基于图像欧氏距离的高光谱图像流形降维算法
提出两种基于图像欧氏距离的非线性降维方法.该方法利用高光谱图像物理特性,将图像欧氏距离引入到传统的流形降维算法中.与其它应用于高光谱图像的降维算法相比,该算法具有诸多优点.图像欧氏距离的引入,在考虑高光谱图像本身的空间关系的同时,很好地保持了数据点之间的局部特性,可以实现有效地去除原始数据集光谱维和空间维的冗余信息.实际高光谱数据的实验结果表明,该算法应用于高光谱图像分类时,与其它常见的方法相比具有更高的分类精度....
Saved in:
Published in | 红外与毫米波学报 Vol. 32; no. 5; pp. 450 - 455 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
复旦大学电子工程系,上海,200433%复旦大学电子工程系,上海200433
2013
复旦大学波散射与遥感信息重点实验室,上海200433 |
Subjects | |
Online Access | Get full text |
ISSN | 1001-9014 |
DOI | 10.3724/SP.J.1010.2013.00450 |
Cover
Summary: | 提出两种基于图像欧氏距离的非线性降维方法.该方法利用高光谱图像物理特性,将图像欧氏距离引入到传统的流形降维算法中.与其它应用于高光谱图像的降维算法相比,该算法具有诸多优点.图像欧氏距离的引入,在考虑高光谱图像本身的空间关系的同时,很好地保持了数据点之间的局部特性,可以实现有效地去除原始数据集光谱维和空间维的冗余信息.实际高光谱数据的实验结果表明,该算法应用于高光谱图像分类时,与其它常见的方法相比具有更高的分类精度. |
---|---|
Bibliography: | hyperspectral imagery; nonlinear dimensional reduction; image Euclidean distance; classification CHEN Hong-Da, PU Han-Ye , WANG Bin , ZHANG Li-Ming (1. Dept. of Electronic Engineering, Fudan University, Shanghai 200433, China; 2. The Key Laboratory of Wave Scattering and Remote Sensing Information, Fudan University, Shanghai 200433, China) 31-1577/TN Two nonlinear dimensionality reduction methods were proposed based on image Euclidean distance. Consider- ing the physical characters of hyperspectral imagery, the methods introduced image Euclidean distance into traditional manifold dimensionality reduction. Compared with other methods, our methods have several advantages. The introduc- tion of image Euclidean distance not only considers hyperspectral image' s spatial relationship, but also preserves the lo- cal feature of datasets well. Thus the proposed methods can discard efficiently the redundant information from both the spectral and spatial dimensions. The experiment results demonstrated that the proposed met |
ISSN: | 1001-9014 |
DOI: | 10.3724/SP.J.1010.2013.00450 |