Automated diagnosis of focal liver lesions using bidirectional empirical mode decomposition features

Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultra...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 94; pp. 11 - 18
Main Authors Acharya, U. Rajendra, Koh, Joel En Wei, Hagiwara, Yuki, Tan, Jen Hong, Gertych, Arkadiusz, Vijayananthan, Anushya, Yaakup, Nur Adura, Abdullah, Basri Johan Jeet, Bin Mohd Fabell, Mohd Kamil, Yeong, Chai Hong
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.03.2018
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2017.12.024

Cover

Abstract Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultrasound imaging is a safe, non-invasive, and cost-effective way of diagnosing liver lesions. However, this technique has limited performance in determining the nature of the lesions. This study initiates a computer-aided diagnosis (CAD) system to aid radiologists in an objective and more reliable interpretation of ultrasound images of liver lesions. In this work, we have employed radon transform and bi-directional empirical mode decomposition (BEMD) to extract features from the focal liver lesions. After which, the extracted features were subjected to particle swarm optimization (PSO) technique for the selection of a set of optimized features for classification. Our automated CAD system can differentiate normal, malignant, and benign liver lesions using machine learning algorithms. It was trained using 78 normal, 26 benign and 36 malignant focal lesions of the liver. The accuracy, sensitivity, and specificity of lesion classification were 92.95%, 90.80%, and 97.44%, respectively. The proposed CAD system is fully automatic as no segmentation of region-of-interest (ROI) is required. [Display omitted] •Classification of normal, benign and malignant liver images.•Bidirectional empirical mode decomposition performed.•Particle swarm optimization is used for feature selection.•Obtained accuracy of 92.95% using 29 features with PNN classifier.
AbstractList Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultrasound imaging is a safe, non-invasive, and cost-effective way of diagnosing liver lesions. However, this technique has limited performance in determining the nature of the lesions. This study initiates a computer-aided diagnosis (CAD) system to aid radiologists in an objective and more reliable interpretation of ultrasound images of liver lesions. In this work, we have employed radon transform and bi-directional empirical mode decomposition (BEMD) to extract features from the focal liver lesions. After which, the extracted features were subjected to particle swarm optimization (PSO) technique for the selection of a set of optimized features for classification. Our automated CAD system can differentiate normal, malignant, and benign liver lesions using machine learning algorithms. It was trained using 78 normal, 26 benign and 36 malignant focal lesions of the liver. The accuracy, sensitivity, and specificity of lesion classification were 92.95%, 90.80%, and 97.44%, respectively. The proposed CAD system is fully automatic as no segmentation of region-of-interest (ROI) is required.
Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultrasound imaging is a safe, non-invasive, and cost-effective way of diagnosing liver lesions. However, this technique has limited performance in determining the nature of the lesions. This study initiates a computer-aided diagnosis (CAD) system to aid radiologists in an objective and more reliable interpretation of ultrasound images of liver lesions. In this work, we have employed radon transform and bi-directional empirical mode decomposition (BEMD) to extract features from the focal liver lesions. After which, the extracted features were subjected to particle swarm optimization (PSO) technique for the selection of a set of optimized features for classification. Our automated CAD system can differentiate normal, malignant, and benign liver lesions using machine learning algorithms. It was trained using 78 normal, 26 benign and 36 malignant focal lesions of the liver. The accuracy, sensitivity, and specificity of lesion classification were 92.95%, 90.80%, and 97.44%, respectively. The proposed CAD system is fully automatic as no segmentation of region-of-interest (ROI) is required. [Display omitted] •Classification of normal, benign and malignant liver images.•Bidirectional empirical mode decomposition performed.•Particle swarm optimization is used for feature selection.•Obtained accuracy of 92.95% using 29 features with PNN classifier.
AbstractLiver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultrasound imaging is a safe, non-invasive, and cost-effective way of diagnosing liver lesions. However, this technique has limited performance in determining the nature of the lesions. This study initiates a computer-aided diagnosis (CAD) system to aid radiologists in an objective and more reliable interpretation of ultrasound images of liver lesions. In this work, we have employed radon transform and bi-directional empirical mode decomposition (BEMD) to extract features from the focal liver lesions. After which, the extracted features were subjected to particle swarm optimization (PSO) technique for the selection of a set of optimized features for classification. Our automated CAD system can differentiate normal, malignant, and benign liver lesions using machine learning algorithms. It was trained using 78 normal, 26 benign and 36 malignant focal lesions of the liver. The accuracy, sensitivity, and specificity of lesion classification were 92.95%, 90.80%, and 97.44%, respectively. The proposed CAD system is fully automatic as no segmentation of region-of-interest (ROI) is required.
Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultrasound imaging is a safe, non-invasive, and cost-effective way of diagnosing liver lesions. However, this technique has limited performance in determining the nature of the lesions. This study initiates a computer-aided diagnosis (CAD) system to aid radiologists in an objective and more reliable interpretation of ultrasound images of liver lesions. In this work, we have employed radon transform and bi-directional empirical mode decomposition (BEMD) to extract features from the focal liver lesions. After which, the extracted features were subjected to particle swarm optimization (PSO) technique for the selection of a set of optimized features for classification. Our automated CAD system can differentiate normal, malignant, and benign liver lesions using machine learning algorithms. It was trained using 78 normal, 26 benign and 36 malignant focal lesions of the liver. The accuracy, sensitivity, and specificity of lesion classification were 92.95%, 90.80%, and 97.44%, respectively. The proposed CAD system is fully automatic as no segmentation of region-of-interest (ROI) is required.Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultrasound imaging is a safe, non-invasive, and cost-effective way of diagnosing liver lesions. However, this technique has limited performance in determining the nature of the lesions. This study initiates a computer-aided diagnosis (CAD) system to aid radiologists in an objective and more reliable interpretation of ultrasound images of liver lesions. In this work, we have employed radon transform and bi-directional empirical mode decomposition (BEMD) to extract features from the focal liver lesions. After which, the extracted features were subjected to particle swarm optimization (PSO) technique for the selection of a set of optimized features for classification. Our automated CAD system can differentiate normal, malignant, and benign liver lesions using machine learning algorithms. It was trained using 78 normal, 26 benign and 36 malignant focal lesions of the liver. The accuracy, sensitivity, and specificity of lesion classification were 92.95%, 90.80%, and 97.44%, respectively. The proposed CAD system is fully automatic as no segmentation of region-of-interest (ROI) is required.
