoud (ref_135) 2019; 125 Lyrer (ref_7) 2020; 2 Bretones (ref_173) 2019; 9 |
References_xml | – volume: 53 start-page: 723 year: 2020 ident: ref_139 article-title: LncRNA-Ang362 Promotes Pulmonary Arterial Hypertension by Regulating miR-221 and miR-222 publication-title: Shock doi: 10.1097/SHK.0000000000001410 – volume: 42 start-page: 2492 year: 2017 ident: ref_90 article-title: Mir-22-3p Inhibits Arterial Smooth Muscle Cell Proliferation and Migration and Neointimal Hyperplasia by Targeting HMGB1 in Arteriosclerosis Obliterans publication-title: Cell. Physiol. Biochem. doi: 10.1159/000480212 – volume: 19 start-page: 522 year: 2022 ident: ref_3 article-title: Therapeutic strategies targeting inflammation and immunity in atherosclerosis: How to proceed? publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-021-00668-4 – volume: 10 start-page: 3612 year: 2022 ident: ref_94 article-title: Mir-22-incorporated polyelectrolyte coating prevents intima hyperplasia after balloon-induced vascular injury publication-title: Biomater. Sci. doi: 10.1039/D2BM00536K – volume: 43 start-page: 716 year: 2022 ident: ref_1 article-title: European Society of Cardiology: Cardiovascular disease statistics 2021 publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehab892 – volume: 6 start-page: 693 year: 2021 ident: ref_116 article-title: Macrophage Polarization as a Novel Therapeutic Target for Endovascular Intervention in Peripheral Artery Disease publication-title: JACC Basic Transl. Sci. doi: 10.1016/j.jacbts.2021.04.008 – ident: ref_169 doi: 10.3390/genes12030418 – volume: 133 start-page: 2050 year: 2016 ident: ref_134 article-title: Smooth Muscle Enriched Long Noncoding RNA (SMILR) Regulates Cell Proliferation publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.115.021019 – volume: 26 start-page: e924625 year: 2020 ident: ref_46 article-title: miR-18a-5p Promotes Proliferation and Migration of Vascular Smooth Muscle Cells by Activating the AKT/Extracellular Regulated Protein Kinases (ERK) Signaling Pathway publication-title: Med. Sci. Monit. – volume: 11 start-page: 1835 year: 2019 ident: ref_138 article-title: Long noncoding RNA LINC00341 promotes the vascular smooth muscle cells proliferation and migration via miR-214/FOXO4 feedback loop publication-title: Am. J. Transl. Res. – ident: ref_143 doi: 10.1371/journal.pone.0175061 – volume: 18 start-page: 2073 year: 2021 ident: ref_182 article-title: Localization of RNAs in the nucleus: Cis-and trans-regulation publication-title: RNA Biol. doi: 10.1080/15476286.2021.1894025 – volume: 363 start-page: 11 year: 2010 ident: ref_6 article-title: Stenting versus Endarterectomy for Treatment of Carotid-Artery Stenosis publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0912321 – volume: 89 start-page: 75 year: 2015 ident: ref_60 article-title: miRNA-34a reduces neointima formation through inhibiting smooth muscle cell proliferation and migration publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2015.10.017 – volume: 74 start-page: 35 year: 2015 ident: ref_132 article-title: Down-regulation of SENCR promotes smooth muscle cells proliferation and migration in db/db mice through up-regulation of FoxO1 and TRPC6 publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2015.06.009 – volume: 15 start-page: 420 year: 2016 ident: ref_91 article-title: MECP2, a multi-talented modulator of chromatin architecture publication-title: Brief. Funct. Genom. – volume: 144 start-page: 313 year: 2008 ident: ref_115 article-title: Kruppel-like factor 4 is required for the expression of vascular smooth muscle cell differentiation marker genes induced by all-trans retinoic acid publication-title: J. Biochem. doi: 10.1093/jb/mvn068 – volume: 107 start-page: 534 year: 2015 ident: ref_88 article-title: MicroRNA-1298 is regulated by DNA methylation and affects vascular smooth muscle cell function by targeting connexin 43 publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvv160 – volume: 44 start-page: e20200124 year: 2021 ident: ref_59 article-title: miR-34a regulates phenotypic modulation of vascular smooth muscle cells in intracranial aneurysm by targeting CXCR3 and MMP-2 publication-title: Genet. Mol. Biol. doi: 10.1590/1678-4685-gmb-2020-0124 – volume: 114 start-page: 1389 year: 2014 ident: ref_126 article-title: Long Noncoding RNA MALAT1 Regulates Endothelial Cell Function and Vessel Growth publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.114.303265 – volume: 25 start-page: 7645 year: 2019 ident: ref_124 article-title: Expression of Long Noncoding RNA LIPCAR Promotes Cell Proliferation, Cell Migration, and Change in Phenotype of Vascular Smooth Muscle Cells publication-title: Med. Sci. Monit. doi: 10.12659/MSM.915681 – volume: 489 start-page: 57 year: 2012 ident: ref_20 article-title: An integrated encyclopedia of DNA elements in the human genome publication-title: Nature doi: 10.1038/nature11247 – volume: 39 start-page: 339 year: 1996 ident: ref_175 article-title: Insulin-like growth factor-1 (IGF-1) inhibits nitric oxide (no) production by pulmonary artery smooth muscle cells (PASMC). † 2018 publication-title: Pediatr. Res. doi: 10.1203/00006450-199604001-02042 – volume: 35 start-page: 157 year: 2000 ident: ref_12 article-title: Acute and chronic tissue response to coronary stent implantation: Pathologic findings in human specimen publication-title: J. Am. Coll. Cardiol. doi: 10.1016/S0735-1097(99)00486-6 – volume: 112 start-page: 82 year: 2019 ident: ref_32 article-title: Long non-coding RNA: Classification, biogenesis and functions in blood cells publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2019.04.011 – volume: 15 start-page: 2615 year: 2019 ident: ref_62 article-title: MiR-93 regulates vascular smooth muscle cell proliferation, and neointimal formation through targeting Mfn2 publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.36995 – volume: 93 start-page: 6536 year: 1996 ident: ref_35 article-title: Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: Correlation with exon skipping publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.13.6536 – volume: 115 start-page: 1519 year: 2018 ident: ref_187 article-title: Genetic associations and regulation of expression indicate an independent role for 14q32 snoRNAs in human cardiovascular disease publication-title: Cardiovasc. Res. – volume: 99 start-page: 185 year: 2013 ident: ref_86 