Automated diagnosis of focal liver lesions using bidirectional empirical mode decomposition features
Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultra...
Saved in:
| Published in | Computers in biology and medicine Vol. 94; pp. 11 - 18 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.03.2018
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2017.12.024 |
Cover
| Abstract | Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultrasound imaging is a safe, non-invasive, and cost-effective way of diagnosing liver lesions. However, this technique has limited performance in determining the nature of the lesions. This study initiates a computer-aided diagnosis (CAD) system to aid radiologists in an objective and more reliable interpretation of ultrasound images of liver lesions. In this work, we have employed radon transform and bi-directional empirical mode decomposition (BEMD) to extract features from the focal liver lesions. After which, the extracted features were subjected to particle swarm optimization (PSO) technique for the selection of a set of optimized features for classification. Our automated CAD system can differentiate normal, malignant, and benign liver lesions using machine learning algorithms. It was trained using 78 normal, 26 benign and 36 malignant focal lesions of the liver. The accuracy, sensitivity, and specificity of lesion classification were 92.95%, 90.80%, and 97.44%, respectively. The proposed CAD system is fully automatic as no segmentation of region-of-interest (ROI) is required.
[Display omitted]
•Classification of normal, benign and malignant liver images.•Bidirectional empirical mode decomposition performed.•Particle swarm optimization is used for feature selection.•Obtained accuracy of 92.95% using 29 features with PNN classifier. |
|---|---|
| AbstractList | Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultrasound imaging is a safe, non-invasive, and cost-effective way of diagnosing liver lesions. However, this technique has limited performance in determining the nature of the lesions. This study initiates a computer-aided diagnosis (CAD) system to aid radiologists in an objective and more reliable interpretation of ultrasound images of liver lesions. In this work, we have employed radon transform and bi-directional empirical mode decomposition (BEMD) to extract features from the focal liver lesions. After which, the extracted features were subjected to particle swarm optimization (PSO) technique for the selection of a set of optimized features for classification. Our automated CAD system can differentiate normal, malignant, and benign liver lesions using machine learning algorithms. It was trained using 78 normal, 26 benign and 36 malignant focal lesions of the liver. The accuracy, sensitivity, and specificity of lesion classification were 92.95%, 90.80%, and 97.44%, respectively. The proposed CAD system is fully automatic as no segmentation of region-of-interest (ROI) is required. Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultrasound imaging is a safe, non-invasive, and cost-effective way of diagnosing liver lesions. However, this technique has limited performance in determining the nature of the lesions. This study initiates a computer-aided diagnosis (CAD) system to aid radiologists in an objective and more reliable interpretation of ultrasound images of liver lesions. In this work, we have employed radon transform and bi-directional empirical mode decomposition (BEMD) to extract features from the focal liver lesions. After which, the extracted features were subjected to particle swarm optimization (PSO) technique for the selection of a set of optimized features for classification. Our automated CAD system can differentiate normal, malignant, and benign liver lesions using machine learning algorithms. It was trained using 78 normal, 26 benign and 36 malignant focal lesions of the liver. The accuracy, sensitivity, and specificity of lesion classification were 92.95%, 90.80%, and 97.44%, respectively. The proposed CAD system is fully automatic as no segmentation of region-of-interest (ROI) is required. [Display omitted] •Classification of normal, benign and malignant liver images.•Bidirectional empirical mode decomposition performed.•Particle swarm optimization is used for feature selection.•Obtained accuracy of 92.95% using 29 features with PNN classifier. AbstractLiver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultrasound imaging is a safe, non-invasive, and cost-effective way of diagnosing liver lesions. However, this technique has limited performance in determining the nature of the lesions. This study initiates a computer-aided diagnosis (CAD) system to aid radiologists in an objective and more reliable interpretation of ultrasound images of liver lesions. In this work, we have employed radon transform and bi-directional empirical mode decomposition (BEMD) to extract features from the focal liver lesions. After which, the extracted features were subjected to particle swarm optimization (PSO) technique for the selection of a set of optimized features for classification. Our automated CAD system can differentiate normal, malignant, and benign liver lesions using machine learning algorithms. It was trained using 78 normal, 26 benign and 36 malignant focal lesions of the liver. The accuracy, sensitivity, and specificity of lesion classification were 92.95%, 90.80%, and 97.44%, respectively. The proposed CAD system is fully automatic as no segmentation of region-of-interest (ROI) is required. Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultrasound imaging is a safe, non-invasive, and cost-effective way of diagnosing liver lesions. However, this technique has limited performance in determining the nature of the lesions. This study initiates a computer-aided diagnosis (CAD) system to aid radiologists in an objective and more reliable interpretation of ultrasound images of liver lesions. In this work, we have employed radon transform and bi-directional empirical mode decomposition (BEMD) to extract features from the focal liver lesions. After which, the extracted features were subjected to particle swarm optimization (PSO) technique for the selection of a set of optimized features for classification. Our automated CAD system can differentiate normal, malignant, and benign liver lesions using machine learning algorithms. It was trained using 78 normal, 26 benign and 36 malignant focal lesions of the liver. The accuracy, sensitivity, and specificity of lesion classification were 92.95%, 90.80%, and 97.44%, respectively. The proposed CAD system is fully automatic as no segmentation of region-of-interest (ROI) is required.Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultrasound imaging is a safe, non-invasive, and cost-effective way of diagnosing liver lesions. However, this technique has limited performance in determining the nature of the lesions. This study initiates a computer-aided diagnosis (CAD) system to aid radiologists in an objective and more reliable interpretation of ultrasound images of liver lesions. In this work, we have employed radon transform and bi-directional empirical mode decomposition (BEMD) to extract features from the focal liver lesions. After which, the extracted features were subjected to particle swarm optimization (PSO) technique for the selection of a set of optimized features for classification. Our automated CAD system can differentiate normal, malignant, and benign liver lesions using machine learning algorithms. It was trained using 78 normal, 26 benign and 36 malignant focal lesions of the liver. The accuracy, sensitivity, and specificity of lesion classification were 92.95%, 90.80%, and 97.44%, respectively. The proposed CAD system is fully automatic as no segmentation of region-of-interest (ROI) is required. |
| Author | Hagiwara, Yuki Gertych, Arkadiusz Yaakup, Nur Adura Bin Mohd Fabell, Mohd Kamil Tan, Jen Hong Vijayananthan, Anushya Yeong, Chai Hong Koh, Joel En Wei Acharya, U. Rajendra Abdullah, Basri Johan Jeet |
| Author_xml | – sequence: 1 givenname: U. Rajendra surname: Acharya fullname: Acharya, U. Rajendra email: aru@np.edu.sg organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 2 givenname: Joel En Wei surname: Koh fullname: Koh, Joel En Wei organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 3 givenname: Yuki surname: Hagiwara fullname: Hagiwara, Yuki organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 4 givenname: Jen Hong surname: Tan fullname: Tan, Jen Hong organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 5 givenname: Arkadiusz surname: Gertych fullname: Gertych, Arkadiusz organization: Department of Surgery, Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA – sequence: 6 givenname: Anushya surname: Vijayananthan fullname: Vijayananthan, Anushya organization: Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia – sequence: 7 givenname: Nur Adura surname: Yaakup fullname: Yaakup, Nur Adura organization: Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia – sequence: 8 givenname: Basri Johan Jeet surname: Abdullah fullname: Abdullah, Basri Johan Jeet organization: Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia – sequence: 9 givenname: Mohd Kamil surname: Bin Mohd Fabell fullname: Bin Mohd Fabell, Mohd Kamil organization: Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia – sequence: 10 givenname: Chai Hong surname: Yeong fullname: Yeong, Chai Hong organization: Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29353161$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkk9r3DAQxUVJaTbbfoVi6KUXuzOSvbYvpWnoPwj00PYsZGkUtLWtrWQH8u0rsekWAoX0JBj95jHz3lyws9nPxFiBUCHg7s2-0n46DM5PZCoO2FbIK-D1E7bBru1LaER9xjYACGXd8eacXcS4B4AaBDxj57wXjcAdbpi5XBc_qYVMYZy6mX10sfC2sF6rsRjdLYVipOj8HIs1uvmmGJxxgfSSSomg6eCCy-zkDRWG8mBJJH8XltSyBorP2VOrxkgv7t8t-_Hxw_erz-X1109fri6vS910sJSkmzptR40AZQYjjDFD3dgWqBW80yiUtdTtWiVaW_e27wfsiZu-tagV7gaxZa-Puofgf60UFzm5qGkc1Ux-jRL7ru-RZxe27NUDdO_XkDaKkgO0DUInukS9vKfWIVktD8FNKtzJP_4loDsCOvgYA9kTgiBzVHIv_0Ylc1QSuUxRpda3D1q1W1T2bQnKjY8ReH8UoGTpraMgo3Y0azrmI413_zHFSUSPbs6B_qQ7iidTUMbUIL_lk8oXha2AmqNIAu_-LfC4GX4DQE_iww |
| CitedBy_id | crossref_primary_10_1108_IJICC_10_2021_0223 crossref_primary_10_1002_ima_22375 crossref_primary_10_32604_cmes_2024_057214 crossref_primary_10_1016_j_cmpb_2019_105118 crossref_primary_10_1109_ACCESS_2020_3008927 crossref_primary_10_1109_JBHI_2022_3233717 crossref_primary_10_3390_diagnostics13243622 crossref_primary_10_3390_s21062202 crossref_primary_10_1007_s10916_021_01736_5 crossref_primary_10_1016_j_cmpb_2018_10_006 crossref_primary_10_1007_s11042_020_09900_8 crossref_primary_10_1038_s41598_020_71364_5 crossref_primary_10_3390_cancers15102791 crossref_primary_10_1016_j_iliver_2022_11_001 crossref_primary_10_1016_j_dld_2021_06_011 crossref_primary_10_1016_j_irbm_2018_09_006 crossref_primary_10_1109_OJUFFC_2023_3275936 crossref_primary_10_3390_app8060903 crossref_primary_10_1002_ecj_12281 crossref_primary_10_4254_wjh_v13_i12_1977 crossref_primary_10_1016_j_neucom_2021_08_138 crossref_primary_10_1109_JBHI_2021_3073812 crossref_primary_10_1016_j_measurement_2023_114059 crossref_primary_10_1002_ima_22782 crossref_primary_10_1109_ACCESS_2021_3049341 crossref_primary_10_1007_s11042_023_17430_2 crossref_primary_10_1007_s11042_018_6749_z crossref_primary_10_1016_j_cca_2018_02_031 crossref_primary_10_34921_amj_2023_2_026 crossref_primary_10_3389_fonc_2022_960178 crossref_primary_10_1016_j_bbe_2018_06_009 crossref_primary_10_1088_1742_6596_1531_1_012033 crossref_primary_10_3390_diagnostics12071660 crossref_primary_10_1055_a_2066_9372 crossref_primary_10_1007_s10916_023_01968_7 crossref_primary_10_3389_fonc_2021_544979 crossref_primary_10_1007_s10586_022_03752_7 crossref_primary_10_1016_j_ultrasmedbio_2019_12_018 crossref_primary_10_18178_joig_6_2_160_166 crossref_primary_10_1007_s00330_019_06205_9 crossref_primary_10_3233_IDT_210065 crossref_primary_10_3390_jcm11216368 crossref_primary_10_1016_j_irbm_2020_07_002 crossref_primary_10_1016_j_bbe_2018_03_008 crossref_primary_10_1007_s00330_021_07877_y crossref_primary_10_1007_s10462_021_10023_1 crossref_primary_10_1109_RBME_2020_2967273 crossref_primary_10_3748_wjg_v29_i9_1427 |
| Cites_doi | 10.1016/j.mpaic.2009.03.012 10.1016/j.knosys.2014.11.021 10.1109/34.709601 10.1007/s10278-014-9685-0 10.1016/j.jocs.2017.02.006 10.1007/s10278-013-9578-7 10.1016/S0734-189X(87)80186-X 10.1016/j.compbiomed.2017.03.016 10.1118/1.2900109 10.2174/157340512800672216 10.1016/j.compbiomed.2016.04.015 10.1007/s00261-008-9378-6 10.1109/ICNN.1988.23887 10.1007/s00138-004-0170-5 10.1118/1.4725759 10.1016/j.ins.2017.08.050 10.3233/BME-151459 10.1016/j.inffus.2015.12.007 10.14429/dsj.63.3951 10.1016/j.procs.2015.03.135 10.1016/j.inffus.2015.09.006 10.1016/j.compmedimag.2011.01.007 10.1007/BF00994018 10.1007/s11938-001-0013-7 10.3322/caac.21387 10.1109/TIT.1967.1053964 10.1016/j.compbiomed.2016.10.022 10.4329/wjr.v2.i6.215 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited Mar 1, 2018 |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited Mar 1, 2018 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.compbiomed.2017.12.024 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database (ProQuest) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database Health & Medical Collection (Alumni Edition) Medical Database Research Library (ProQuest) Biological Science Database (ProQuest) Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Research Library Prep MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 18 |
| ExternalDocumentID | 29353161 10_1016_j_compbiomed_2017_12_024 S0010482517304213 1_s2_0_S0010482517304213 |
| Genre | Clinical Trial Journal Article |
| GeographicLocations | Malaysia |
| GeographicLocations_xml | – name: Malaysia |
| GroupedDBID | --- --K --M --Z -~X .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ABMZM ABOCM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACPRK ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD ARAPS AXJTR AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HMCUK IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 ROL RPZ RXW SCC SDF SDG SDP SEL SES SPC SPCBC SSH SSV SSZ T5K UKHRP WOW Z5R ~G- ~HD .55 .GJ 29F 3V. 53G AACTN AAQXK ABFNM ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AFCTW AFJKZ AFKWA AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EMOBN FEDTE FGOYB G-2 HLZ HMK HMO HVGLF HZ~ M0N R2- RIG SAE SBC SEW SV3 TAE UAP WUQ X7M XPP ZGI AAIAV ABLVK ABYKQ AJBFU LCYCR AAYXX AGQPQ AIGII APXCP CITATION PUEGO CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c580t-ec54016e530adbd3dddb45f70e7328c13affe867a37f49f99b19e2d97f1ca16b3 |
| IEDL.DBID | BENPR |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Sat Sep 27 16:54:44 EDT 2025 Tue Oct 07 06:09:03 EDT 2025 Wed Feb 19 02:32:31 EST 2025 Wed Oct 01 05:48:00 EDT 2025 Thu Apr 24 23:11:19 EDT 2025 Fri Feb 23 02:24:55 EST 2024 Sun Feb 23 10:19:09 EST 2025 Tue Oct 14 19:33:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Computer-aided diagnostic system Malignant Liver lesions Benign Machine learning Ultrasonography |
| Language | English |
| License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c580t-ec54016e530adbd3dddb45f70e7328c13affe867a37f49f99b19e2d97f1ca16b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PMID | 29353161 |
| PQID | 2007510838 |
| PQPubID | 1226355 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1989912040 proquest_journals_2007510838 pubmed_primary_29353161 crossref_primary_10_1016_j_compbiomed_2017_12_024 crossref_citationtrail_10_1016_j_compbiomed_2017_12_024 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2017_12_024 elsevier_clinicalkeyesjournals_1_s2_0_S0010482517304213 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2017_12_024 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-03-01 |
| PublicationDateYYYYMMDD | 2018-03-01 |
| PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | D'Onofrio, Crosara, Robertis, Canestrini, Mucelli (bib18) 2015; 205 Tan, Fujita, Sivaprasad, Bhandary, Rao, Chua, Acharya (bib42) 2017; 426 Acharya, Raghavendra, Fujita, Hagiwara, Koh, Tan, Sudarshan, Vijayananthan, Yeong, Gudigar, Ng (bib11) 2016; 79 Cover, Hart (bib38) 1967; 13 Acharya, Mookiah, Koh, Tan, Bhandary, Rao, Fujita, Hagiwara, Chua, Laude (bib29) 2016; 75 Dhage, Hegde, Manikantan, Ramachandran (bib30) 2015; 45 Porayko, Choudhary (bib5) 2001; 4 Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (bib28) 1998; vol. 454 Acharya, Fujita, Bhat, Raghavendra, Gudigar, Molinari, Vijayananthan, Ng (bib9) 2016; 29 Mittal, Kumar, Saxena, Khandelwal, Kalra (bib19) 2011; 35 Virmani, Kumar, Kalra, Khandelwal (bib21) 2013; 63 Kennedy, Eberhart (bib34) 1995 Acharya, Faust, Molinari, Sree, Junnarkar, Sudarshan (bib8) 2015; 75 Manth, Virmani, Kumar, Kalra, Khandelwal (bib24) 2016; vol. 630 Hwang, Lee, Kim, Jiang, Kim (bib23) 2015; 26 He, Bai, Garcia, Li (bib33) 2008 J. Shiraishi, K. Sugimoto, F. Moriyasu, N. Kamiyama, K. Doi, “Computer-aided diagnosis for the classification of focal liver lesions by use of contrast-enhanced ultrasonography”, Med. Phys., vol. 35, no. 5, pp. 1734–1746. Acharya, Fujita, Sudarshan, Mookiah, Koh, Tan, Hagiwara, Chua, Junnarkar, Vijayananthan, Ng (bib10) 2016; 31 Gun, Gupta, Dasgupta (bib32) 2008 D'Onofrio, Crosara, Robertis, Canestrini, Mucelli (bib13) 2015; 205 Nunes, Guyot, Deléchelle (bib27) 2005; 16 Khan, Farooq (bib37) 2011; 8 Tan, Acharya, Bhandary, Chua, Sivaprasad (bib41) 2017; 20 Bartolotta, Taibbi, Midiri, Lagalla (bib15) 2009; 34 D.F. Specht, Probabilistic neural networks for classification, mapping, or associative memory, IEEE International Conference on Neural Networks I (1998) 525–532. Mayo Clinic Staff (bib7) 2017 Albiin (bib6) 2012; 8 Acharya, Mookiah, Koh, Tan, Bhandary, Rao, Hagiwara, Chua, Laude (bib31) 2017; 84 American Cancer Society (bib4) 2016 Acharya, Sree, Ribeiro, Krishnamurthi, Marinho, Sanches, Suri (bib12) 2012; 39 Cortes, Vapnik (bib36) 1995; 20 Duda, Hart, Stork (bib40) 2001 Sugimoto, Shiraishi, Moriyasu, Doi (bib16) 2010; 2 Pizer, Amburn, Austin, Cromartie, Geselowitz, Greer, Romeny, Zimmerman, Zuiderveld (bib25) 1987; 39 Virmani, Kumar, Kalra, Khandelwal (bib22) 2014; 4 X. Wang, B.S. Wong, T.C. Guan, Image enhancement for radiography inspection, 3rd International Conference on Experimental Mechanics and 3rd International Conference of the Asian Committee on Experimental Mechanics 5852 (2004) 462–468. Ho (bib39) 1998; 20 Siegel, Miller, Jemal (bib3) 2017; 67 Hoffman (bib2) 2014 Virmani, Kumar, Kalra, Khandelwal (bib20) 2013; 26 Mitra, Metcalf (bib1) 2009; 10 Soye, Mullan, Porter, Beattie, Barltrop, Nelson (bib14) 2007; 76 Nunes (10.1016/j.compbiomed.2017.12.024_bib27) 2005; 16 10.1016/j.compbiomed.2017.12.024_bib35 Acharya (10.1016/j.compbiomed.2017.12.024_bib11) 2016; 79 10.1016/j.compbiomed.2017.12.024_bib17 Mayo Clinic Staff (10.1016/j.compbiomed.2017.12.024_bib7) D'Onofrio (10.1016/j.compbiomed.2017.12.024_bib13) 2015; 205 Pizer (10.1016/j.compbiomed.2017.12.024_bib25) 1987; 39 American Cancer Society (10.1016/j.compbiomed.2017.12.024_bib4) Manth (10.1016/j.compbiomed.2017.12.024_bib24) 2016; vol. 630 Dhage (10.1016/j.compbiomed.2017.12.024_bib30) 2015; 45 Kennedy (10.1016/j.compbiomed.2017.12.024_bib34) 1995 Acharya (10.1016/j.compbiomed.2017.12.024_bib29) 2016; 75 Acharya (10.1016/j.compbiomed.2017.12.024_bib12) 2012; 39 Duda (10.1016/j.compbiomed.2017.12.024_bib40) 2001 Hwang (10.1016/j.compbiomed.2017.12.024_bib23) 2015; 26 He (10.1016/j.compbiomed.2017.12.024_bib33) 2008 Mittal (10.1016/j.compbiomed.2017.12.024_bib19) 2011; 35 Cover (10.1016/j.compbiomed.2017.12.024_bib38) 1967; 13 D'Onofrio (10.1016/j.compbiomed.2017.12.024_bib18) 2015; 205 Virmani (10.1016/j.compbiomed.2017.12.024_bib22) 2014; 4 Bartolotta (10.1016/j.compbiomed.2017.12.024_bib15) 2009; 34 Porayko (10.1016/j.compbiomed.2017.12.024_bib5) 2001; 4 Khan (10.1016/j.compbiomed.2017.12.024_bib37) 2011; 8 Virmani (10.1016/j.compbiomed.2017.12.024_bib20) 2013; 26 Gun (10.1016/j.compbiomed.2017.12.024_bib32) 2008 Tan (10.1016/j.compbiomed.2017.12.024_bib42) 2017; 426 Huang (10.1016/j.compbiomed.2017.12.024_bib28) 1998; vol. 454 10.1016/j.compbiomed.2017.12.024_bib26 Soye (10.1016/j.compbiomed.2017.12.024_bib14) 2007; 76 Mitra (10.1016/j.compbiomed.2017.12.024_bib1) 2009; 10 Acharya (10.1016/j.compbiomed.2017.12.024_bib9) 2016; 29 Sugimoto (10.1016/j.compbiomed.2017.12.024_bib16) 2010; 2 Acharya (10.1016/j.compbiomed.2017.12.024_bib10) 2016; 31 Cortes (10.1016/j.compbiomed.2017.12.024_bib36) 1995; 20 Hoffman (10.1016/j.compbiomed.2017.12.024_bib2) Tan (10.1016/j.compbiomed.2017.12.024_bib41) 2017; 20 Acharya (10.1016/j.compbiomed.2017.12.024_bib8) 2015; 75 Virmani (10.1016/j.compbiomed.2017.12.024_bib21) 2013; 63 Siegel (10.1016/j.compbiomed.2017.12.024_bib3) 2017; 67 Ho (10.1016/j.compbiomed.2017.12.024_bib39) 1998; 20 Albiin (10.1016/j.compbiomed.2017.12.024_bib6) 2012; 8 Acharya (10.1016/j.compbiomed.2017.12.024_bib31) 2017; 84 |
| References_xml | – year: 2001 ident: bib40 article-title: Pattern Classification – volume: 76 start-page: 22 year: 2007 end-page: 25 ident: bib14 article-title: The use of contrast-enhanced ultrasound in the characterization of focal liver lesions publication-title: Ulster Med. J. – year: 2016 ident: bib4 article-title: Early detection, diagnosis, and staging – volume: 35 start-page: 315 year: 2011 end-page: 323 ident: bib19 article-title: Neural network based focal liver lesion diagnosis using ultrasound images publication-title: Comput. Med. Imaging Graph. – reference: X. Wang, B.S. Wong, T.C. Guan, Image enhancement for radiography inspection, 3rd International Conference on Experimental Mechanics and 3rd International Conference of the Asian Committee on Experimental Mechanics 5852 (2004) 462–468. – reference: D.F. Specht, Probabilistic neural networks for classification, mapping, or associative memory, IEEE International Conference on Neural Networks I (1998) 525–532. – volume: 426 start-page: 66 year: 2017 end-page: 76 ident: bib42 article-title: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network publication-title: Inf. Sci. – volume: 20 start-page: 832 year: 1998 end-page: 844 ident: bib39 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans. Pattern Analysis Mach. Intell. – volume: 4 start-page: 520 year: 2014 end-page: 537 ident: bib22 article-title: Neural network ensemble based CAD system for focal liver lesions from B-mode ultrasound publication-title: J. Digital Imaging – volume: 26 start-page: S1599 year: 2015 end-page: S1611 ident: bib23 article-title: Classification of focal liver lesions on ultrasound images by extracting hybrid textural features and using an artificial neural network publication-title: Bio-Medical Mater. Eng. – start-page: 1942 year: 1995 end-page: 1948 ident: bib34 article-title: Particle swarm optimization publication-title: Proceedings of the IEE International Conference on Neural Network, Perth, Western Australia – reference: J. Shiraishi, K. Sugimoto, F. Moriyasu, N. Kamiyama, K. Doi, “Computer-aided diagnosis for the classification of focal liver lesions by use of contrast-enhanced ultrasonography”, Med. Phys., vol. 35, no. 5, pp. 1734–1746. – volume: 45 start-page: 256 year: 2015 end-page: 265 ident: bib30 article-title: DWT-based feature extraction and radon transform based contrast enhancement for improved iris recognition publication-title: Procedia Comput. Sci. – volume: 205 start-page: W56 year: 2015 end-page: W66 ident: bib18 article-title: Contrast-enhanced ultrasound for focal liver lesions publication-title: Am. J. Radiology – volume: 205 start-page: W56 year: 2015 end-page: W66 ident: bib13 article-title: Contrast-enhanced ultrasound of focal liver lesions publication-title: Gastrointest. Imaging – volume: 75 start-page: 54 year: 2016 end-page: 62 ident: bib29 article-title: Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index publication-title: Comput. Biol. Med. – volume: 67 start-page: 7 year: 2017 end-page: 30 ident: bib3 article-title: Cancer statistics, 2017 publication-title: CA A Cancer J. Clin. – start-page: 1322 year: 2008 end-page: 1328 ident: bib33 article-title: ADASYN: adaptive synthetic sampling approach for imbalanced learning publication-title: IEEE International Joint Conference on Neural Networks, Hong Kong, China – volume: 39 start-page: 4255 year: 2012 end-page: 4264 ident: bib12 article-title: Data mining framework for fatty liver disease classification in ultrasound: a hybrid feature extraction paradigm publication-title: Med. Phys. – volume: 79 start-page: 250 year: 2016 end-page: 258 ident: bib11 article-title: Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images publication-title: Comput. Biol. Med. – volume: 34 start-page: 193 year: 2009 end-page: 209 ident: bib15 article-title: Focal liver lesions: contrast-enhanced ultrasound publication-title: Abdom. Imaging – volume: 63 start-page: 478 year: 2013 end-page: 486 ident: bib21 article-title: PCA-SVM based CAD system for focal liver lesions using B-mode ultrasound images publication-title: Def. Sci. J. – volume: 20 start-page: 70 year: 2017 end-page: 79 ident: bib41 article-title: Segementation of optic disc, fovea and retinal vasculature using a single convolutional neural network publication-title: J. Comput. Sci. – volume: 4 start-page: 479 year: 2001 end-page: 491 ident: bib5 article-title: Benign neoplasms of the liver publication-title: Curr. Treat. Options Gastroenterology – volume: 84 start-page: 59 year: 2017 end-page: 68 ident: bib31 article-title: Automated diabetic macular edema (DME) grading system using DWT, DCT features and maculopathy index publication-title: Comput. Biol. Med. – volume: 2 start-page: 215 year: 2010 end-page: 223 ident: bib16 article-title: Computer-aided diagnosis for contrast-enhanced ultrasound in liver publication-title: World J. Radiology – volume: 16 start-page: 177 year: 2005 end-page: 188 ident: bib27 article-title: Texture analysis based on local analysis of the bidimensional empirical mode decomposition publication-title: Mach. Vis. Appl. – volume: 26 start-page: 1058 year: 2013 end-page: 1070 ident: bib20 article-title: Characterization of primary and secondary malignant liver lesions from B-mode ultrasound publication-title: J. Digital Imaging – volume: 13 start-page: 21 year: 1967 end-page: 27 ident: bib38 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theory – volume: 39 start-page: 355 year: 1987 end-page: 368 ident: bib25 article-title: Adaptive histogram equalization and its variations publication-title: Comput. Vis. Graph. Image Process. – volume: 75 start-page: 66 year: 2015 end-page: 77 ident: bib8 article-title: Ultrasound-based tissue characterization of fatty liver disease: a screening and diagnostic paradigm publication-title: Knowledge-Based Syst. – volume: 29 start-page: 32 year: 2016 end-page: 39 ident: bib9 article-title: Decision support for fatty liver disease using GIST descriptors extracted from ultrasound images publication-title: Inf. Fusion – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib36 article-title: Support vector networks publication-title: Mach. Learn. – year: 2017 ident: bib7 article-title: Liver cancer – year: 2014 ident: bib2 article-title: Picture of the liver – volume: vol. 630 start-page: 385 year: 2016 end-page: 409 ident: bib24 article-title: Application of texture features for classification of primary benign and primary malignant focal liver lesions publication-title: Image Feature Detectors and Descriptors – volume: 10 start-page: 332 year: 2009 end-page: 333 ident: bib1 article-title: Functional anatomy and blood supply of the liver publication-title: Anaesth. Intensive Care Med. – year: 2008 ident: bib32 article-title: Fundamentals of Statistics – volume: 8 start-page: 267 year: 2011 end-page: 270 ident: bib37 article-title: Principal component analysis-linear discriminant analysis feature extractor for pattern recognition publication-title: Int. J. Comput. Sci. – volume: 8 start-page: 107 year: 2012 end-page: 116 ident: bib6 article-title: MRI of focal liver lesions publication-title: Curr. Med. Imaging Rev. – volume: 31 start-page: 43 year: 2016 end-page: 53 ident: bib10 article-title: An integrated index for identification of fatty liver disease using radon transform and discrete cosine transform features in ultrasound images publication-title: Inf. Fusion – volume: vol. 454 start-page: 903 year: 1998 end-page: 995 ident: bib28 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis publication-title: Proceedings Royal Society London – volume: 10 start-page: 332 issue: 7 year: 2009 ident: 10.1016/j.compbiomed.2017.12.024_bib1 article-title: Functional anatomy and blood supply of the liver publication-title: Anaesth. Intensive Care Med. doi: 10.1016/j.mpaic.2009.03.012 – volume: 75 start-page: 66 year: 2015 ident: 10.1016/j.compbiomed.2017.12.024_bib8 article-title: Ultrasound-based tissue characterization of fatty liver disease: a screening and diagnostic paradigm publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2014.11.021 – ident: 10.1016/j.compbiomed.2017.12.024_bib26 – volume: 20 start-page: 832 issue: 8 year: 1998 ident: 10.1016/j.compbiomed.2017.12.024_bib39 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans. Pattern Analysis Mach. Intell. doi: 