Author Hagiwara, Yuki
Gertych, Arkadiusz
Yaakup, Nur Adura
Bin Mohd Fabell, Mohd Kamil
Tan, Jen Hong
Vijayananthan, Anushya
Yeong, Chai Hong
Koh, Joel En Wei
Acharya, U. Rajendra
Abdullah, Basri Johan Jeet
Author_xml – sequence: 1
  givenname: U. Rajendra
  surname: Acharya
  fullname: Acharya, U. Rajendra
  email: aru@np.edu.sg
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 2
  givenname: Joel En Wei
  surname: Koh
  fullname: Koh, Joel En Wei
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 3
  givenname: Yuki
  surname: Hagiwara
  fullname: Hagiwara, Yuki
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 4
  givenname: Jen Hong
  surname: Tan
  fullname: Tan, Jen Hong
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 5
  givenname: Arkadiusz
  surname: Gertych
  fullname: Gertych, Arkadiusz
  organization: Department of Surgery, Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
– sequence: 6
  givenname: Anushya
  surname: Vijayananthan
  fullname: Vijayananthan, Anushya
  organization: Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
– sequence: 7
  givenname: Nur Adura
  surname: Yaakup
  fullname: Yaakup, Nur Adura
  organization: Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
– sequence: 8
  givenname: Basri Johan Jeet
  surname: Abdullah
  fullname: Abdullah, Basri Johan Jeet
  organization: Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
– sequence: 9
  givenname: Mohd Kamil
  surname: Bin Mohd Fabell
  fullname: Bin Mohd Fabell, Mohd Kamil
  organization: Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
– sequence: 10
  givenname: Chai Hong
  surname: Yeong
  fullname: Yeong, Chai Hong
  organization: Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29353161$$D View this record in MEDLINE/PubMed
BookMark eNqVkk9r3DAQxUVJaTbbfoVi6KUXuzOSvbYvpWnoPwj00PYsZGkUtLWtrWQH8u0rsekWAoX0JBj95jHz3lyws9nPxFiBUCHg7s2-0n46DM5PZCoO2FbIK-D1E7bBru1LaER9xjYACGXd8eacXcS4B4AaBDxj57wXjcAdbpi5XBc_qYVMYZy6mX10sfC2sF6rsRjdLYVipOj8HIs1uvmmGJxxgfSSSomg6eCCy-zkDRWG8mBJJH8XltSyBorP2VOrxkgv7t8t-_Hxw_erz-X1109fri6vS910sJSkmzptR40AZQYjjDFD3dgWqBW80yiUtdTtWiVaW_e27wfsiZu-tagV7gaxZa-Puofgf60UFzm5qGkc1Ux-jRL7ru-RZxe27NUDdO_XkDaKkgO0DUInukS9vKfWIVktD8FNKtzJP_4loDsCOvgYA9kTgiBzVHIv_0Ylc1QSuUxRpda3D1q1W1T2bQnKjY8ReH8UoGTpraMgo3Y0azrmI413_zHFSUSPbs6B_qQ7iidTUMbUIL_lk8oXha2AmqNIAu_-LfC4GX4DQE_iww
CitedBy_id crossref_primary_10_1108_IJICC_10_2021_0223
crossref_primary_10_1002_ima_22375
crossref_primary_10_32604_cmes_2024_057214
crossref_primary_10_1016_j_cmpb_2019_105118
crossref_primary_10_1109_ACCESS_2020_3008927
crossref_primary_10_1109_JBHI_2022_3233717
crossref_primary_10_3390_diagnostics13243622
crossref_primary_10_3390_s21062202
crossref_primary_10_1007_s10916_021_01736_5
crossref_primary_10_1016_j_cmpb_2018_10_006
crossref_primary_10_1007_s11042_020_09900_8
crossref_primary_10_1038_s41598_020_71364_5
crossref_primary_10_3390_cancers15102791
crossref_primary_10_1016_j_iliver_2022_11_001
crossref_primary_10_1016_j_dld_2021_06_011
crossref_primary_10_1016_j_irbm_2018_09_006
crossref_primary_10_1109_OJUFFC_2023_3275936
crossref_primary_10_3390_app8060903
crossref_primary_10_1002_ecj_12281
crossref_primary_10_4254_wjh_v13_i12_1977
crossref_primary_10_1016_j_neucom_2021_08_138
crossref_primary_10_1109_JBHI_2021_3073812
crossref_primary_10_1016_j_measurement_2023_114059
crossref_primary_10_1002_ima_22782
crossref_primary_10_1109_ACCESS_2021_3049341
crossref_primary_10_1007_s11042_023_17430_2
crossref_primary_10_1007_s11042_018_6749_z
crossref_primary_10_1016_j_cca_2018_02_031
crossref_primary_10_34921_amj_2023_2_026
crossref_primary_10_3389_fonc_2022_960178
crossref_primary_10_1016_j_bbe_2018_06_009
crossref_primary_10_1088_1742_6596_1531_1_012033
crossref_primary_10_3390_diagnostics12071660
crossref_primary_10_1055_a_2066_9372
crossref_primary_10_1007_s10916_023_01968_7
crossref_primary_10_3389_fonc_2021_544979
crossref_primary_10_1007_s10586_022_03752_7
crossref_primary_10_1016_j_ultrasmedbio_2019_12_018
crossref_primary_10_18178_joig_6_2_160_166
crossref_primary_10_1007_s00330_019_06205_9
crossref_primary_10_3233_IDT_210065
crossref_primary_10_3390_jcm11216368
crossref_primary_10_1016_j_irbm_2020_07_002
crossref_primary_10_1016_j_bbe_2018_03_008
crossref_primary_10_1007_s00330_021_07877_y
crossref_primary_10_1007_s10462_021_10023_1
crossref_primary_10_1109_RBME_2020_2967273
crossref_primary_10_3748_wjg_v29_i9_1427
Cites_doi 10.1016/j.mpaic.2009.03.012
10.1016/j.knosys.2014.11.021
10.1109/34.709601
10.1007/s10278-014-9685-0
10.1016/j.jocs.2017.02.006
10.1007/s10278-013-9578-7
10.1016/S0734-189X(87)80186-X
10.1016/j.compbiomed.2017.03.016
10.1118/1.2900109
10.2174/157340512800672216
10.1016/j.compbiomed.2016.04.015
