自参考离子选择性电极技术应用中的微电极制备及测试

SIET(self-referencing ion electrode technique,自参考离子选择性电极技术)是电生理学研究的新手段,可以在植物抗逆研究中无损地获得植物细胞、组织、器官微区内离子流动态变化信息,而离子选择性微电极的制备及性能测试的标准化是SIET系统对植物活细胞、活体组织原位离子流测试的前提。该文以钾离子选择性微电极为例,详细讨论了离子选择性微电极的拉制、硅烷化、灌充等制备过程,研究了微电极内阻等电极参数的测量方法,测试了微电极的能斯特响应斜率、检测范围、响应时间等参数,讨论了制备过程中微电极性能的影响因素。离子选择性微电极使用WD-2型微电极拉制仪由无导液丝的TW15...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 29; no. 16; pp. 182 - 189
Main Author 薛琳 赵东杰 侯佩臣 王晓冬 王媛 王成 王忠义 黄岚
Format Journal Article
LanguageChinese
Published 北京联合大学信息学院,北京 100101%中国农业大学信息与电气工程学院,北京,100083%国家农业信息化工程技术研究中心,北京,100097 2013
中国农业大学信息与电气工程学院,北京 100083
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2013.16.023

Cover

More Information
Summary:SIET(self-referencing ion electrode technique,自参考离子选择性电极技术)是电生理学研究的新手段,可以在植物抗逆研究中无损地获得植物细胞、组织、器官微区内离子流动态变化信息,而离子选择性微电极的制备及性能测试的标准化是SIET系统对植物活细胞、活体组织原位离子流测试的前提。该文以钾离子选择性微电极为例,详细讨论了离子选择性微电极的拉制、硅烷化、灌充等制备过程,研究了微电极内阻等电极参数的测量方法,测试了微电极的能斯特响应斜率、检测范围、响应时间等参数,讨论了制备过程中微电极性能的影响因素。离子选择性微电极使用WD-2型微电极拉制仪由无导液丝的TW150-3型硼硅酸盐玻璃毛细管拉制成形,其尖端直径为1~9μm,干燥后用5%硅烷试剂在150℃温度下做硅烷化处理,再灌充入内充液与LIX(liquid ion exchanger,液态离子交换剂)而制成。研究表明:LIX成分是影响微电极内阻的重要因素,灌充LIX后的钾离子选择微电极(LIX长度为150~210μm)内阻达到108~109Ω,明显高于灌充LIX前;微电极在0.01~500mmol/L K+浓度范围内具有很好的线性关系,R2=0.9998,能斯特斜率为53.095mV/dec;微电极对1和100mmol/L KCl溶液的平均响应时间t95%小于1s。研究结果表明,离子选择性玻璃微电极的制备过程是影响微电极性能的关键,微电极尖端尺寸、内阻、响应时间等参数对微电极的应用影响显著。该研究可为离子选择性微电极的制备及其在SIET系统中的应用提供参考。
Bibliography:11-2047/S
non-distructive examination; microelectrodes; test; silanization; Nernstian slope
An self-referencing ion electrode technique provides a novel electrophysiological tool which can non-invasively measure the dynamic influxes and effluxes of ions from cells and organs in vivo. In fact, the foundation of this technique is the fabrication and performance test of an ion selective microelectrode (ISME). In this paper, the K + ISMEs with good performances were obtained. We elaborated the procedure to prepare the glass micropipettes and to fill the pipettes with internal filling solution and liquid ion exchangers (LIX) of potassium, and then estimated the performance of these ion selective microelectrodes. Measurement of tip size, measuring method of resistance, testing of detection range, Nernstian slope, and response time, were described in detail. Ion selective microelectrodes were calibrated before and after experiments using two or more different kinds of concentrations of K + within its operating range b
ISSN:1002-6819
DOI:10.3969/j.issn.1002-6819.2013.16.023