article-title: MicroRNA-638 is highly expressed in human vascular smooth muscle cells and inhibits PDGF-BB-induced cell proliferation and migration through targeting orphan nuclear receptor NOR1 publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvt082 – volume: 137 start-page: 1824 year: 2018 ident: ref_51 article-title: miR-22 Is a Novel Mediator of Vascular Smooth Muscle Cell Phenotypic Modulation and Neointima Formation publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.117.027799 – volume: 24 start-page: 12859 year: 2020 ident: ref_136 article-title: LncRNA UCA1 stimulates the repair of hyperglycemic vascular smooth muscle cells through targeting miR-582-5p publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 11 start-page: 750 year: 2011 ident: ref_179 article-title: Transcriptional regulation of macrophage polarization: Enabling diversity with identity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3088 – volume: 234 start-page: 16205 year: 2019 ident: ref_121 article-title: LncRNA CRNDE regulates the proliferation and migration of vascular smooth muscle cells publication-title: J. Cell. Physiol. doi: 10.1002/jcp.28284 – volume: 3 start-page: e188 year: 2014 ident: ref_25 article-title: The MicroRNA Biology of the Mammalian Nucleus publication-title: Mol. Ther. Nucleic Acids doi: 10.1038/mtna.2014.40 – volume: 8 start-page: 2496 year: 2018 ident: ref_18 article-title: Encoding activities of non-coding RNAs publication-title: Theranostics doi: 10.7150/thno.24677 – volume: 104 start-page: 476 year: 2009 ident: ref_84 article-title: A Necessary Role of miR-221 and miR-222 in Vascular Smooth Muscle Cell Proliferation and Neointimal Hyperplasia publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.108.185363 – volume: 34 start-page: 3811 year: 2015 ident: ref_190 article-title: Combining large number of weak biomarkers based on AUC publication-title: Stat. Med. doi: 10.1002/sim.6600 – ident: ref_204 doi: 10.3390/cells8091015 – volume: 48 start-page: D882 year: 2020 ident: ref_19 article-title: New developments on the Encyclopedia of DNA Elements (ENCODE) data portal publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz1062 – volume: 46 start-page: 628 year: 2022 ident: ref_168 article-title: Circ-Sirt1 inhibits vascular smooth muscle cells proliferation via the c-Myc/cyclin B1 axis publication-title: Cell Biol. Int. doi: 10.1002/cbin.11758 – volume: 12 start-page: 56 year: 2011 ident: ref_78 article-title: miR-146a and Krüppel-like factor 4 form a feedback loop to participate in vascular smooth muscle cell proliferation publication-title: EMBO Rep. doi: 10.1038/embor.2010.172 – volume: 109 start-page: 880 year: 2011 ident: ref_70 article-title: MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.111.240150 – volume: 105 start-page: 158 year: 2009 ident: ref_105 article-title: MicroRNA-145, a Novel Smooth Muscle Cell Phenotypic Marker and Modula.ator, Controls Vascular Neointimal Lesion Formation publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.109.197517 – volume: 16 start-page: 503 year: 2019 ident: ref_33 article-title: Circular RNAs open a new chapter in cardiovascular biology publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-019-0185-2 – volume: 1853 start-page: 2144 year: 2015 ident: ref_102 article-title: Extracellular S100A4 induces smooth muscle cell phenotypic transition mediated by RAGE publication-title: Biochim. Biophys. Acta (BBA) Mol. Cell Res. doi: 10.1016/j.bbamcr.2014.07.022 – volume: 62 start-page: 132 year: 2010 ident: ref_44 article-title: Role of Krüppel-like factor 4 in phenotypic switching and proliferation of vascular smooth muscle cells publication-title: IUBMB Life doi: 10.1002/iub.298 – volume: 19 start-page: 132 year: 2020 ident: ref_26 article-title: Identification of ncRNA-Mediated Functions of Nucleus-Localized miR-320 in Cardiomyocytes publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2019.11.006 – volume: 313 start-page: H641 year: 2017 ident: ref_65 article-title: MicroRNA-124 controls human vascular smooth muscle cell phenotypic switch via Sp1 publication-title: Am. J. Physiol.Y-Heart Circ. Physiol. doi: 10.1152/ajpheart.00660.2016 – volume: 22 start-page: 1170 year: 2015 ident: ref_97 article-title: Upregulated sirtuin 1 by miRNA-34a is required for smooth muscle cell differentiation from pluripotent stem cells publication-title: Cell Death Differ. doi: 10.1038/cdd.2014.206 – volume: 9 start-page: 18693 year: 2019 ident: ref_173 article-title: Myc stimulates cell cycle progression through the activation of Cdk1 and phosphorylation of p27 publication-title: Sci. Rep. doi: 10.1038/s41598-019-54917-1 – volume: 44 start-page: 255 year: 2014 ident: ref_47 article-title: miR-18a-5p MicroRNA Increases Vascular Smooth Muscle Cell Differentiation by Downregulating Syndecan4 publication-title: Korean Circ. J. doi: 10.4070/kcj.2014.44.4.255 – volume: 36 start-page: 475 year: 2017 ident: ref_129 article-title: Long Noncoding RNA MEG3 Negatively Regulates Proliferation and Angiogenesis in Vascular Endothelial Cells publication-title: DNA Cell Biol. doi: 10.1089/dna.2017.3682 – volume: 494 start-page: 126 year: 2017 ident: ref_171 article-title: Circular RNA WDR77 target FGF-2 to regulate vascular smooth muscle cells proliferation and migration by sponging miR-124 publication-title: Biochem. Biophys Res. Commun. doi: 10.1016/j.bbrc.2017.10.068 – volume: 33 start-page: 2659 year: 2019 ident: ref_165 article-title: circDiaph3 regulates rat vascular smooth muscle cell differentiation, proliferation, and migration publication-title: FASEB J. doi: 10.1096/fj.201800243RRR – volume: 280 start-page: 29864 year: 2005 ident: ref_154 article-title: Forkhead transcription factors inhibit vascular smooth muscle cell proliferation and neointimal hyperplasia publication-title: J. Biol. Chem. doi: 10.1074/jbc.M502149200 – volume: 31 start-page: 1051 year: 2022 ident: ref_184 article-title: C/D box snoRNA SNORD113-6/AF357425 plays a dual role in integrin signalling and arterial fibroblast function via pre-mRNA processing and 2’O-ribose methylation publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddab304 – volume: 9 start-page: e002319 year: 2021 ident: ref_117 article-title: p38 MAPK signaling in M1 macrophages results in selective elimi.ination of M2 macrophages by MEK inhibition publication-title: J. Immuno Ther. Cancer