10.1007/s00261-008-9378-6
10.1109/ICNN.1988.23887
10.1007/s00138-004-0170-5
10.1118/1.4725759
10.1016/j.ins.2017.08.050
10.3233/BME-151459
10.1016/j.inffus.2015.12.007
10.14429/dsj.63.3951
10.1016/j.procs.2015.03.135
10.1016/j.inffus.2015.09.006
10.1016/j.compmedimag.2011.01.007
10.1007/BF00994018
10.1007/s11938-001-0013-7
10.3322/caac.21387
10.1109/TIT.1967.1053964
10.1016/j.compbiomed.2016.10.022
10.4329/wjr.v2.i6.215
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited Mar 1, 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited Mar 1, 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2017.12.024
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database (ProQuest)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library (ProQuest)
Biological Science Database (ProQuest)
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Research Library Prep



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 18
ExternalDocumentID 29353161
10_1016_j_compbiomed_2017_12_024
S0010482517304213
1_s2_0_S0010482517304213
Genre Clinical Trial
Journal Article
GeographicLocations Malaysia
GeographicLocations_xml – name: Malaysia
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACPRK
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
ARAPS
AXJTR
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SEL
SES
SPC
SPCBC
SSH
SSV
SSZ
T5K
UKHRP
WOW
Z5R
~G-
~HD
.55
.GJ
29F
3V.
53G
AACTN
AAQXK
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AFCTW
AFJKZ
AFKWA
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
EMOBN
FEDTE
FGOYB
G-2
HLZ
HMK
HMO
HVGLF
HZ~
M0N
R2-
RIG
SAE
SBC
SEW
SV3
TAE
UAP
WUQ
X7M
XPP
ZGI
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
AAYXX
AGQPQ
AIGII
APXCP
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c580t-ec54016e530adbd3dddb45f70e7328c13affe867a37f49f99b19e2d97f1ca16b3
IEDL.DBID BENPR
ISSN 0010-4825
1879-0534
IngestDate Sat Sep 27 16:54:44 EDT 2025
Tue Oct 07 06:09:03 EDT 2025
Wed Feb 19 02:32:31 EST 2025
Wed Oct 01 05:48:00 EDT 2025
Thu Apr 24 23:11:19 EDT 2025
Fri Feb 23 02:24:55 EST 2024
Sun Feb 23 10:19:09 EST 2025
Tue Oct 14 19:33:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Computer-aided diagnostic system
Malignant
Liver lesions
Benign
Machine learning
Ultrasonography
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c580t-ec54016e530adbd3dddb45f70e7328c13affe867a37f49f99b19e2d97f1ca16b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 29353161
PQID 2007510838
PQPubID 1226355
PageCount 8
ParticipantIDs proquest_miscellaneous_1989912040
proquest_journals_2007510838
pubmed_primary_29353161
crossref_primary_10_1016_j_compbiomed_2017_12_024
crossref_citationtrail_10_1016_j_compbiomed_2017_12_024
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2017_12_024
elsevier_clinicalkeyesjournals_1_s2_0_S0010482517304213
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2017_12_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References D'Onofrio, Crosara, Robertis, Canestrini, Mucelli (bib18) 2015; 205
Tan, Fujita, Sivaprasad, Bhandary, Rao, Chua, Acharya (bib42) 2017; 426
Acharya, Raghavendra, Fujita, Hagiwara, Koh, Tan, Sudarshan, Vijayananthan, Yeong, Gudigar, Ng (bib11) 2016; 79
Cover, Hart (bib38) 1967; 13
Acharya, Mookiah, Koh, Tan, Bhandary, Rao, Fujita, Hagiwara, Chua, Laude (bib29) 2016; 75
Dhage, Hegde, Manikantan, Ramachandran (bib30) 2015; 45
Porayko, Choudhary (bib5) 2001; 4
Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (bib28) 1998; vol. 454
Acharya, Fujita, Bhat, Raghavendra, Gudigar, Molinari, Vijayananthan, Ng (bib9) 2016; 29
Mittal, Kumar, Saxena, Khandelwal, Kalra (bib19) 2011; 35
Virmani, Kumar, Kalra, Khandelwal (bib21) 2013; 63
Kennedy, Eberhart (bib34) 1995
Acharya, Faust, Molinari, Sree, Junnarkar, Sudarshan (bib8) 2015; 75
Manth, Virmani, Kumar, Kalra, Khandelwal (bib24) 2016; vol. 630
Hwang, Lee, Kim, Jiang, Kim (bib23) 2015; 26
He, Bai, Garcia, Li (bib33) 2008
J. Shiraishi, K. Sugimoto, F. Moriyasu, N. Kamiyama, K. Doi, “Computer-aided diagnosis for the classification of focal liver lesions by use of contrast-enhanced ultrasonography”, Med. Phys., vol. 35, no. 5, pp. 1734–1746.
Acharya, Fujita, Sudarshan, Mookiah, Koh, Tan, Hagiwara, Chua, Junnarkar, Vijayananthan, Ng (bib10) 2016; 31
Gun, Gupta, Dasgupta (bib32) 2008
D'Onofrio, Crosara, Robertis, Canestrini, Mucelli (bib13) 2015; 205
Nunes, Guyot, Deléchelle (bib27) 2005; 16
Khan, Farooq (bib37) 2011; 8
Tan, Acharya, Bhandary, Chua, Sivaprasad (bib41) 2017; 20
Bartolotta, Taibbi, Midiri, Lagalla (bib15) 2009; 34
D.F. Specht, Probabilistic neural networks for classification, mapping, or associative memory, IEEE International Conference on Neural Networks I (1998) 525–532.
