UQT-样条曲线曲面的融合及其应用

在计算机辅助几何设计中,封闭曲线曲面的表示通常采用拼接的方法,但这种方法的计算相对较为复杂,且连续阶不高,为了更好地表示封闭的曲线曲面,提出一种非均匀四次三角样条(UQT-样条)曲线曲面的融合方法。构造UQT-样条基函数,讨论基于五点分段的UQT-样条曲线的性质以及曲面性质,利用曲线融合的思想,构造UQT-样条融合曲线和曲面,并研究其性质。实验结果表明,该融合的曲线曲面能较好地表示封闭的曲线曲面,且不需要添加额外的控制顶点,便于交互。...

Full description

Saved in:
Bibliographic Details
Published in计算机工程 Vol. 42; no. 2; pp. 236 - 241
Main Author 刘华勇 谢新平 李璐 张大明
Format Journal Article
LanguageChinese
Published 安徽建筑大学数理学院,合肥,230601 2016
Subjects
Online AccessGet full text
ISSN1000-3428
DOI10.3969/j.issn.1000-3428.2016.02.042

Cover

More Information
Summary:在计算机辅助几何设计中,封闭曲线曲面的表示通常采用拼接的方法,但这种方法的计算相对较为复杂,且连续阶不高,为了更好地表示封闭的曲线曲面,提出一种非均匀四次三角样条(UQT-样条)曲线曲面的融合方法。构造UQT-样条基函数,讨论基于五点分段的UQT-样条曲线的性质以及曲面性质,利用曲线融合的思想,构造UQT-样条融合曲线和曲面,并研究其性质。实验结果表明,该融合的曲线曲面能较好地表示封闭的曲线曲面,且不需要添加额外的控制顶点,便于交互。
Bibliography:31-1289/TP
trigonometric spline; integration; continuity; closed curve and surface; shape parameter
In computer aided geometric design,the representation of closed curves and surfaces usually uses the method of joint,but this method is relatively complex and has lower continuity. In order to better represent the closed curve and surface,the integration method of non Uniform Quartic Triangular Spline( UQT-spline) is proposed. Firstly UQT-spline basis functions are constructed and the properties of the UQT-spline curves based on five points are discussed,then the UQT-spline curves and surfaces are constructed by using the idea of blending curve. Experimental results show that the integration of curve and surface can well represent closed curves and surfaces with no additional control points,and are easy to interact.
LIU Huayong, XIE Xinping, LI Lu, ZHANG Daming (School of Mathematics & Physics ,Anhui Jianzhu University ,Hefei 230601 ,China)
ISSN:1000-3428
DOI:10.3969/j.issn.1000-3428.2016.02.042