基于多尺度形态学滤波的高分辨率遥感影像分割
针对目前高空间分辨率遥感影像分割预处理噪声去除过程中,通常都是对影像采用同一尺度,即同一尺寸的结构元素,进行滤波,忽略了不同地类中的噪声尺度不一致的问题。该文基于形态学开闭重建运算,采用加权思想,充分利用不同尺度结构元素能去除对应尺度噪声的特点,结合多个尺度结构元素的滤波结果,提出一种多尺度形态学滤波方法。试验结果表明,该方法能有效抑制由于滤波尺度选择不合适造成的影像"过分割"和"欠分割"问题,适合于对高空间分辨率遥感影像的多尺度噪声去除。...
Saved in:
Published in | 农业工程学报 Vol. 29; no. 1; pp. 89 - 95 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
中国农业大学信息与电气工程学院,北京 100083%中国科学院遥感应用研究所,北京 100101%国土资源部土地整治中心,北京 100035
2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1002-6819 |
DOI | 10.3969/j.issn.1002-6819.2013.z1.013 |
Cover
Summary: | 针对目前高空间分辨率遥感影像分割预处理噪声去除过程中,通常都是对影像采用同一尺度,即同一尺寸的结构元素,进行滤波,忽略了不同地类中的噪声尺度不一致的问题。该文基于形态学开闭重建运算,采用加权思想,充分利用不同尺度结构元素能去除对应尺度噪声的特点,结合多个尺度结构元素的滤波结果,提出一种多尺度形态学滤波方法。试验结果表明,该方法能有效抑制由于滤波尺度选择不合适造成的影像"过分割"和"欠分割"问题,适合于对高空间分辨率遥感影像的多尺度噪声去除。 |
---|---|
Bibliography: | 11-2047/S image segmentation; filters; mathematical morphology; very high resolution satellite imagery; multi-scale The morphological filters can suppress impulse noise or small image components/structures while preserving very important geometrical features such as edges. So, the morphological filters have been widely used in image preprocessing to remove the image noises and noise reduction is critical step for image segmentation. Morphological filters analyze the geometrical structure of image by locally comparing it with a predefined elementary shape called a structure element. Different scale image edges are detected by using several typical structure elements. Large amounts of experimental results demonstrate that the size of structure element have much dependence with image background. Therefore, many studies devote to the adaptive optimization of structure elements of morphological filters. However, the structure element of the same scale is traditionally adopted to establish a filter and remove noise f |
ISSN: | 1002-6819 |
DOI: | 10.3969/j.issn.1002-6819.2013.z1.013 |