Mayo Clinic Staff (bib7) 2017
Albiin (bib6) 2012; 8
Acharya, Mookiah, Koh, Tan, Bhandary, Rao, Hagiwara, Chua, Laude (bib31) 2017; 84
American Cancer Society (bib4) 2016
Acharya, Sree, Ribeiro, Krishnamurthi, Marinho, Sanches, Suri (bib12) 2012; 39
Cortes, Vapnik (bib36) 1995; 20
Duda, Hart, Stork (bib40) 2001
Sugimoto, Shiraishi, Moriyasu, Doi (bib16) 2010; 2
Pizer, Amburn, Austin, Cromartie, Geselowitz, Greer, Romeny, Zimmerman, Zuiderveld (bib25) 1987; 39
Virmani, Kumar, Kalra, Khandelwal (bib22) 2014; 4
X. Wang, B.S. Wong, T.C. Guan, Image enhancement for radiography inspection, 3rd International Conference on Experimental Mechanics and 3rd International Conference of the Asian Committee on Experimental Mechanics 5852 (2004) 462–468.
Ho (bib39) 1998; 20
Siegel, Miller, Jemal (bib3) 2017; 67
Hoffman (bib2) 2014
Virmani, Kumar, Kalra, Khandelwal (bib20) 2013; 26
Mitra, Metcalf (bib1) 2009; 10
Soye, Mullan, Porter, Beattie, Barltrop, Nelson (bib14) 2007; 76
Nunes (10.1016/j.compbiomed.2017.12.024_bib27) 2005; 16
10.1016/j.compbiomed.2017.12.024_bib35
Acharya (10.1016/j.compbiomed.2017.12.024_bib11) 2016; 79
10.1016/j.compbiomed.2017.12.024_bib17
Mayo Clinic Staff (10.1016/j.compbiomed.2017.12.024_bib7)
D'Onofrio (10.1016/j.compbiomed.2017.12.024_bib13) 2015; 205
Pizer (10.1016/j.compbiomed.2017.12.024_bib25) 1987; 39
American Cancer Society (10.1016/j.compbiomed.2017.12.024_bib4)
Manth (10.1016/j.compbiomed.2017.12.024_bib24) 2016; vol. 630
Dhage (10.1016/j.compbiomed.2017.12.024_bib30) 2015; 45
Kennedy (10.1016/j.compbiomed.2017.12.024_bib34) 1995
Acharya (10.1016/j.compbiomed.2017.12.024_bib29) 2016; 75
Acharya (10.1016/j.compbiomed.2017.12.024_bib12) 2012; 39
Duda (10.1016/j.compbiomed.2017.12.024_bib40) 2001
Hwang (10.1016/j.compbiomed.2017.12.024_bib23) 2015; 26
He (10.1016/j.compbiomed.2017.12.024_bib33) 2008
Mittal (10.1016/j.compbiomed.2017.12.024_bib19) 2011; 35
Cover (10.1016/j.compbiomed.2017.12.024_bib38) 1967; 13
D'Onofrio (10.1016/j.compbiomed.2017.12.024_bib18) 2015; 205
Virmani (10.1016/j.compbiomed.2017.12.024_bib22) 2014; 4
Bartolotta (10.1016/j.compbiomed.2017.12.024_bib15) 2009; 34
Porayko (10.1016/j.compbiomed.2017.12.024_bib5) 2001; 4
Khan (10.1016/j.compbiomed.2017.12.024_bib37) 2011; 8
Virmani (10.1016/j.compbiomed.2017.12.024_bib20) 2013; 26
Gun (10.1016/j.compbiomed.2017.12.024_bib32) 2008
Tan (10.1016/j.compbiomed.2017.12.024_bib42) 2017; 426
Huang (10.1016/j.compbiomed.2017.12.024_bib28) 1998; vol. 454
10.1016/j.compbiomed.2017.12.024_bib26
Soye (10.1016/j.compbiomed.2017.12.024_bib14) 2007; 76
Mitra (10.1016/j.compbiomed.2017.12.024_bib1) 2009; 10
Acharya (10.1016/j.compbiomed.2017.12.024_bib9) 2016; 29
Sugimoto (10.1016/j.compbiomed.2017.12.024_bib16) 2010; 2
Acharya (10.1016/j.compbiomed.2017.12.024_bib10) 2016; 31
Cortes (10.1016/j.compbiomed.2017.12.024_bib36) 1995; 20
Hoffman (10.1016/j.compbiomed.2017.12.024_bib2)
Tan (10.1016/j.compbiomed.2017.12.024_bib41) 2017; 20
Acharya (10.1016/j.compbiomed.2017.12.024_bib8) 2015; 75
Virmani (10.1016/j.compbiomed.2017.12.024_bib21) 2013; 63
Siegel (10.1016/j.compbiomed.2017.12.024_bib3) 2017; 67
Ho (10.1016/j.compbiomed.2017.12.024_bib39) 1998; 20
Albiin (10.1016/j.compbiomed.2017.12.024_bib6) 2012; 8
Acharya (10.1016/j.compbiomed.2017.12.024_bib31) 2017; 84
References_xml – year: 2001
  ident: bib40
  article-title: Pattern Classification
– volume: 76
  start-page: 22
  year: 2007
  end-page: 25
  ident: bib14
  article-title: The use of contrast-enhanced ultrasound in the characterization of focal liver lesions
  publication-title: Ulster Med. J.
– year: 2016
  ident: bib4
  article-title: Early detection, diagnosis, and staging
– volume: 35
  start-page: 315
  year: 2011
  end-page: 323
  ident: bib19
  article-title: Neural network based focal liver lesion diagnosis using ultrasound images
  publication-title: Comput. Med. Imaging Graph.
– reference: X. Wang, B.S. Wong, T.C. Guan, Image enhancement for radiography inspection, 3rd International Conference on Experimental Mechanics and 3rd International Conference of the Asian Committee on Experimental Mechanics 5852 (2004) 462–468.
