Nine viruses from eight lineages exhibiting new evolutionary modes that co-infect a hypovirulent phytopathogenic fungus

Mycoviruses are an important component of the virosphere, but our current knowledge of their genome organization diversity and evolution remains rudimentary. In this study, the mycovirus composition in a hypovirulent strain of Sclerotinia sclerotiorum was molecularly characterized. Nine mycoviruses...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 17; no. 8; p. e1009823
Main Authors Mu, Fan, Li, Bo, Cheng, Shufen, Jia, Jichun, Jiang, Daohong, Fu, Yanping, Cheng, Jiasen, Lin, Yang, Chen, Tao, Xie, Jiatao
Format Journal Article
LanguageEnglish
Published San Francisco, CA USA Public Library of Science 24.08.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7374
1553-7366
1553-7374
DOI10.1371/journal.ppat.1009823

Cover

More Information
Summary:Mycoviruses are an important component of the virosphere, but our current knowledge of their genome organization diversity and evolution remains rudimentary. In this study, the mycovirus composition in a hypovirulent strain of Sclerotinia sclerotiorum was molecularly characterized. Nine mycoviruses were identified and assigned into eight potential families. Of them, six were close relatives of known mycoviruses, while the other three had unique genome organizations and evolutionary positions. A deltaflexivirus with a tripartite genome has evolved via arrangement and horizontal gene transfer events, which could be an evolutionary connection from unsegmented to segmented RNA viruses. Two mycoviruses had acquired a second helicase gene by two different evolutionary mechanisms. A rhabdovirus representing an independent viral evolutionary branch was the first to be confirmed to occur naturally in fungi. The major hypovirulence-associated factor, an endornavirus, was finally corroborated. Our study expands the diversity of mycoviruses and potential virocontrol agents, and also provides new insights into virus evolutionary modes including virus genome segmentation.
Bibliography:new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors have declared that no competing interests exist.
ISSN:1553-7374
1553-7366
1553-7374
DOI:10.1371/journal.ppat.1009823