面向人脸表情识别的双模板稀疏分类方法
提出一种面向人脸表情识别的双模板稀疏分类方法(DT—SRC)。该算法在用训练样本组成观测矩阵的基础上,通过添加正、负双模板构造新的观测矩阵,最后使用稀疏表示分类(SRC)进行识别。分别在JAFFE和CK人脸库中进行验证,结果表明,该算法识别准确率高,比SRC有更好的性能。...
Saved in:
Published in | 电子技术应用 Vol. 40; no. 6; pp. 119 - 122 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
桂林电子科技大学通信与信息学院,广西桂林,541004
2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0258-7998 |
Cover
Summary: | 提出一种面向人脸表情识别的双模板稀疏分类方法(DT—SRC)。该算法在用训练样本组成观测矩阵的基础上,通过添加正、负双模板构造新的观测矩阵,最后使用稀疏表示分类(SRC)进行识别。分别在JAFFE和CK人脸库中进行验证,结果表明,该算法识别准确率高,比SRC有更好的性能。 |
---|---|
Bibliography: | facial expression recognition; sparse representation; measurement matrix; dual templates 11-2305/TN This paper proposes dual templates and sparse classification algorithm(DT-SRC) for facial expression recognition. The algorithm adds positive and negative dual templates to construct the new observation matrix on the basis of using the training sam- pie for observation matrix, finally using SRC for identification. Respectively verification in JAFFE and CK face shows that the algorithm has high recognition accuracy rate, and the performance is better than the SRC. Jiang Xingguo, Feng Bin, Wei Baolin (Guilin University of Electronic Technology, School of Information and Communication, Guilin 541004, China) |
ISSN: | 0258-7998 |