尿素作为造孔剂对聚乙烯支撑的PAMS聚合物电解质性能的改进
采用乳液聚合法合成聚(丙烯腈.甲基丙烯酸甲酯.苯乙烯)(P(AN-MMA-ST)或者共聚物PAMS),并利用尿素作为造孔剂制备了聚乙烯(PE)支撑的PAMS聚合物膜(PE-PAMS—U)及凝胶聚合物电解质(GPE).利用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、扫描电子显微镜(SEM)、热重(TG)分析、线性电位扫描(LSV)、电化学阻抗谱(EIS)以及充放电等方法对PAMS聚合物以及PE支撑的聚(丙烯腈.甲基丙烯酸甲酯.苯乙烯)(PE—PAMS)聚合物隔膜及凝胶聚合物电解质的性能进行了研究.结果表明,利用尿素作为造孔剂可以提高PE-PAMS凝胶聚合物的性能.由于尿素的加入,聚合物...
Saved in:
| Published in | 物理化学学报 Vol. 27; no. 7; pp. 1689 - 1694 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
华南师范大学化学与环境学院,广州,510006%华南师范大学化学与环境学院,广州510006
2011
电化学储能材料与技术教育部工程研究中心,华南师范大学,广州510006 广东高校电化学储能与发电技术重点实验室,华南师范大学,广州510006 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1000-6818 |
Cover
| Summary: | 采用乳液聚合法合成聚(丙烯腈.甲基丙烯酸甲酯.苯乙烯)(P(AN-MMA-ST)或者共聚物PAMS),并利用尿素作为造孔剂制备了聚乙烯(PE)支撑的PAMS聚合物膜(PE-PAMS—U)及凝胶聚合物电解质(GPE).利用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、扫描电子显微镜(SEM)、热重(TG)分析、线性电位扫描(LSV)、电化学阻抗谱(EIS)以及充放电等方法对PAMS聚合物以及PE支撑的聚(丙烯腈.甲基丙烯酸甲酯.苯乙烯)(PE—PAMS)聚合物隔膜及凝胶聚合物电解质的性能进行了研究.结果表明,利用尿素作为造孔剂可以提高PE-PAMS凝胶聚合物的性能.由于尿素的加入,聚合物膜呈现均匀的微孔结构,室温下的电导率从1.1×10^-3S·cm^-1提高到2.15×10^-3S·cm^-1.同时,锂电极,聚合物电解质界面上的电荷传递电阻也从480Ω·cm^2降低到250Ω·cm^2.电化学稳定窗13为5.0V电池(Li/PE支撑的GPE/LiCoO2)的测试证明,用尿素作为造孔剂的凝胶聚合物锂离子电池表现出优良的倍率性能和循环性能. |
|---|---|
| Bibliography: | 11-1892/06 Poly(acrylonitrile-methyl methacrylate-styrene) (PAMS) was synthesized by emulsion polymerization and a polyethylene (PE)-supported membrane was prepared using urea as foaming agent (PE-PAMS-U). The structure and performance of the PAMS copolymer, PE-PAMS-U membrane and corresponding gel polymer electrolyte (GPE) were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetry (TG), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and by a charge/discharge test. We found that the performance of the PE-PAMS-U based GPE could be improved when using urea as a foaming agent. With the use of urea the pore size of the membrane becomes uniform, the ionic conductivity of the GPE improves from 1.1×10^-3S·cm^-1 to 2.15×10^-3S·cm^-1 at room temperature and the interfacial resistance between the GPE and lithium is reduced from 480 to 250 Ω. cm2. The GPE is stable up to 5.0 V (vs Li/Li+) at room tempera |
| ISSN: | 1000-6818 |