基于总体经验模态分解的多类特征的运动想象脑电识别方法研究

人的脑电信号(Electroencephalogram,EEG)复杂且具有非线性及非平稳性的特点使其不易分析处理,其识别效果也依赖于数据集的不同,而表现不稳定.本文中应用的总体经验模态分解(Ensemble empirical mode decomposition,EEMD)是一种具有强自适应性的信号处理方法,其在时频域展现的良好分辨率特别适合脑电识别任务处理.本文提出利用EEMD分解后得到的较具影响能力的固有模态函数(Intrinsic mode functions,IMFs),利用希尔伯特变换提取边际谱(Marginal spectrum,MS)及瞬时能谱(Instantaneous en...

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 43; no. 5; pp. 743 - 752
Main Author 杨默涵 陈万忠 李明阳
Format Journal Article
LanguageChinese
Published 吉林大学通信工程学院分布式智能信息处理实验室 长春 130025 2017
Subjects
Online AccessGet full text
ISSN0254-4156
1874-1029
DOI10.16383/j.aas.2017.c160175

Cover

Abstract 人的脑电信号(Electroencephalogram,EEG)复杂且具有非线性及非平稳性的特点使其不易分析处理,其识别效果也依赖于数据集的不同,而表现不稳定.本文中应用的总体经验模态分解(Ensemble empirical mode decomposition,EEMD)是一种具有强自适应性的信号处理方法,其在时频域展现的良好分辨率特别适合脑电识别任务处理.本文提出利用EEMD分解后得到的较具影响能力的固有模态函数(Intrinsic mode functions,IMFs),利用希尔伯特变换提取边际谱(Marginal spectrum,MS)及瞬时能谱(Instantaneous energy spectrum,IES)时频特征,同时通过加窗的方法提取非线性动力学特征近似熵特征,利用线性判别分类器(Linear discriminant analysis,LDA)作为分类器,实验结果得出,对于被试S2和被试S3可达到识别率分别为79.60%和87.77%,实验中9名被试的平均识别率为82.74%,得到平均识别率也高于近期使用相同数据集文献的其他方法.
AbstractList 人的脑电信号(Electroencephalogram,EEG)复杂且具有非线性及非平稳性的特点使其不易分析处理,其识别效果也依赖于数据集的不同,而表现不稳定.本文中应用的总体经验模态分解(Ensemble empirical mode decomposition,EEMD)是一种具有强自适应性的信号处理方法,其在时频域展现的良好分辨率特别适合脑电识别任务处理.本文提出利用EEMD分解后得到的较具影响能力的固有模态函数(Intrinsic mode functions,IMFs),利用希尔伯特变换提取边际谱(Marginal spectrum,MS)及瞬时能谱(Instantaneous energy spectrum,IES)时频特征,同时通过加窗的方法提取非线性动力学特征近似熵特征,利用线性判别分类器(Linear discriminant analysis,LDA)作为分类器,实验结果得出,对于被试S2和被试S3可达到识别率分别为79.60%和87.77%,实验中9名被试的平均识别率为82.74%,得到平均识别率也高于近期使用相同数据集文献的其他方法.
人的脑电信号(Electroencephalogram,EEG)复杂且具有非线性及非平稳性的特点使其不易分析处理,其识别效果也依赖于数据集的不同,而表现不稳定.本文中应用的总体经验模态分解(Ensemble empirical mode decomposition,EEMD)是一种具有强自适应性的信号处理方法,其在时频域展现的良好分辨率特别适合脑电识别任务处理.本文提出利用EEMD分解后得到的较具影响能力的固有模态函数(Intrinsic mode functions,IMFs),利用希尔伯特变换提取边际谱(Marginal spectrum,MS)及瞬时能谱(Instantaneous energy spectrum,IES)时频特征,同时通过加窗的方法提取非线性动力学特征近似熵特征,利用线性判别分类器(Linear discriminant analysis,LDA)作为分类器,实验结果得出,对于被试S2和被试S3可达到识别率分别为79.60%和87.77%,实验中9名被试的平均识别率为82.74%,得到平均识别率也高于近期使用相同数据集文献的其他方法.
Abstract_FL EEG signals are complicated as well as nonlinear and non-stationary, which make them hard to analyze. Recognition result is dependent on the datasets selected, and is not stable. The ensemble empirical mode decomposition (EEMD) as a kind of adaptive signal processing method is used for motor imagery recognition tasks because of its good decomposition resolution. An efficient EEMD-based feature extraction scheme is presented, which combines the Hilbert marginal spectrum (MS) and instantaneous energy spectrum (IES) features with window-added EEMD-based approximate entropy (ApEn) features. The impactful factors of IMFs and frequency bands are selected for the features as well. A linear discriminant analysis (LDA) classifier is designed for classifyication. The method is tested on nine subjects. The result shows that the proposed feature combination is competitive in recognition rate with other methods on the same dataset. The maximal classification accuracy for S2 and S3 can reach 79.60% and 87.77%, respectively. The mean accuracy of nine subjects is 82.74%. The average recognition rate obtained is superior to other methods on the same datasets.
