Fragmented imaginary-time evolution for early-stage quantum signal processors
Simulating quantum imaginary-time evolution (QITE) is a significant promise of quantum computation. However, the known algorithms are either probabilistic (repeat until success) with unpractically small success probabilities or coherent (quantum amplitude amplification) with circuit depths and ancil...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 18258 - 19 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.10.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-023-45540-2 |
Cover
Summary: | Simulating quantum imaginary-time evolution (QITE) is a significant promise of quantum computation. However, the known algorithms are either probabilistic (repeat until success) with unpractically small success probabilities or coherent (quantum amplitude amplification) with circuit depths and ancillary-qubit numbers unrealistically large in the mid-term. Our main contribution is a new generation of deterministic, high-precision QITE algorithms that are significantly more amenable experimentally. A surprisingly simple idea is behind them: partitioning the evolution into a sequence of fragments that are run probabilistically. It causes a considerable reduction in wasted circuit depth every time a run fails. Remarkably, the resulting overall runtime is asymptotically better than in coherent approaches, and the hardware requirements are even milder than in probabilistic ones. Our findings are especially relevant for the early fault-tolerance stages of quantum hardware. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-45540-2 |