基于总体经验模态分解的多类特征的运动想象脑电识别方法研究

人的脑电信号(Electroencephalogram,EEG)复杂且具有非线性及非平稳性的特点使其不易分析处理,其识别效果也依赖于数据集的不同,而表现不稳定.本文中应用的总体经验模态分解(Ensemble empirical mode decomposition,EEMD)是一种具有强自适应性的信号处理方法,其在时频域展现的良好分辨率特别适合脑电识别任务处理.本文提出利用EEMD分解后得到的较具影响能力的固有模态函数(Intrinsic mode functions,IMFs),利用希尔伯特变换提取边际谱(Marginal spectrum,MS)及瞬时能谱(Instantaneous en...

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 43; no. 5; pp. 743 - 752
Main Author 杨默涵 陈万忠 李明阳
Format Journal Article
LanguageChinese
Published 吉林大学通信工程学院分布式智能信息处理实验室 长春 130025 2017
Subjects
Online AccessGet full text
ISSN0254-4156
1874-1029
DOI10.16383/j.aas.2017.c160175

Cover

More Information
Summary:人的脑电信号(Electroencephalogram,EEG)复杂且具有非线性及非平稳性的特点使其不易分析处理,其识别效果也依赖于数据集的不同,而表现不稳定.本文中应用的总体经验模态分解(Ensemble empirical mode decomposition,EEMD)是一种具有强自适应性的信号处理方法,其在时频域展现的良好分辨率特别适合脑电识别任务处理.本文提出利用EEMD分解后得到的较具影响能力的固有模态函数(Intrinsic mode functions,IMFs),利用希尔伯特变换提取边际谱(Marginal spectrum,MS)及瞬时能谱(Instantaneous energy spectrum,IES)时频特征,同时通过加窗的方法提取非线性动力学特征近似熵特征,利用线性判别分类器(Linear discriminant analysis,LDA)作为分类器,实验结果得出,对于被试S2和被试S3可达到识别率分别为79.60%和87.77%,实验中9名被试的平均识别率为82.74%,得到平均识别率也高于近期使用相同数据集文献的其他方法.
Bibliography:Electroencephalogram (EEG), motor image, ensemble empirical mode decomposition (EEMD), linear discriminant analysis (LDA)
YANG Mo-Han1 ,CHEN Wan-Zhong1 ,LI Ming-Yang1( 1. Distributed Intelligent Information Processing Laboratory, College of Communication Engineering, Jilin University, Changchun 130025)
11-2109/TP
EEG signals are complicated as well as nonlinear and non-stationary, which make them hard to analyze. Recognition result is dependent on the datasets selected, and is not stable. The ensemble empirical mode decomposition (EEMD) as a kind of adaptive signal processing method is used for motor imagery recognition tasks because of its good decomposition resolution. An efficient EEMD-based feature extraction scheme is presented, which combines the Hilbert marginal spectrum (MS) and instantaneous energy spectrum (IES) features with window-added EEMD-based approximate entropy (ApEn) features. The impactful factors of IMFs and frequency bands are selected for the features as well. A linear discriminant analysi
ISSN:0254-4156
1874-1029
DOI:10.16383/j.aas.2017.c160175