Author 杨默涵 陈万忠 李明阳
AuthorAffiliation 吉林大学通信工程学院分布式智能信息处理实验室,长春130025
AuthorAffiliation_xml – name: 吉林大学通信工程学院分布式智能信息处理实验室 长春 130025
Author_FL LI Ming-Yang
YANG Mo-Han
CHEN Wan-Zhong
Author_FL_xml – sequence: 1
  fullname: YANG Mo-Han
– sequence: 2
  fullname: CHEN Wan-Zhong
– sequence: 3
  fullname: LI Ming-Yang
Author_xml – sequence: 1
  fullname: 杨默涵 陈万忠 李明阳
BookMark eNotkEtLAlEAhS9hkJm_oF2LdmP3PXeWIb1AaONe7rx8UGM5RI-VkohF9CBr4aakIKtFiBSoVH_GefQvmrDVx4GPc-DMgphTdiwA5hFMIU4EWSqlpHRTGCI1ZSAegU2BOBIqVRDEWgzEIWZUoYjxGZB03aIeKVTVMIFxkPXuhuPhuV8djT-vg9HFz8uZ3-341ZrXbIRPD0G77j22g94oOBl4X7Uoht-X3mnXP-6HvU5Yvwpa7-Fbw2u--rcDv38T3LeC5485MG3LLddK_jMBsqsr2fS6ktlc20gvZxSDCa5gymxpIEMIC1GIoaCmrutMNYXJLKlBJHQsLc3ixCCQQBNJ3UQW1CAVNpUSkQRYnNTuS8eWTj5XKu9VnGgwd2QWDvS_QyCDkEfiwkQ0CmUnv1uM1J1KcVtWDnNcxYhTqDLyC8oNf2M
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16383/j.aas.2017.c160175
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Multiple Feature Extraction Based on Ensemble Empirical Mode Decomposition for Motor Imagery EEG Recognition Tasks
DocumentTitle_FL Multiple Feature Extraction Based on Ensemble Empirical ModeDecomposition for Motor Imagery EEG Recognition Tasks
EISSN 1874-1029
EndPage 752
ExternalDocumentID zdhxb201705006
672164075
GrantInformation_xml – fundername: 吉林省科技发展计划自然基金; 吉林大学研究生创新基金(2016092) 资助Supported by Natural Science Foundation for Science and Tech-nology Development Plan of Jilin Province; Graduate Innovation Fund of Jilin University
  funderid: (20150101191JC); (20150101191JC); (2016092)
GroupedDBID --K
-0Y
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5GY
5VS
5XA
5XJ
7-5
71M
8P~
92H
92I
92L
AAIKJ
AALRI
AAQFI
AAXUO
ACGFS
ADEZE
ADTZH
AECPX
AEKER
AFTJW
AGHFR
AGYEJ
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
BLXMC
CCEZO
CQIGP
CS3
CUBFJ
CW9
EBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
ABWVN
ACRPL
ADNMO
PSX
ID FETCH-LOGICAL-c586-245fac1c88e1402084dbbb57d8d5ea9018b2ae9e63c3030d1abd1e09048f4aa13
ISSN 0254-4156
IngestDate Thu May 29 04:10:30 EDT 2025
Wed Feb 14 10:01:50 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 运动想象
ensemble empirical mode decomposition (EEMD)
linear dis-criminant analysis (LDA)
脑电信号
总体经验模态分解
motor image
Electroencephalogram (EEG)
线性判别分类器
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c586-245fac1c88e1402084dbbb57d8d5ea9018b2ae9e63c3030d1abd1e09048f4aa13
Notes Electroencephalogram (EEG), motor image, ensemble empirical mode decomposition (EEMD), linear discriminant analysis (LDA)
YANG Mo-Han1 ,CHEN Wan-Zhong1 ,LI Ming-Yang1( 1. Distributed Intelligent Information Processing Laboratory, College of Communication Engineering, Jilin University, Changchun 130025)
11-2109/TP
EEG signals are complicated as well as nonlinear and non-stationary, which make them hard to analyze. Recognition result is dependent on the datasets selected, and is not stable. The ensemble empirical mode decomposition (EEMD) as a kind of adaptive signal processing method is used for motor imagery recognition tasks because of its good decomposition resolution. An efficient EEMD-based feature extraction scheme is presented, which combines the Hilbert marginal spectrum (MS) and instantaneous energy spectrum (IES) features with window-added EEMD-based approximate entropy (ApEn) features. The impactful factors of IMFs and frequency bands are selected for the features as well. A linear discriminant analysi
PageCount 10
ParticipantIDs wanfang_journals_zdhxb201705006
chongqing_primary_672164075
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 自动化学报
PublicationTitleAlternate Acta Automatica Sinica
PublicationTitle_FL Acta Automatica Sinica
PublicationYear 2017
Publisher 吉林大学通信工程学院分布式智能信息处理实验室 长春 130025
Publisher_xml – name: 吉林大学通信工程学院分布式智能信息处理实验室 长春 130025
SSID ssib017479230
ssib001102911
ssib006576350
ssib051375349
ssib007293330
ssj0059721
ssib007290157
ssib023646446
ssib005904210
Score 2.1915653
Snippet 人的脑电信号(Electroencephalogram,EEG)复杂且具有非线性及非平稳性的特点使其不易分析处理,其识别效果也依赖于数据集的不同,而表现不稳定.本文中应用的总体经验模态分...