– reference: D.F. Specht, Probabilistic neural networks for classification, mapping, or associative memory, IEEE International Conference on Neural Networks I (1998) 525–532.
– volume: 426
  start-page: 66
  year: 2017
  end-page: 76
  ident: bib42
  article-title: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network
  publication-title: Inf. Sci.
– volume: 20
  start-page: 832
  year: 1998
  end-page: 844
  ident: bib39
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Analysis Mach. Intell.
– volume: 4
  start-page: 520
  year: 2014
  end-page: 537
  ident: bib22
  article-title: Neural network ensemble based CAD system for focal liver lesions from B-mode ultrasound
  publication-title: J. Digital Imaging
– volume: 26
  start-page: S1599
  year: 2015
  end-page: S1611
  ident: bib23
  article-title: Classification of focal liver lesions on ultrasound images by extracting hybrid textural features and using an artificial neural network
  publication-title: Bio-Medical Mater. Eng.
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib34
  article-title: Particle swarm optimization
  publication-title: Proceedings of the IEE International Conference on Neural Network, Perth, Western Australia
– reference: J. Shiraishi, K. Sugimoto, F. Moriyasu, N. Kamiyama, K. Doi, “Computer-aided diagnosis for the classification of focal liver lesions by use of contrast-enhanced ultrasonography”, Med. Phys., vol. 35, no. 5, pp. 1734–1746.
– volume: 45
  start-page: 256
  year: 2015
  end-page: 265
  ident: bib30
  article-title: DWT-based feature extraction and radon transform based contrast enhancement for improved iris recognition
  publication-title: Procedia Comput. Sci.
– volume: 205
  start-page: W56
  year: 2015
  end-page: W66
  ident: bib18
  article-title: Contrast-enhanced ultrasound for focal liver lesions
  publication-title: Am. J. Radiology
– volume: 205
  start-page: W56
  year: 2015
  end-page: W66
  ident: bib13
  article-title: Contrast-enhanced ultrasound of focal liver lesions
  publication-title: Gastrointest. Imaging
– volume: 75
  start-page: 54
  year: 2016
  end-page: 62
  ident: bib29
  article-title: Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index
  publication-title: Comput. Biol. Med.
– volume: 67
  start-page: 7
  year: 2017
  end-page: 30
  ident: bib3
  article-title: Cancer statistics, 2017
  publication-title: CA A Cancer J. Clin.
– start-page: 1322
  year: 2008
  end-page: 1328
  ident: bib33
  article-title: ADASYN: adaptive synthetic sampling approach for imbalanced learning
  publication-title: IEEE International Joint Conference on Neural Networks, Hong Kong, China
– volume: 39
  start-page: 4255
  year: 2012
  end-page: 4264
  ident: bib12
  article-title: Data mining framework for fatty liver disease classification in ultrasound: a hybrid feature extraction paradigm
  publication-title: Med. Phys.
– volume: 79
  start-page: 250
  year: 2016
  end-page: 258
  ident: bib11
  article-title: Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images
  publication-title: Comput. Biol. Med.
– volume: 34
  start-page: 193
  year: 2009
  end-page: 209
  ident: bib15
  article-title: Focal liver lesions: contrast-enhanced ultrasound
  publication-title: Abdom. Imaging
– volume: 63
  start-page: 478
  year: 2013
  end-page: 486
  ident: bib21
  article-title: PCA-SVM based CAD system for focal liver lesions using B-mode ultrasound images
  publication-title: Def. Sci. J.
– volume: 20
  start-page: 70
  year: 2017
  end-page: 79
  ident: bib41
  article-title: Segementation of optic disc, fovea and retinal vasculature using a single convolutional neural network
  publication-title: J. Comput. Sci.
– volume: 4
  start-page: 479
  year: 2001
  end-page: 491
  ident: bib5
  article-title: Benign neoplasms of the liver
  publication-title: Curr. Treat. Options Gastroenterology
– volume: 84
  start-page: 59
  year: 2017
  end-page: 68
  ident: bib31
  article-title: Automated diabetic macular edema (DME) grading system using DWT, DCT features and maculopathy index
  publication-title: Comput. Biol. Med.
– volume: 2
  start-page: 215
  year: 2010
  end-page: 223
  ident: bib16
  article-title: Computer-aided diagnosis for contrast-enhanced ultrasound in liver
  publication-title: World J. Radiology
– volume: 16
  start-page: 177
  year: 2005
  end-page: 188
  ident: bib27
  article-title: Texture analysis based on local analysis of the bidimensional empirical mode decomposition
  publication-title: Mach. Vis. Appl.
– volume: 26
  start-page: 1058
  year: 2013
  end-page: 1070
  ident: bib20
  article-title: Characterization of primary and secondary malignant liver lesions from B-mode ultrasound
  publication-title: J. Digital Imaging
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: bib38
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
– volume: 39
  start-page: 355
  year: 1987
  end-page: 368
  ident: bib25
  article-title: Adaptive histogram equalization and its variations
  publication-title: Comput. Vis. Graph. Image Process.
– volume: 75
  start-page: 66
  year: 2015
  end-page: 77
  ident: bib8
  article-title: Ultrasound-based tissue characterization of fatty liver disease: a screening and diagnostic paradigm
  publication-title: Knowledge-Based Syst.
– volume: 29
  start-page: 32
  year: 2016
  end-page: 39
  ident: bib9
  article-title: Decision support for fatty liver disease using GIST descriptors extracted from ultrasound images
  publication-title: Inf. Fusion
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib36
  article-title: Support vector networks
  publication-title: Mach. Learn.
– year: 2017
  ident: bib7
  article-title: Liver cancer
– year: 2014
  ident: bib2
  article-title: Picture of the liver
– volume: vol. 630
  start-page: 385
  year: 2016
  end-page: 409
  ident: bib24
  article-title: Application of texture features for classification of primary benign and primary malignant focal liver lesions
  publication-title: Image Feature Detectors and Descriptors
– volume: 10
  start-page: 332
  year: 2009
  end-page: 333
  ident: bib1
  article-title: Functional anatomy and blood supply of the liver
  publication-title: Anaesth. Intensive Care Med.
– year: 2008
  ident: bib32
  article-title: Fundamentals of Statistics
– volume: 8
  start-page: 267
  year: 2011
  end-page: 270
  ident: bib37
  article-title: Principal component analysis-linear discriminant analysis feature extractor for pattern recognition
  publication-title: Int. J. Comput. Sci.
– volume: 8
  start-page: 107
  year: 2012
  end-page: 116
  ident: bib6
  article-title: MRI of focal liver lesions
  publication-title: Curr. Med. Imaging Rev.
– volume: 31
  start-page: 43
  year: 2016
  end-page: 53
  ident: bib10
  article-title: An integrated index for identification of fatty liver disease using radon transform and discrete cosine transform features in ultrasound images
  publication-title: Inf. Fusion
– volume: vol. 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: bib28
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis
  publication-title: Proceedings Royal Society London
– volume: 10
  start-page: 332
  issue: 7
  year: 2009
  ident: 10.1016/j.compbiomed.2017.12.024_bib1
  article-title: Functional anatomy and blood supply of the liver
  publication-title: Anaesth. Intensive Care Med.
  doi: 10.1016/j.mpaic.2009.03.012
– volume: 75
  start-page: 66
  year: 2015
  ident: 10.1016/j.compbiomed.2017.12.024_bib8
  article-title: Ultrasound-based tissue characterization of fatty liver disease: a screening and diagnostic paradigm
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2014.11.021
– ident: 10.1016/j.compbiomed.2017.12.024_bib26
– volume: 20
  start-page: 832
  issue: 8
  year: 1998
  ident: 10.1016/j.compbiomed.2017.12.024_bib39
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Analysis Mach. Intell.
  doi: 10.1109/34.709601
– volume: 4
  start-page: 520
  year: 2014
  ident: 10.1016/j.compbiomed.2017.12.024_bib22
  article-title: Neural network ensemble based CAD system for focal liver lesions from B-mode ultrasound
  publication-title: J. Digital Imaging
  doi: 10.1007/s10278-014-9685-0
– volume: 20
  start-page: 70
  year: 2017
  ident: 10.1016/j.compbiomed.2017.12.024_bib41
  article-title: Segementation of optic disc, fovea and retinal vasculature using a single convolutional neural network
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.02.006
– volume: 26
  start-page: 1058
  year: 2013
  ident: 10.1016/j.compbiomed.2017.12.024_bib20
  article-title: Characterization of primary and secondary malignant liver lesions from B-mode ultrasound
  publication-title: J. Digital Imaging
  doi: 10.1007/s10278-013-9578-7
– volume: 39
  start-page: 355
  year: 1987
  ident: 10.1016/j.compbiomed.2017.12.024_bib25
  article-title: Adaptive histogram equalization and its variations
  publication-title: Comput. Vis. Graph. Image Process.
  doi: 10.1016/S0734-189X(87)80186-X
– volume: 84
  start-page: 59
  year: 2017
  ident: 10.1016/j.compbiomed.2017.12.024_bib31
  article-title: Automated diabetic macular edema (DME) grading system using DWT, DCT features and maculopathy index
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.03.016
– ident: 10.1016/j.compbiomed.2017.12.024_bib17
  doi: 10.1118/1.2900109
– volume: 8
  start-page: 107
  issue: 2
  year: 2012
  ident: 10.1016/j.compbiomed.2017.12.024_bib6
  article-title: MRI of focal liver lesions
  publication-title: Curr. Med. Imaging Rev.
  doi: 10.2174/157340512800672216
– year: 2008
  ident: 10.1016/j.compbiomed.2017.12.024_bib32
– volume: 75
  start-page: 54
  year: 2016
  ident: 10.1016/j.compbiomed.2017.12.024_bib29
  article-title: Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.04.015
– volume: 34
  start-page: 193
  issue: 2
  year: 2009
  ident: 10.1016/j.compbiomed.2017.12.024_bib15
  article-title: Focal liver lesions: contrast-enhanced ultrasound
  publication-title: Abdom. Imaging
  doi: 10.1007/s00261-008-9378-6
– ident: 10.1016/j.compbiomed.2017.12.024_bib35
  doi: 10.1109/ICNN.1988.23887
– volume: 205
  start-page: W56
  issue: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2017.12.024_bib13
  article-title: Contrast-enhanced ultrasound of focal liver lesions
  publication-title: Gastrointest. Imaging
– volume: 16
  start-page: 177
  year: 2005
  ident: 10.1016/j.compbiomed.2017.12.024_bib27
  article-title: Texture analysis based on local analysis of the bidimensional empirical mode decomposition
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-004-0170-5
– volume: 39
  start-page: 4255
  issue: 7
  year: 2012
  ident: 10.1016/j.compbiomed.2017.12.024_bib12
  article-title: Data mining framework for fatty liver disease classification in ultrasound: a hybrid feature extraction paradigm
  publication-title: Med. Phys.
  doi: 10.1118/1.4725759
– volume: 426
  start-page: 66
  year: 2017
  ident: 10.1016/j.compbiomed.2017.12.024_bib42
  article-title: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.08.050
– volume: 26
  start-page: S1599
  year: 2015
  ident: 10.1016/j.compbiomed.2017.12.024_bib23
  article-title: Classification of focal liver lesions on ultrasound images by extracting hybrid textural features and using an artificial neural network
  publication-title: Bio-Medical Mater. Eng.
  doi: 10.3233/BME-151459
– start-page: 1322
  year: 2008
  ident: 10.1016/j.compbiomed.2017.12.024_bib33
  article-title: ADASYN: adaptive synthetic sampling approach for imbalanced learning
– volume: 31
  start-page: 43
  year: 2016
  ident: 10.1016/j.compbiomed.2017.12.024_bib10
  article-title: An integrated index for identification of fatty liver disease using radon transform and discrete cosine transform features in ultrasound images
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2015.12.007
– volume: 63
  start-page: 478
  issue: 5
  year: 2013
  ident: 10.1016/j.compbiomed.2017.12.024_bib21
  article-title: PCA-SVM based CAD system for focal liver lesions using B-mode ultrasound images
  publication-title: Def. Sci. J.
  doi: 10.14429/dsj.63.3951
– volume: 45
  start-page: 256
  year: 2015
  ident: 10.1016/j.compbiomed.2017.12.024_bib30
  article-title: DWT-based feature extraction and radon transform based contrast enhancement for improved iris recognition
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.03.135
– volume: 29
  start-page: 32
  year: 2016
  ident: 10.1016/j.compbiomed.2017.12.024_bib9
  article-title: Decision support for fatty liver disease using GIST descriptors extracted from ultrasound images
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2015.09.006
– volume: 35
  start-page: 315
  year: 2011
  ident: 10.1016/j.compbiomed.2017.12.024_bib19
  article-title: Neural network based focal liver lesion diagnosis using ultrasound images
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2011.01.007
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.compbiomed.2017.12.024_bib36
  article-title: Support vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 8
  start-page: 267
  year: 2011
  ident: 10.1016/j.compbiomed.2017.12.024_bib37
  article-title: Principal component analysis-linear discriminant analysis feature extractor for pattern recognition
  publication-title: Int. J. Comput. Sci.
– ident: 10.1016/j.compbiomed.2017.12.024_bib2
– volume: 4
  start-page: 479
  year: 2001
  ident: 10.1016/j.compbiomed.2017.12.024_bib5
  article-title: Benign neoplasms of the liver
  publication-title: Curr. Treat. Options Gastroenterology
  doi: 10.1007/s11938-001-0013-7
– volume: 76
  start-page: 22
  issue: 1
  year: 2007
  ident: 10.1016/j.compbiomed.2017.12.024_bib14
  article-title: The use of contrast-enhanced ultrasound in the characterization of focal liver lesions
  publication-title: Ulster Med. J.
– volume: 67
  start-page: 7
  issue: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2017.12.024_bib3
  article-title: Cancer statistics, 2017
  publication-title: CA A Cancer J. Clin.
  doi: 10.3322/caac.21387
– start-page: 1942
  year: 1995
  ident: 10.1016/j.compbiomed.2017.12.024_bib34
  article-title: Particle swarm optimization
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 10.1016/j.compbiomed.2017.12.024_bib38
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– ident: 10.1016/j.compbiomed.2017.12.024_bib7
– volume: 79
  start-page: 250
  year: 2016
  ident: 10.1016/j.compbiomed.2017.12.024_bib11
  article-title: Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.10.022
– volume: vol. 630
  start-page: 385
  year: 2016
  ident: 10.1016/j.compbiomed.2017.12.024_bib24
  article-title: Application of texture features for classification of primary benign and primary malignant focal liver lesions
– volume: vol. 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.compbiomed.2017.12.024_bib28
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis
– volume: 205
  start-page: W56
  year: 2015
  ident: 10.1016/j.compbiomed.2017.12.024_bib18
  article-title: Contrast-enhanced ultrasound for focal liver lesions
  publication-title: Am. J. Radiology
– year: 2001
  ident: 10.1016/j.compbiomed.2017.12.024_bib40
– ident: 10.1016/j.compbiomed.2017.12.024_bib4
– volume: 2
  start-page: 215
  issue: 6
  year: 2010
  ident: 10.1016/j.compbiomed.2017.12.024_bib16
  article-title: Computer-aided diagnosis for contrast-enhanced ultrasound in liver
  publication-title: World J. Radiology
  doi: 10.4329/wjr.v2.i6.215
SSID ssj0004030
Score 2.4198475
Snippet Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation...
AbstractLiver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11
SubjectTerms Adult
Automation
Benign
Cirrhosis
Classification
Computer-aided diagnostic system
Decomposition
Diagnosis
Diagnosis, Computer-Assisted - methods
Discriminant analysis
Fatty liver
Feature extraction
Female
Human performance
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Internal Medicine
International conferences
Learning algorithms
Lesions
Liver
Liver cancer
Liver cirrhosis
Liver Cirrhosis - diagnosis
Liver Cirrhosis - diagnostic imaging
Liver diseases
Liver lesions
Liver Neoplasms - diagnosis
Liver Neoplasms - diagnostic imaging
Machine Learning
Male
Malignant
Medical diagnosis
Middle Aged
Neural networks
Other
Particle swarm optimization
Principal components analysis
Radon
Radon transformation
Ultrasonic imaging
Ultrasonography
Ultrasound
Variance analysis
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Ni9UwEA_LHsSLuH7WXSWC17pJmzYNnpbFZRH05MLeQtNMpPJ872Hfu_q3O5OkXUQXHnhsmyHpZDIzSX4zw9i7YED2rTAlaDWUqpeydEF0pTJdO7QeKHiS0BZf2usb9em2uT1il3MsDMEqs-5POj1q6_zmPHPzfDuOFOOLWwmKvNS0JY-Va5XSVMXg_a87mIcSdQpDQX1DrTOaJ2G8CLadwtwJ5KXjwWCl7jNR97mg0RRdPWaPsg_JL9IwT9gRrJ-wB5_zLflT5i_2uw16ouC5T0i6ceKbwAPZLb4iJAZfAR2TTZxw79-4GxMb4rkghx_bMWYO4VQnh3ugH8jgLh4gpgKdnrGbq49fL6_LXE2hHJpO7EoY0DmTLTS16L3ztffeqSZoAZSvZ5B1HwJ0re5rHZQJxjhpoPJGBzn0snX1c3a83qzhJeNCBGeavjMtVGpAo-_jBAhHu5mgmoLpmYF2yKnGqeLFys6Ysu_2jvWWWG9lZZH1BZML5Tal2ziAxsxzZOdwUlSAFm3CAbT6X7Qw5ZU8WWknbGn_kraCfVgo_xDYA_s9m4XJLl3RsTGqyK7uCvZ2-YzLne5w-jVs9jgcgxtkWaFYF-xFEsKFUei5oUZt5av_Gtope4hPXcLZnbHj3c89vEbHa-fexJX1G3QsLUM
  priority: 102
  providerName: Elsevier
Title Automated diagnosis of focal liver lesions using bidirectional empirical mode decomposition features
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482517304213
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482517304213
https://dx.doi.org/10.1016/j.compbiomed.2017.12.024
https://www.ncbi.nlm.nih.gov/pubmed/29353161
https://www.proquest.com/docview/2007510838
https://www.proquest.com/docview/1989912040
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dj9MwDLfuNgnxgvimxzEFiddC06ZNI4TQQDcGiAkBJ-0tapvkNDTWHd1e-dux27R74dBe-tK6bRzHdpyfbYAXTlleZJEKrRRVKArOw9JFeShUnlWZsZQ8SWiLRTa_FJ-W6fIEFn0uDMEqe53YKmpTVxQjf0UxNZSfPMnfbq9D6hpFp6t9C43Ct1Ywb9oSY6cwjqky1gjG7y4WX78dMiWjpEtKQe0jcHPksT0d4otA3F3SO0G-ZBsmjMVNBusmh7Q1TLO7cMd7lGzaicA9OLGb-3Driz8zfwBmut_V6Jdaw0yHq1s1rHbMkRVja8JlsLWloFnDCAV_xcpVZ-jaKCGzv7arto4Io645zFgagId6MWfbwqDNQ7icXfx4Pw99b4WwSvNoF9oKXTWe2TSJClOaxBhTitTJyFL1noonhXM2z2SRSCeUU6rkysZGScergmdl8ghGm3pjnwCLIleqtMhVZmNRoQtgUBGgaSxpb-NEGoDsGagrX3ic-l-sdY8w-6kPrNfEes1jjawPgA-U2674xhE0qp8j3SeXojrUaCGOoJX_orWNX9eN5rrBJ_X3tqwRZf3KpB1sAK8HSu-6dDN15HfPe2HSw6cOAh_A8-E2Ln460Sk2tt7j7yjcLvMYxTqAx50QDoxCPw71a8bP_v_yp3Ab_yTvYHXnMNr93ttn6GftygmcvvzD8SqXEq_57MMExtOPn-eLiV9WfwFrzSzS
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgIuiDeBAkaCY0ScOA8LVahAqy1tVwhaqTc3iW201XazkF0h_hy_jZnYyV4o2kvPyeQxHs_L38wAvLbS8DKLZGhyUYei5DysbFSEQhZZnWlDxZOEthhno1Px-Sw924A_fS0MwSp7ndgpat3UlCN_Szk1lJ8iKd7Pf4Q0NYpOV_sRGqUfraB3uhZjvrDj0Pz-hSFcu3PwCdf7TRzv7518HIV-ykBYp0W0CE2NTgvPTJpEpa50orWuRGrzyFAfm5onpbWmyPIyya2QVsqKSxNrmVtelzyrEnzuDdgSiZAY_G192Bt_-bqqzIwSVwSD2k5gMOaxRA5hRqBxV2RPELO8S0vG4ioDeZUD3BnC_btwx3uwbNeJ3D3YMLP7cPPYn9E_AL27XDToBxvNtMPxTVrWWGbJarIp4UDY1FCSrmWEuv_OqokzrF1WkpnL-aTrW8JoSg_Thn7AQ8uYNV0j0vYhnF4Llx_B5qyZmSfAoshWMi0LmZlY1OhyaFQ8aIoriqWsSAPIewaq2jc6p3kbU9Uj2i7UivWKWK94rJD1AfCBcu6afaxBI_s1Un0xK6pfhRZpDdr8X7Sm9XqkVVy1eKf61rVRoirjPOl-NoB3A6V3ldxKrfne7V6Y1PCq1QYL4NVwGZUNnSCVM9Ms8XMkhuc8RrEO4LETwoFR6DeiPs_40_8__CXcGp0cH6mjg_HhM7iNX1U4SN82bC5-Ls1z9PEW1Qu_kRicX_fe_QvJh2bN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDI_GkCZeEP9XGBAkeKzWNGnTCCE0MU4bgwkJJt1baBsHHTquB70T4qvx6bCbtvfC0L3suXWbOI7tOD_bjD33BkSZJyYGrepYlULElU-KWJkir3MHlDxJaIvz_ORCvZtm0x32Z8iFIVjloBM7Re2ammLkhxRTQ_kpZHHoe1jEx-PJ6-WPmDpI0U3r0E4jiMgZ_P6Fx7f21ekxrvWLNJ28_fzmJO47DMR1ViSrGGp0WEQOmUxKVznpnKtU5nUCVMOmFrL0Hopcl1J7ZbwxlTCQOqO9qEuRVxK_e41d11IaghPqqd7kZCYypL-gnlN4DOtRRAFbRnDxkF5P4DLdBSRTdZlpvMz17Uzg5Ba72fuu_CgI2222A4s7bO9Dfzt_l7mj9apBDxgcdwHBN2t547kne8nnhADhc6DwXMsJb_-VV7NgUrt4JIfvy1lXsYRTfx7ugCbQg8q4h64EaXuPXVwJj--z3UWzgH3Gk8RXJisLk0OqanQ2HKocNMIVnaK8yiKmBwbaui9xTp025nbAsn2zG9ZbYr0VqUXWR0yMlMtQ5mMLGjOskR3SWFHxWrRFW9Dqf9FC22uQ1grb4pv2U1dAifKLtewmG7GXI2XvJIWV2vK_B4Mw2fFXm60VsWfjY1QzdHdULqBZ43AMHsxFimIdsQdBCEdGoceImjwXD___8adsD3esfX96fvaI3cBBFQHLd8B2Vz_X8Bidu1X1pNtFnH256m37FwN-ZGc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+diagnosis+of+focal+liver+lesions+using+bidirectional+empirical+mode+decomposition+features&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Acharya%2C+U+Rajendra&rft.au=Joel+En+Wei+Koh&rft.au=Hagiwara%2C+Yuki&rft.au=Jen+Hong+Tan&rft.date=2018-03-01&rft.pub=Elsevier+Limited&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=94&rft.spage=11&rft_id=info:doi/10.1016%2Fj.compbiomed.2017.12.024&rft.externalDBID=HAS_PDF_LINK
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482518X0002X%2Fcov150h.gif