doi: 10.1136/jitc-2020-002319 – volume: 580 start-page: 147 year: 2020 ident: ref_183 article-title: U1 snRNP regulates chromatin retention of noncoding RNAs publication-title: Nature doi: 10.1038/s41586-020-2105-3 – volume: 4 start-page: 197 year: 2011 ident: ref_76 article-title: miR-143 and miR-145 publication-title: Circ. Cardiovasc. Genet. doi: 10.1161/CIRCGENETICS.110.958702 – volume: 18 start-page: 1405 year: 2018 ident: ref_195 article-title: Long non-coding RNA SENCR alleviates the inhibitory effects of rapamycin on human umbilical vein endothelial cells publication-title: Mol. Med. Rep. – volume: 35 start-page: 577 year: 2003 ident: ref_41 article-title: Serum response factor: Toggling between disparate programs of gene expression publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/S0022-2828(03)00110-X – volume: 6 start-page: 139 year: 2014 ident: ref_43 article-title: HDAC4: Mechanism of regulation and biological functions publication-title: Epigenomics doi: 10.2217/epi.13.73 – volume: 6 start-page: 2323 year: 2007 ident: ref_22 article-title: Regulation of RNA polymerase III transcription during mammalian cell growth publication-title: Cell Cycle doi: 10.4161/cc.6.19.4767 – volume: 19 start-page: 2467 year: 2020 ident: ref_53 article-title: MicroRNA-24-3p inhibition prevents cell growth of vascular smooth muscle cells by targeting Bcl-2-like protein 11 publication-title: Exp. Ther. Med. – volume: 35 start-page: 1945 year: 2015 ident: ref_197 article-title: Local MicroRNA Modulation Using a Novel Anti-miR-21-Eluting Stent Effectively Prevents Experimental In-Stent Restenosis publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.115.305597 – volume: 1865 start-page: 2516 year: 2019 ident: ref_123 article-title: LncRNA GAS5 regulates vascular smooth muscle cell cycle arrest and apoptosis via p53 pathway publication-title: Biochim. Biophys. Acta Mol. Basis Dis. doi: 10.1016/j.bbadis.2019.05.022 – volume: 27 start-page: 27 year: 2017 ident: ref_30 article-title: Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs publication-title: Genome Res. doi: 10.1101/gr.214205.116 – volume: 113 start-page: 1117 year: 2013 ident: ref_87 article-title: MicroRNA-663 Regulates Human Vascular Smooth Muscle Cell Phenotypic Switch and Vascular Neointimal Formation publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.113.301306 – volume: 19 start-page: 224 year: 2012 ident: ref_71 article-title: MicroRNA regulation of smooth muscle gene expression and phenotype publication-title: Curr. Opin. Hematol. doi: 10.1097/MOH.0b013e3283523e57 – volume: 120 start-page: 381 year: 2017 ident: ref_200 article-title: Circulating Noncoding RNAs as Biomarkers of Cardiovascular Disease and Injury publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.116.308434 – volume: 121 start-page: 628 year: 2017 ident: ref_162 article-title: A Novel Regulatory Mechanism of Smooth Muscle α-Actin Expression by NRG-1/circACTA2/miR-548f-5p Axis publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.117.311441 – volume: 11 start-page: 3600 year: 2019 ident: ref_128 article-title: LncRNA MEG3-derived miR-361-5p regulate vascular smooth muscle cells proliferation and apoptosis by targeting ABCA1 publication-title: Am. J. Transl Res. – volume: 103 start-page: 2269 year: 2015 ident: ref_207 article-title: A mechanistic model for drug release in PLGA biodegradable stent coatings coupled with polymer degradation and erosion publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.35357 – volume: 115 start-page: E8660 year: 2018 ident: ref_130 article-title: Long noncoding RNA NEAT1 (nuclear paraspeckle assembly transcript 1) is critical for phenotypic switching of vascular smooth muscle cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1803725115 – volume: 35 start-page: 918 year: 2015 ident: ref_92 article-title: MicroRNA-22 Regulates Smooth Muscle Cell Differentiation From Stem Cells by Targeting Methyl CpG–Binding Protein 2 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.114.305212 – volume: 119 start-page: 2686 year: 2009 ident: ref_99 article-title: Smooth muscle Notch1 mediates neointimal formation after vascular injury publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.108.790485 – volume: 128 start-page: 2047 year: 2013 ident: ref_174 article-title: Ten-Eleven Translocation-2 (TET2) Is a Master Regulator of Smooth Muscle Cell Plasticity publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.113.002887 – volume: 78 start-page: 351 year: 2017 ident: ref_98 article-title: Notch Signaling in Vascular Smooth Muscle Cells publication-title: Adv. Pharmacol. doi: 10.1016/bs.apha.2016.07.002 – volume: 18 start-page: 90 year: 2019 ident: ref_159 article-title: Circular RNAs in Cancer: Emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers publication-title: Mol. Cancer doi: 10.1186/s12943-019-1002-6 – volume: 8 start-page: 784044 year: 2021 ident: ref_100 article-title: Targeting the microRNA-34a as a Novel Therapeutic Strategy for Cardiovascular Diseases publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2021.784044 – volume: 6 start-page: 36340 year: 2016 ident: ref_152 article-title: lncRNA H19/miR-675 axis regulates cardiomyocyte apoptosis by targeting VDAC1 in diabetic cardiomyopathy publication-title: Sci. Rep. doi: 10.1038/srep36340 – volume: 44 start-page: D203 year: 2015 ident: ref_29 article-title: NONCODE 2016: An informative and valuable data source of long non-coding RNAs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1252 – volume: 189 start-page: 13 year: 2010 ident: ref_104 article-title: MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro publication-title: J. Cell Biol. doi: 10.1083/jcb.200912096 – ident: ref_150 doi: 10.1371/journal.pone.0058760 – volume: 529 start-page: 753 year: 2020 ident: ref_164 article-title: Suppression of circular RNA circDHCR24 alleviates aortic smooth muscle cell proliferation and migration by targeting miR-149-5p/MMP9 axis publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.06.067 – volume: 126 start-page: e120 year: 2020 ident: ref_68 article-title: miR-128-3p Is a Novel Regulator of Vascular Smooth Muscle Cell Phenotypic Switch and Vascular Diseases publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.120.316489 – volume: 18 start-page: 999 year: 2019 ident: ref_163 article-title: Suppression of circDcbld1 Alleviates Intimal Hyperplasia in Rat Carotid Artery by Targeting miR-145-3p/Neuropilin-1 publication-title: Mol. Nucleic Acids doi: 10.1016/j.omtn.2019.10.023 – volume: 23 start-page: 458 year: 2021 ident: ref_27 article-title: Long non-coding RNAs: Biogenesis, functions, and clinical significance in gastric cancer publication-title: Mol. Ther. Oncolytics doi: 10.1016/j.omto.2021.11.005 – volume: 116 start-page: 737 year: 2015 ident: ref_119 article-title: Long noncoding RNAs in cardiovascular diseases publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.116.302521 – volume: 73 start-page: 190 year: 2019 ident: ref_110 article-title: Endothelial to Mesenchymal Transition in Cardiovascular Disease: JACC State-of-the-Art Review publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2018.09.089 – volume: 29 start-page: 559 year: 2010 ident: ref_54 article-title: Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression publication-title: Embo. J. doi: 10.1038/emboj.2009.370 – ident: ref_188 doi: 10.3390/ijms20235975 – volume: 116 start-page: 36 year: 2006 ident: ref_39 article-title: Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo publication-title: J. Clin. Investig. doi: 10.1172/JCI26505 – volume: 9 start-page: 111 year: 2007 ident: ref_13 article-title: Pathophysiology of coronary artery in-stent restenosis publication-title: Acute Card. Care doi: 10.1080/17482940701263285 – volume: 454 start-page: 56 year: 2008 ident: ref_48 article-title: SMAD proteins control DROSHA-mediated microRNA maturation publication-title: Nature doi: 10.1038/nature07086 – volume: 54 start-page: e13143 year: 2021 ident: ref_161 article-title: Circular RNAs in cell cycle regulation: Mechanisms to clinical significance publication-title: Cell Prolif. doi: 10.1111/cpr.13143 – volume: 13 start-page: 127 year: 2014 ident: ref_206 article-title: Tumor suppressor miR-24 restrains gastric cancer progression by downregulating RegIV publication-title: Mol. Cancer doi: 10.1186/1476-4598-13-127 – volume: 12 start-page: 652129 year: 2021 ident: ref_181 article-title: Spliceosomal snRNA Epitranscriptomics publication-title: Front. Genet. doi: 10.3389/fgene.2021.652129 – volume: 28 start-page: 195 year: 2009 ident: ref_145 article-title: GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer publication-title: Oncogene doi: 10.1038/onc.2008.373 – volume: 41 start-page: 761 year: 2016 ident: ref_31 article-title: Linking Long Noncoding RNA Localization and Function publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2016.07.003 – volume: 131 start-page: e147031 year: 2021 ident: ref_166 article-title: Circular RNA circEsyt2 regulates vascular smooth muscle cell remodeling via splicing regulation publication-title: J. Clin. Investig. doi: 10.1172/JCI147031 – volume: 100 start-page: 1579 year: 2007 ident: ref_50 article-title: MicroRNA Expression Signature and Antisense-Mediated Depletion Reveal an Essential Role of MicroRNA in Vascular Neointimal Lesion Formation publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.106.141986 – volume: 78 start-page: 567 year: 2014 ident: ref_24 article-title: Emerging role of microRNAs in cardiovascular diseases publication-title: Circ. J. doi: 10.1253/circj.CJ-14-0086 – volume: 25 start-page: 1168 year: 2018 ident: ref_73 article-title: MiR-140-3p is Involved in In-Stent Restenosis by Targeting C-Myb and BCL-2 in Peripheral Artery Disease publication-title: J. Atheroscler. Thromb. doi: 10.5551/jat.44024 – volume: 7 start-page: 41916 year: 2017 ident: ref_122 article-title: Restenosis Inhibition and Re-differentiation of TGFβ/Smad3-activated Smooth Muscle Cells by Resveratrol publication-title: Sci. Rep. doi: 10.1038/srep41916 – volume: 129 start-page: 1372 year: 2019 ident: ref_85 article-title: Platelet-derived miR-223 promotes a phenotypic switch in arterial injury repair publication-title: J. Clin. Investig. doi: 10.1172/JCI124508 – volume: 11 start-page: 537 year: 2010 ident: ref_23 article-title: MicroRNA: Biogenesis, Function and Role in Cancer publication-title: Curr. Genom. doi: 10.2174/138920210793175895 – volume: 17 start-page: 85 year: 2019 ident: ref_203 article-title: Exosome-mimetic nanoplatforms for targeted cancer drug delivery publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-019-0517-8 – volume: 134 start-page: A19359 year: 2016 ident: ref_77 article-title: Abstract 19359: Inhibition of miR-146a Attenuates Neointima Formation publication-title: Circulation – volume: 140 start-page: 1629 year: 2020 ident: ref_147 article-title: Long Noncoding RNA GAS5 Regulates Macrophage Polarization and Diabetic Wound Healing publication-title: J. Investig. Dermatol. doi: 10.1016/j.jid.2019.12.030 – volume: 100 start-page: e24114 year: 2021 ident: ref_193 article-title: Predictive value of LncRNA on coronary restenosis after percutaneous coronary intervention in patients with coronary heart disease: A protocol for systematic review and meta-analysis publication-title: Medicine doi: 10.1097/MD.0000000000024114 – volume: 9 start-page: 640 year: 2017 ident: ref_8 article-title: Diagnosis and management challenges of in-stent restenosis in coronary arteries publication-title: World J. Cardiol. doi: 10.4330/wjc.v9.i8.640 – volume: 29 start-page: 3 year: 2015 ident: ref_40 article-title: Myocardin in biology and disease publication-title: J. Biomed. Res. – volume: 128 start-page: 2026 year: 2013 ident: ref_66 article-title: Endothelial Microparticle–Mediated Transfer of MicroRNA-126 Promotes Vascular Endothelial Cell Repair via SPRED1 and Is Abrogated in Glucose-Damaged Endothelial Microparticles publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.113.001720 – volume: 9 start-page: 4411 year: 2018 ident: ref_125 article-title: LncRNA MALAT1 regulates smooth muscle cell phenotype switch via activation of autophagy publication-title: Oncotarget doi: 10.18632/oncotarget.23230 – volume: 116 start-page: 598 year: 2015 ident: ref_56 article-title: MicroRNA-29b Inhibits Migration and Proliferation of Vascular Smooth Muscle Cells in Neointimal Formation publication-title: J. Cell. Biochem. doi: 10.1002/jcb.25011 – volume: 116 start-page: 1753 year: 2015 ident: ref_106 article-title: TGFβ Triggers miR-143/145 Transfer From Smooth Muscle Cells to Endothelial Cells, Thereby Modulating Vessel Stabilization publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.116.305178 – volume: 887 start-page: 53 year: 2015 ident: ref_107 article-title: microRNAs Distinctively Regulate Vascular Smooth Muscle and Endothelial Cells: Functional Implications in Angiogenesis, Atherosclerosis, and In-Stent Restenosis publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-319-22380-3_4 – volume: 31 start-page: 1749 year: 2013 ident: ref_111 article-title: MicroRNA-200C and -150 play an important role in endothelial cell differentiation and vasculogenesis by targeting transcription repressor ZEB1 publication-title: Stem Cells doi: 10.1002/stem.1448 – volume: 125 start-page: 535 year: 2019 ident: ref_135 article-title: The Human-Specific and Smooth Muscle Cell-Enriched LncRNA SMILR Promotes Proliferation by Regulating Mitotic CENPF mRNA and Drives Cell-Cycle Progression Which Can Be Targeted to Limit Vascular Remodeling publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.119.314876 – volume: 67 start-page: 2554 year: 2018 ident: ref_81 article-title: miRNA Regulation of the Hyperproliferative Phenotype of Vascular Smooth Muscle Cells in Diabetes publication-title: Diabetes doi: 10.2337/db17-1434 – volume: 142 start-page: 213140 year: 2022 ident: ref_95 article-title: Inhibition of neointimal hyperplasia in balloon-induced vascular injuries in a rat model by miR-22 loading Laponite hydrogels publication-title: Biomater. Adv. doi: 10.1016/j.bioadv.2022.213140 – volume: 34 start-page: 1249 year: 2014 ident: ref_133 article-title: Identification and Initial Functional Characterization of a Human Vascular Cell–Enriched Long Noncoding RNA publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.114.303240 – volume: 253 start-page: 209 year: 2021 ident: ref_112 article-title: miRNA-200c-3p promotes endothelial to mesenchymal transition and neointimal hyperplasia in artery bypass grafts publication-title: J. Pathol. doi: 10.1002/path.5574 – volume: 24 start-page: 978 year: 2016 ident: ref_155 article-title: A Role for the Long Noncoding RNA SENCR in Commitment and Function of Endothelial Cells publication-title: Mol. Ther. doi: 10.1038/mt.2016.41 – volume: 591 start-page: 1041 year: 2017 ident: ref_63 article-title: The microRNA miR-124 inhibits vascular smooth muscle cell proliferation by targeting S100 calcium-binding protein A4 (S100A4) publication-title: FEBS Lett. doi: 10.1002/1873-3468.12606 – volume: 342 start-page: 20 year: 2016 ident: ref_113 article-title: SUMOylation of KLF4 acts as a switch in transcriptional programs that control VSMC proliferation publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2016.03.001 – volume: 33 start-page: 3185 year: 2013 ident: ref_199 article-title: Circulating Long Non-coding RNAs in Plasma of Patients with Gastric Cancer publication-title: Anticancer. Res. – volume: 59 start-page: 232 year: 2006 ident: ref_11 article-title: In stent restenosis: Bane of the stent era publication-title: J. Clin. Pathol. doi: 10.1136/jcp.2005.025742 – ident: ref_37 doi: 10.1186/s12859-019-2861-y – ident: ref_185 doi: 10.3390/biom10050783 – volume: 5 start-page: 36 year: 2014 ident: ref_103 article-title: Integrated mechanisms of CaMKII-dependent ventricular remodeling publication-title: Front. Pharmacol. doi: 10.3389/fphar.2014.00036 – volume: 192 start-page: 223 year: 2014 ident: ref_45 article-title: Upregulation of let-7a inhibits vascular smooth muscle cell proliferation in vitro and in vein graft intimal hyperplasia in rats publication-title: J. Surg. Res. doi: 10.1016/j.jss.2014.05.045 – volume: 5 start-page: e004629 year: 2016 ident: ref_83 article-title: NCK Associated Protein 1 Modulated by miRNA-214 Determines Vascular Smooth Muscle Cell Migration, Proliferation, and Neointima Hyperplasia publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.116.004629 – volume: 47 start-page: 168 year: 2010 ident: ref_108 article-title: Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis publication-title: J. Vasc. Res. doi: 10.1159/000250095 – volume: 369 start-page: 348 year: 2018 ident: ref_149 article-title: LncRBA GSA5, up-regulated by ox-LDL, aggravates inflammatory response and MMP expression in THP-1 macrophages by acting like a sponge for miR-221 publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2018.05.039 – volume: 15 start-page: 633 year: 2018 ident: ref_57 article-title: MicroRNA-31 promotes arterial smooth muscle cell proliferation and migration by targeting mitofusin-2 in arteriosclerosis obliterans of the lower extremitie publication-title: Exp. Ther. Med. – volume: 2 start-page: ra81 year: 2009 ident: ref_109 article-title: Delivery of MicroRNA-126 by Apoptotic Bodies Induces CXCL12-Dependent Vascular Protection publication-title: Sci. Signal. doi: 10.1126/scisignal.2000610 – volume: 12 start-page: 1338 year: 2020 ident: ref_141 article-title: LncRNA H19/Runx2 axis promotes VSMCs transition via MAPK pathway publication-title: Am. J. Transl. Res. – volume: 52 start-page: 59 year: 2019 ident: ref_144 article-title: FOXC2-AS1 regulates phenotypic transition, proliferation and migration of human great saphenous vein smooth muscle cells publication-title: Biol. Res. doi: 10.1186/s40659-019-0266-z – volume: 26 start-page: 374 year: 2021 ident: ref_178 article-title: circGNAQ, a circular RNA enriched in vascular endothelium, inhibits endothelial cell senescence and atherosclerosis progression publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2021.07.020 – volume: 8 start-page: e1150 year: 2016 ident: ref_10 article-title: Understanding and managing in-stent restenosis: A review of clinical data, from pathogenesis to treatment publication-title: J. Thorac. Dis. doi: 10.21037/jtd.2016.10.93 – volume: 29 start-page: 1744 year: 2021 ident: ref_198 article-title: Self-assembled miRNA-switch nanoparticles target denuded regions and prevent restenosis publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2021.01.032 – volume: 12 start-page: 6759 year: 2021 ident: ref_177 article-title: A circular RNA, circUSP36, accelerates endothelial cell dysfunction in atherosclerosis by adsorbing miR-637 to enhance WNT4 expression publication-title: Bioengineered doi: 10.1080/21655979.2021.1964891 – volume: 11 start-page: 465 year: 2020 ident: ref_82 article-title: miR-214-3p-Sufu-GLI1 is a novel regulatory axis controlling inflammatory smooth muscle cell differentiation from stem cells and neointimal hyperplasia publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-020-01989-w – volume: 172 start-page: 393 year: 2018 ident: ref_28 article-title: Functional Classification and Experimental Dissection of Long Noncoding RNAs publication-title: Cell doi: 10.1016/j.cell.2018.01.011 – volume: 23 start-page: 4733 year: 2017 ident: ref_194 article-title: Prognostic Value of Plasma Long Noncoding RNA ANRIL for In-Stent Restenosis publication-title: Med. Sci. Monit. doi: 10.12659/MSM.904352 – volume: 82 start-page: 201 year: 2015 ident: ref_80 article-title: miR-200c-SUMOylated KLF4 feedback loop acts as a switch in transcriptional programs that control VSMC proliferation publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2015.03.011 – volume: 8 start-page: 75844 year: 2017 ident: ref_55 article-title: MiR-26a contributes to the PDGF-BB-induced phenotypic switch of vascular smooth muscle cells by suppressing Smad1 publication-title: Oncotarget doi: 10.18632/oncotarget.17998 – volume: 6 start-page: 4686 year: 2021 ident: ref_96 article-title: miR-22 eluting cardiovascular stent based on a self-healable spongy coating inhibits in-stent restenosis publication-title: Bioact. Mater. – volume: 292 start-page: C824 year: 2007 ident: ref_17 article-title: Nitric oxide-induced inhibition of smooth muscle cell proliferation involves S-nitrosation and inactivation of RhoA publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00592.2005 – volume: 471 start-page: 347 year: 2019 ident: ref_137 article-title: Long noncoding RNA UCA1 promotes the proliferation of hypoxic human pulmonary artery smooth muscle cells publication-title: Pflügers Arch. Eur. J. Physiol. doi: 10.1007/s00424-018-2219-8 – volume: 21 start-page: 327 year: 2001 ident: ref_14 article-title: Elevated Circulating Levels of Monocyte Chemoattractant Protein-1 in Patients With Restenosis After Coronary Angioplasty publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/01.ATV.21.3.327 – volume: 25 start-page: 1135 year: 2005 ident: ref_42 article-title: Vascular implications of the Krüppel-like family of transcription factors publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/01.ATV.0000165656.65359.23 – volume: 319 start-page: 1165 year: 2013 ident: ref_58 article-title: MicroRNA-31 controls phenotypic modulation of human vascular smooth muscle cells by regulating its target gene cellular repressor of E1A-stimulated genes publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2013.03.010 – ident: ref_201 doi: 10.3390/mps4010010 – volume: 9 start-page: 587 year: 2019 ident: ref_186 article-title: Small Nucleolar RNAs: Insight Into Their Function in Cancer publication-title: Front. Oncol. doi: 10.3389/fonc.2019.00587 – volume: 12 start-page: 4253 year: 2019 ident: ref_61 article-title: MicroRNA-92 regulates vascular smooth muscle cell function by targeting KLF4 during vascular restenosis and injury publication-title: Int. J. Clin. Exp. Pathol. – volume: 31 start-page: 851 year: 2011 ident: ref_93 article-title: Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.110.221952 – volume: 305 start-page: C591 year: 2013 ident: ref_101 article-title: IQGAP1 links PDGF receptor-β signal to focal adhesions involved in vascular smooth muscle cell migration: Role in neointimal formation after vascular injury publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00011.2013 – volume: 421 start-page: 267 year: 2004 ident: ref_153 article-title: PTEN induces G1 cell cycle arrest and inhibits MMP-9 expression via the regulation of NF-κB and AP-1 in vascular smooth muscle cells publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2003.11.007 – ident: ref_191 doi: 10.1371/journal.pone.0112043 – volume: 24 start-page: 435 year: 2004 ident: ref_176 article-title: Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/01.ATV.0000105902.89459.09 – volume: 30 start-page: 915 year: 2022 ident: ref_180 article-title: Circular RNA Cdyl promotes abdominal aortic aneurysm formation by inducing M1 macrophage polarization and M1-type inflammation publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2021.09.017 – ident: ref_72 doi: 10.1371/journal.pone.0186245 – volume: 28 start-page: 40 year: 2014 ident: ref_15 article-title: Mechanisms simultaneously regulate smooth muscle proliferation and differentiation publication-title: J. Biomed. Res. doi: 10.7555/JBR.28.20130130 – volume: 118 start-page: 637 year: 2021 ident: ref_9 article-title: Coronary In-Stent Restenosis: Predictors and Treatment publication-title: Dtsch. Arztebl. Int. – volume: 104 start-page: 17719 year: 2007 ident: ref_21 article-title: Genomic analysis of human microRNA transcripts publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0703890104 – volume: 95 start-page: 517 year: 2012 ident: ref_79 article-title: MicroRNA-195 regulates vascular smooth muscle cell phenotype and prevents neointimal formation publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvs223 – volume: 130 start-page: 1452 year: 2014 ident: ref_142 article-title: LincRNA-p21 Regulates Neointima Formation, Vascular Smooth Muscle Cell Proliferation, Apoptosis, and Atherosclerosis by Enhancing p53 Activity publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.114.011675 – volume: 7 start-page: 12429 year: 2016 ident: ref_160 article-title: Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans publication-title: Nat. Commun. doi: 10.1038/ncomms12429 – volume: 17 start-page: 398 year: 2010 ident: ref_205 article-title: Role of anti-oncomirs miR-143 and -145 in human colorectal tumors publication-title: Cancer Gene Ther. doi: 10.1038/cgt.2009.88 – volume: 249 start-page: 88 year: 2016 ident: ref_5 article-title: Coronary endarterectomy: The current state of knowledge publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2016.03.036 – volume: 119 start-page: 1313 year: 2016 ident: ref_16 article-title: Extensive Proliferation of a Subset of Differentiated, yet Plastic, Medial Vascular Smooth Muscle Cells Contributes to Neointimal Formation in Mouse Injury and Atherosclerosis Models publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.116.309799 – volume: 70 start-page: 649 year: 2018 ident: ref_49 article-title: MicroRNA-21 drives the switch to a synthetic phenotype in human saphenous vein smooth muscle cells publication-title: IUBMB Life doi: 10.1002/iub.1751 – volume: 107 start-page: 522 year: 2015 ident: ref_52 article-title: Down-regulation of miR-23b induces phenotypic switching of vascular smooth muscle cells in vitro and in vivo publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvv141 – volume: 116 start-page: 546 year: 2019 ident: ref_156 article-title: SENCR stabilizes vascular endothelial cell adherens junctions through interaction with CKAP4 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1810729116 – volume: 36 start-page: 2088 year: 2016 ident: ref_127 article-title: MYOSLID Is a Novel Serum Response Factor-Dependent Long Noncoding RNA That Amplifies the Vascular Smooth Muscle Differentiation Program publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.116.307879 – volume: 93 start-page: 74 year: 2004 ident: ref_151 article-title: Myocardin/MKL family of SRF coactivators: Key regulators of immediate early and muscle specific gene expression publication-title: J. Cell Biochem. doi: 10.1002/jcb.20199 – volume: 275 start-page: 25330 year: 2000 ident: ref_146 article-title: A p300 Protein as a Coactivator of GATA-6 in the Transcription of the Smooth Muscle-Myosin Heavy Chain Gene publication-title: J. Biol. Chem. doi: 10.1074/jbc.M000828200 – volume: 407 start-page: 233 year: 2000 ident: ref_2 article-title: Atherosclerosis publication-title: Nature doi: 10.1038/35025203 – volume: 2 start-page: Cd000515 year: 2020 ident: ref_7 article-title: Carotid artery stenting versus endarterectomy for treatment of carotid artery stenosis publication-title: Cochrane Database Syst. Rev. – volume: 19 start-page: 3823 year: 2019 ident: ref_69 article-title: MicroRNA-132 mediates proliferation and migration of pulmonary smooth muscle cells via targeting PTEN publication-title: Mol. Med. Rep. – volume: 19 start-page: 245 year: 2017 ident: ref_118 article-title: TLR2 stimulation impairs anti-inflammatory activity of M2-like macrophages, generating a chimeric M1/M2 phenotype publication-title: Arthritis Res. Ther. doi: 10.1186/s13075-017-1447-1 – volume: 90 start-page: 2959 year: 2016 ident: ref_189 article-title: Recent progress toward the use of circulating microRNAs as clinical biomarkers publication-title: Arch. Toxicol. doi: 10.1007/s00204-016-1828-2 – volume: 116 start-page: 2325 year: 2015 ident: ref_74 article-title: miR-142-3p Is a Regulator of the TGFβ-Mediated Vascular Smooth Muscle Cell Phenotype publication-title: J. Cell. Biochem. doi: 10.1002/jcb.25183 – volume: 137 start-page: 1842 year: 2018 ident: ref_89 article-title: miR-22 in Smooth Muscle Cells: A Potential Therapy for Cardiovascular Disease publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.033042 – volume: 37 start-page: 2182 year: 2017 ident: ref_64 article-title: Novel Pathological Role of hnRNPA1 (Heterogeneous Nuclear Ribonucleoprotein A1) in Vascular Smooth Muscle Cell Function and Neointima Hyperplasia publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.117.310020 – volume: 32 start-page: 639 year: 2018 ident: ref_36 article-title: A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs publication-title: Genes Dev. doi: 10.1101/gad.314856.118 – volume: 2015 start-page: 356893 year: 2015 ident: ref_157 article-title: The Long Noncoding RNA MEG3 Is Downregulated and Inversely Associated with VEGF Levels in Osteoarthritis publication-title: Biomed. Res. Int. doi: 10.1155/2015/356893 – volume: 53 start-page: 14 year: 2017 ident: ref_196 article-title: Drug- and Gene-eluting Stents for Preventing Coronary Restenosis publication-title: Chonnam Med. J. doi: 10.4068/cmj.2017.53.1.14 – volume: 108 start-page: 427 year: 2011 ident: ref_67 article-title: Wnt4/β-Catenin Signaling Induces VSMC Proliferation and Is Associated With Intimal Thickening publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.110.233999 – volume: 9 start-page: 3326 year: 2017 ident: ref_158 article-title: Long noncoding RNA MEG3 suppressed endothelial cell proliferation and migration through regulating miR-21 publication-title: Am. J. Transl. Res. – volume: 43 start-page: 301 year: 2007 ident: ref_114 article-title: Induction of p53 by GKLF is essential for inhibition of proliferation of vascular smooth muscle cells publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2007.06.001 – volume: 497 start-page: 1154 year: 2018 ident: ref_140 article-title: Long noncoding RNA H19-derived miR-675 aggravates restenosis by targeting PTEN publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.01.011 – volume: 201 start-page: 87 year: 2019 ident: ref_202 article-title: Nanoparticle-mediated intratumoral inhibition of miR-21 for improved survival in glioblastoma publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.02.016 – volume: 124 start-page: 498 year: 2019 ident: ref_167 article-title: Circ_Lrp6, a Circular RNA Enriched in Vascular Smooth Muscle Cells, Acts as a Sponge Regulating miRNA-145 Function publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.118.314240 – volume: 101 start-page: 1 year: 2015 ident: ref_4 article-title: Percutaneous coronary intervention in the UK: Recommendations for good practice 2015 publication-title: Heart doi: 10.1136/heartjnl-2015-307821 – volume: 152 start-page: 1298 year: 2013 ident: ref_120 article-title: Long Noncoding RNAs: Cellular Address Codes in Development and Disease publication-title: Cell doi: 10.1016/j.cell.2013.02.012 – volume: 143 start-page: 354 year: 2021 ident: ref_170 article-title: Circular RNA CircMAP3K5 Acts as a MicroRNA-22-3p Sponge to Promote Resolution of Intimal Hyperplasia Via TET2-Mediated Smooth Muscle Cell Differentiation publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.120.049715 – volume: 11 start-page: 4481 year: 2019 ident: ref_131 article-title: Linc-POU3F3 is overexpressed in in-stent restenosis patients and induces VSMC phenotypic transformation via POU3F3/miR-449a/KLF4 signaling pathway publication-title: Am. J. Transl. Res. – volume: 235 start-page: 6831 year: 2020 ident: ref_172 article-title: Circular RNA circTET3 mediates migration of rat vascular smooth muscle cells by targeting miR-351-5p publication-title: J. Cell. Physiol. doi: 10.1002/jcp.29577 – volume: 19 start-page: 172 year: 2020 ident: ref_34 article-title: Circular RNA: Metabolism, functions and interactions with proteins publication-title: Mol. Cancer doi: 10.1186/s12943-020-01286-3 – volume: 2110 start-page: 020013 year: 2019 ident: ref_148 article-title: LncRNA GAS5 inhibits progression of colorectal cancer by regulating M1/M2 macrophages polarization publication-title: AIP Conf. Proc. doi: 10.1063/1.5110807 – volume: 287 start-page: 5260 year: 2020 ident: ref_38 article-title: Noncoding RNAs in vascular smooth muscle cell function and neointimal hyperplasia publication-title: FEBS J. doi: 10.1111/febs.15357 – volume: 11 start-page: e011134 year: 2019 ident: ref_192 article-title: MiR-93-5p is a novel predictor of coronary in-stent restenosis publication-title: Heart Asia doi: 10.1136/heartasia-2018-011134 – volume: 460 start-page: 705 year: 2009 ident: ref_75 article-title: miR-145 and miR-143 regulate smooth muscle cell fate and plasticity publication-title: Nature doi: 10.1038/nature08195 |