人的脑电信号(Electroencephalogram,EEG)复杂且具有非线性及非平稳性的特点使其不易分析处理,其识别效果也依赖于数据集的不同,而表现不稳定.本文中应用的总体经验模态分...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 743
SubjectTerms 总体经验模态分解
线性判别分类器
脑电信号
运动想象
Title 基于总体经验模态分解的多类特征的运动想象脑电识别方法研究
URI http://lib.cqvip.com/qk/90250X/201705/672164075.html
https://d.wanfangdata.com.cn/periodical/zdhxb201705006
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1874-1029
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059721
  issn: 0254-4156
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JThRBtINw0YNxjYgLB-tEGnur7qpjNfRIjHpCw23S28BpcIHEcIJICBrjEtEDFyWaiHowhGgCRP0ZZvEfPPjeq5ZpwMQlmXRqefXWmn6vqrteG8aFDNYkMrZyU8RWzfTS2DaT1M1MK5CpX5PgkQUeTr56zR-57l0e42NdB36U3lqankoG05nfniv5H6tCG9gVT8n-g2V3kEIDlMG-cAULw_WvbMwizmSFhYpFHl5FxCIf310IQ2oZZtJlUYBVUWGRZApghhBGCabsAljYiEcIJnwWQXvAFI2SAOxhl_KwjHhswhwwIVkosSuMaPgOsGBhhUmLECqkgiRcFrrUZRNRgZBSjwImORGtEHViQ4U4SvpEwsexkiOwshAeC0DdL0fVhDNA6Tp0OUoqCacaZsonTqCL_5piRGSYYCWKJYnZEH4lEMmkRJ5Qm0QDZa4AK3uwaM0DCixILIRueUNFnxylyU9Gs1CFOCJiMih0rIISs5JeQdGGrZDagDCIqDUBdMJdwMClckpm5MSuS4UhMr6PMDhTqB2mRgezjzYEC2g2BOkYOdTKi5DJztyhFuUNEFVShhZc8QF8ZqnPlxeuxeGeiUv3sh_U6bKK_zsvObWg6NHxUaAzDu9zvXAjd8n3xjGmwbeDwdSG1b7-Ls6enOYz2cTdxKFUTpQvv8fB3bRuo-dSeOWG6oTzEP3Kkv_hElxMKVz1OaZT7NQDfCmg9BQf6q7bWR7jtxL80vYHt11YrOP2g47cOGayoj3ZQjtFljKU7OJ-uTAby8RkffwWxJh05K9ei-vjpeh09IhxuFhW9it9jzhqdM1MHDMOlZKNHjdGGy83tzcfNWe3tr88a209_v7-YXN1pTk711hcaL993Vqeb7xZbq1tte5vNL7OQbX97UnjwWrz3np7baU9_7S19Kn9caGx-KH5YqO5_rz1aqn17vMJY7QSjQ6NmMU3VcyUC990PF6LUzsVIrdx50h4WZIkPMhExvMYtCcSJ85l7rspxLZWZsdJZucW6F3UvDi23ZNGd32ynp8y-mux6zkwPE-sxONSCi_NPcdyM1sGceolvUbfjnqqN3XqnKqPucI8WKb0GucLhVWLG-qd6u5ZcfqPEH3GQSzrDdEzRvfU7en8LCwRppJzxUz6CWkF03g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%80%BB%E4%BD%93%E7%BB%8F%E9%AA%8C%E6%A8%A1%E6%80%81%E5%88%86%E8%A7%A3%E7%9A%84%E5%A4%9A%E7%B1%BB%E7%89%B9%E5%BE%81%E7%9A%84%E8%BF%90%E5%8A%A8%E6%83%B3%E8%B1%A1%E8%84%91%E7%94%B5%E8%AF%86%E5%88%AB%E6%96%B9%E6%B3%95%E7%A0%94%E7%A9%B6&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E6%9D%A8%E9%BB%98%E6%B6%B5&rft.au=%E9%99%88%E4%B8%87%E5%BF%A0&rft.au=%E6%9D%8E%E6%98%8E%E9%98%B3&rft.date=2017&rft.pub=%E5%90%89%E6%9E%97%E5%A4%A7%E5%AD%A6%E9%80%9A%E4%BF%A1%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%E5%88%86%E5%B8%83%E5%BC%8F%E6%99%BA%E8%83%BD%E4%BF%A1%E6%81%AF%E5%A4%84%E7%90%86%E5%AE%9E%E9%AA%8C%E5%AE%A4+%E9%95%BF%E6%98%A5+130025&rft.issn=0254-4156&rft.volume=43&rft.issue=5&rft.spage=743&rft.epage=752&rft_id=info:doi/10.16383%2Fj.aas.2017.c160175&rft.externalDocID=zdhxb201705006
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg