离散时间分数阶多自主体系统的时延一致性
复杂工作环境中,许多自然现象的个体动力学特性用整数阶方程不能描述,只能用非整数阶(分数阶)动力学来描述个体的运动行为.本文假设多自主体系统内部连接组成有向加权网络,个体的动态特性应用分数阶动力学方程描述,个体之间数据传输存在通信时延.应用分数阶系统的Laplace变换和频域理论,研究了离散时间的分数阶多自主体系统的渐近一致性.应用Hermit-Biehler定理,研究了具有样本时延的分数阶多自主体系统的运动一致性,得到保证系统稳定的时延的上界阈值.最后应用一个实例对结论进行了验证....
Saved in:
| Published in | 自动化学报 Vol. 40; no. 9; pp. 2022 - 2028 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
北京航空航天大学自动化科学与电气工程学院 北京 100191%北京航空航天大学自动化科学与电气工程学院 北京 100191%鲁东大学信息与电气工程学院 烟台 264025
2014
鲁东大学信息与电气工程学院 烟台 264025 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0254-4156 1874-1029 |
| DOI | 10.3724/SP.J.1004.2014.02022 |
Cover
| Summary: | 复杂工作环境中,许多自然现象的个体动力学特性用整数阶方程不能描述,只能用非整数阶(分数阶)动力学来描述个体的运动行为.本文假设多自主体系统内部连接组成有向加权网络,个体的动态特性应用分数阶动力学方程描述,个体之间数据传输存在通信时延.应用分数阶系统的Laplace变换和频域理论,研究了离散时间的分数阶多自主体系统的渐近一致性.应用Hermit-Biehler定理,研究了具有样本时延的分数阶多自主体系统的运动一致性,得到保证系统稳定的时延的上界阈值.最后应用一个实例对结论进行了验证. |
|---|---|
| Bibliography: | Multi-agent systems, fractional-order, discrete time, sampling delay, consensus YANG Hong-Yong GUO Lei ZHANG Yu-Ling YAO Xiu-Ming( 1. School of Information and Electrical Engineering, Ludong University, Yantai 264025 2. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191) 11-2109/TP In the complex practical environments, many distributed multi-agent systems can not be described with the integer-order dynamics and can only be illustrated with the fractional-order dynamics. In this paper, consensus problems of discrete-time networked fractional-order multi-agent systems with sampling delay are investigated. Firstly, the collaborative control of discrete-time multi-agent systems with fractional-order operator is analyzed in a directed network ignoring sampling delay by using Laplace transform and frequency domain. Then, by applying Hermit-Biehler theorem, the consensus of fractional-order multi-agent systems with sampling delay is studied in a misdirected network. A number of |
| ISSN: | 0254-4156 1874-1029 |
| DOI: | 10.3724/SP.J.1004.2014.02022 |