SSID | ssj0000702636 |
Score | 2.2940342 |
SecondaryResourceType | review_article |
Snippet | In-stent restenosis (ISR), characterised by ≥50% re-narrowing of the target vessel, is a common complication following stent implantation and remains a... Simple SummaryAngioplasty is a procedure where a stent is inserted to open a blocked blood vessel that is causing issues for a patient. Restenosis is a medical... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 24 |
SubjectTerms | Angina pectoris Angioplasty Atherosclerosis biomarkers Blood coagulation Cardiovascular diseases Cell cycle circRNAs Circular RNA Cyclin-dependent kinases Cytokines Cytoplasm Endothelial cells Endothelium Epigenetics Gene expression Genomes Genotype & phenotype Growth factors Heart attacks Implants Inflammation Kinases Localization long noncoding RNAs Macrophages microRNA MicroRNAs miRNA Molecular modelling Non-coding RNA noncoding RNAs Pathophysiology Patients Peptides Proteins Restenosis Review RNA polymerase Smooth muscle smooth muscle cells Therapeutic applications Therapeutic targets therapeutics vascular cells Veins & arteries |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcEKU8AgUZiQOXUK_fPrYVVVWJPVQU9Rb5MRYrrRzEbg_8e8ZJutqtClxQbvFEsWfszDfx-BtCPuAs0QFUrLytvpUY97Re59zOvNNZgpYO6nnnL3N9cS0vb9TNVqmvmhM20gOPijvW0QB3NinwXqoMPmRrU0CY4CVPcjhHzhzbCqaGb7DB2KLuS1YuH4Fx_fHEaTSru7-Myx03NLD1PwQx72dKbrme86fkyYQZ6cnY1wPyCMozsj9Wkfx1SPS8L7GvPohezU9WdFHotym_lJ7BckknSepLolf1_2bpV4vVc3J9_vnr2UU7lUNoo7J63UbEAgow_uCReR9BiCyVcykonZSCWdYAkgVrogtMgkjJCeZjDBGjGhZAvCB7pS_wilBvtEeskZPISSplvPVguEgxG6VUjA35dKedLk5c4bVkxbLDmKGqs7unzoZ83DzwY6TJ-LPoaVX3RqzyWw830OrdZPXuX1ZvyNGdsbpp0a06bjR6WsGkaMj7TTMul7oH4gv0t4OMRdDChfmLjK0ugiEQasjL0f6b3gqN78CrIWZnZuwMZ7elLL4PtN3OKkTP6vX_GP8b8pjXcxgz3nJ-RPbWP2_hLaKjdXg3LITfyIIQQQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SDYVeSt9xmxYXeujFjVdP-xBCEhJCoaYsTcnNyNKoXVjsJLs55N9n5JXdbmiDb9YY26PR6BuN9A3AJ7IS1aC0gbfVZILinswo77OpKZUXqESJ4bzzt0qdnYuvF_JiC6rhLEzYVjn4xN5Ru86GNfI9phW5UQq--cHlVRaqRoXs6lBCw8TSCm6_pxh7BNvkkmU-ge2jk-r7bFx1IQNnKuQrA8cPp3h_L3IdTUNWOGdiY3rqWfz_BT3v76D8a0o6fQZPI5ZMD9ed_xy2sH0Bj9fVJW9fgqq61nZhbkpn1eEynbfpz7jvND3GxSKNkqlpXToL655tt5wvX8H56cmP47MslknIrCzUKrOEESRSXMJsboxFzr2QZekaqZyUOPUKUeRNoW3Z5AK5cyXPSWGNpWgnb5C_hknbtbgDqdHKEAbxjnsnpNSmMKgZd9ZrKaW1CXwZtFPbyCEeSlksaoolgjrre-pM4PP4wOWaPuP_okdB3aNY4L3ub3TXv-o4jGplNbKycBKNEdKjaXxRuIZAoxHMCZ3A7tBZdRyMy_qP6STwcWymYRRyI6bF7qaXKQjMMK4fkCnC1JETQErgzbr_x6_lit5BVwJ6wzI2fmezpZ3_7um8y0ISqpZvH_70d_CEhZMXU5YxtguT1fUNvic8tGo-RCO_A9qQDQ4 priority: 102 providerName: ProQuest |
Title | Noncoding RNAs in Vascular Cell Biology and Restenosis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36671717 https://www.proquest.com/docview/2767183043 https://www.proquest.com/docview/2768241237 https://www.proquest.com/docview/2887620293 https://pubmed.ncbi.nlm.nih.gov/PMC9855655 https://doaj.org/article/6c7e298d5eaa45feabf88db112a42d47 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB7ahEIvpe8oTY0KPfSiVN6ndCglCQmhUFNMXXITq93Z1mBWqe1A8u87K8luHZxQdJNGWml2RvN9-5gBeE9WomqUNuZtNZkg3pMZ5X02NKXyApUoMe53_jpS5xPx5UJe_C0H1CtwsZXaxXpSk_ns8Pr3zWdy-E-RcRJl_9inKxrGiV0KOQ9ht50siuv4eqzf_pY10Y22ZCDLdUmokusu1c-2Z2xEqTaZ_zYEensh5T-R6ewpPOkhZXrU2cAzeIDhOTzqikzevAA1aoJtYohKx6OjRToN6Y9--Wl6grNZ2kumJrh0HIc_Q7OYLl7C5Oz0-8l51ldLyKws1DKzBBUkEj1hNjfGIudeyLJ0tVROShx6hSjyutC2rHOB3LmS58ba2hLpyWvkr2AnNAH3IDVaGYIi3nHvhJTaFAY14856LaW0NoHDlXYq26cSjxUtZhVRiqjO6pY6E_iwvuGyy6Jxt-hxVPdaLKa_bk80859V702VshpZWTiJxgjp0dS-KFxN2NEI5oRO4GDVWdXKpCqmFQVinguewLv1ZfKmOEViAjZXrUxBxsO4vkemiBEkJ5yUwOuu_9dvyxW1QUcCesMyNj5n80qY_mqzepeFJHAt9_-j3TfwmMVdGEOWMXYAO8v5Fb4lbLSsB7B7fDr6Nh60YwuD1gP-ADVIEOI |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gEaMvxm-rqDXRxJdKbz_bB2IAIYdAYy5geCvb_dBLLi3SI4Z_zr_N2d5e9YjyRvrWnbbb2Zmd38zuzgC8RSkRleXa521VCUO_J1HCuWSocuGYFSy3_rzzYSFGx-zzCT9ZgV-LszB-W-ViTuwmatNoHyNfJ1LgNIrON_149iPxVaP86uqihIYKpRXMRpdiLBzs2LeXP9GFazf2PuF4vyNkd-doe5SEKgOJ5pmYJRpNLLcI64lOldKWUsd4npuKC8O5HTphLUurTOq8SpmlxuQ0xe9VGp2FtLIU33sLVpkPoAxgdWun-DLuozyoUET49VGfU4jSPF0PuZWGfhU6JWzJHHZVA_4Fda_u2PzLBO7eh3sBu8abc2F7ACu2fgi359UsLx-BKJpaN94WxuNis40ndfw17HONt-10GgfKWNUmHvs4a920k_YxHN8Iw57AoG5q-wxiJYVCzOMMdYZxLlWmrCTUaCc551pH8GHBnVKHnOW-dMa0RN_Fs7O8ws4I3vcPnM3TdfyfdMuzuyfzeba7G835tzKobSm0tCTPDLdKMe6sqlyWmQpBqmLEMBnB2mKwyqD8bflHVCN40zej2vq1GFXb5qKjyRA8ESqvocm8qUoRkEXwdD7-fW-pwG_gFYFckoyl31luqSffu_ThecYRxfPn13f9NdwZHR0elAd7xf4LuEv8qY8hSQhZg8Hs_MK-RCw2q14FgY_h9KZ17DfTjksr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VViAuiDeBAkECiUvYrJ_JoUJ9rVoKUbWiqLfg-NGutEpKdyvUv8ivYpx1AltBb1Vu8SRxxjOebzz2DMBblBJRWa593laVMPR7EiWcS4YqF45ZwXLrzzt_KcTeEft0zI9X4Fd3FsZvq-zmxHaiNo32a-QDIgVOo-h804EL2yIOd0Yfz34kvoKUj7R25TRUKLNgNtp0Y-GQx4G9_Inu3GxjfwfH_h0ho92v23tJqDiQaJ6JeaLR3HKLEJ_oVCltKXWM57mpuDCc26ET1rK0yqTOq5RZakxOU_xepdFxSCtL8b23YE2i1UdHcG1rtzgc9ys-qFxE-Fipzy9EaZ4OQp6loY9Ip4Qtmca2gsC_YO_V3Zt_mcPRfbgXcGy8uRC8B7Bi64dwe1HZ8vIRiKKpdePtYjwuNmfxpI6_hT2v8badTuNAGavaxGO_5lo3s8nsMRzdCMOewGrd1PYZxEoKhfjHGeoM41yqTFlJqNFOcs61juBDx51Sh_zlvozGtEQ_xrOzvMLOCN73D5wtUnf8n3TLs7sn8zm32xvN-UkZVLgUWlqSZ4ZbpRh3VlUuy0yFgFUxYpiMYL0brDJMBLPyj9hG8KZvRhX2cRlV2-aipckQSBEqr6HJvNlKEZxF8HQx_n1vqcBv4BWBXJKMpd9Zbqknp20q8TzjiOj58-u7_hruoK6Vn_eLgxdwl_gDIEOSELIOq_PzC_sSYdm8ehXkPYbvN61ivwEw609v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noncoding+RNAs+in+Vascular+Cell+Biology+and+Restenosis&rft.jtitle=Biology+%28Basel%2C+Switzerland%29&rft.au=Efovi%2C+Denis&rft.au=Xiao%2C+Qingzhong&rft.date=2022-12-22&rft.issn=2079-7737&rft.eissn=2079-7737&rft.volume=12&rft.issue=1&rft_id=info:doi/10.3390%2Fbiology12010024&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-7737&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-7737&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-7737&client=summon |