10.1109/34.709601 – volume: 4 start-page: 520 year: 2014 ident: 10.1016/j.compbiomed.2017.12.024_bib22 article-title: Neural network ensemble based CAD system for focal liver lesions from B-mode ultrasound publication-title: J. Digital Imaging doi: 10.1007/s10278-014-9685-0 – volume: 20 start-page: 70 year: 2017 ident: 10.1016/j.compbiomed.2017.12.024_bib41 article-title: Segementation of optic disc, fovea and retinal vasculature using a single convolutional neural network publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.02.006 – volume: 26 start-page: 1058 year: 2013 ident: 10.1016/j.compbiomed.2017.12.024_bib20 article-title: Characterization of primary and secondary malignant liver lesions from B-mode ultrasound publication-title: J. Digital Imaging doi: 10.1007/s10278-013-9578-7 – volume: 39 start-page: 355 year: 1987 ident: 10.1016/j.compbiomed.2017.12.024_bib25 article-title: Adaptive histogram equalization and its variations publication-title: Comput. Vis. Graph. Image Process. doi: 10.1016/S0734-189X(87)80186-X – volume: 84 start-page: 59 year: 2017 ident: 10.1016/j.compbiomed.2017.12.024_bib31 article-title: Automated diabetic macular edema (DME) grading system using DWT, DCT features and maculopathy index publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.03.016 – ident: 10.1016/j.compbiomed.2017.12.024_bib17 doi: 10.1118/1.2900109 – volume: 8 start-page: 107 issue: 2 year: 2012 ident: 10.1016/j.compbiomed.2017.12.024_bib6 article-title: MRI of focal liver lesions publication-title: Curr. Med. Imaging Rev. doi: 10.2174/157340512800672216 – year: 2008 ident: 10.1016/j.compbiomed.2017.12.024_bib32 – volume: 75 start-page: 54 year: 2016 ident: 10.1016/j.compbiomed.2017.12.024_bib29 article-title: Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.04.015 – volume: 34 start-page: 193 issue: 2 year: 2009 ident: 10.1016/j.compbiomed.2017.12.024_bib15 article-title: Focal liver lesions: contrast-enhanced ultrasound publication-title: Abdom. Imaging doi: 10.1007/s00261-008-9378-6 – ident: 10.1016/j.compbiomed.2017.12.024_bib35 doi: 10.1109/ICNN.1988.23887 – volume: 205 start-page: W56 issue: 1 year: 2015 ident: 10.1016/j.compbiomed.2017.12.024_bib13 article-title: Contrast-enhanced ultrasound of focal liver lesions publication-title: Gastrointest. Imaging – volume: 16 start-page: 177 year: 2005 ident: 10.1016/j.compbiomed.2017.12.024_bib27 article-title: Texture analysis based on local analysis of the bidimensional empirical mode decomposition publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-004-0170-5 – volume: 39 start-page: 4255 issue: 7 year: 2012 ident: 10.1016/j.compbiomed.2017.12.024_bib12 article-title: Data mining framework for fatty liver disease classification in ultrasound: a hybrid feature extraction paradigm publication-title: Med. Phys. doi: 10.1118/1.4725759 – volume: 426 start-page: 66 year: 2017 ident: 10.1016/j.compbiomed.2017.12.024_bib42 article-title: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.08.050 – volume: 26 start-page: S1599 year: 2015 ident: 10.1016/j.compbiomed.2017.12.024_bib23 article-title: Classification of focal liver lesions on ultrasound images by extracting hybrid textural features and using an artificial neural network publication-title: Bio-Medical Mater. Eng. doi: 10.3233/BME-151459 – start-page: 1322 year: 2008 ident: 10.1016/j.compbiomed.2017.12.024_bib33 article-title: ADASYN: adaptive synthetic sampling approach for imbalanced learning – volume: 31 start-page: 43 year: 2016 ident: 10.1016/j.compbiomed.2017.12.024_bib10 article-title: An integrated index for identification of fatty liver disease using radon transform and discrete cosine transform features in ultrasound images publication-title: Inf. Fusion doi: 10.1016/j.inffus.2015.12.007 – volume: 63 start-page: 478 issue: 5 year: 2013 ident: 10.1016/j.compbiomed.2017.12.024_bib21 article-title: PCA-SVM based CAD system for focal liver lesions using B-mode ultrasound images publication-title: Def. Sci. J. doi: 10.14429/dsj.63.3951 – volume: 45 start-page: 256 year: 2015 ident: 10.1016/j.compbiomed.2017.12.024_bib30 article-title: DWT-based feature extraction and radon transform based contrast enhancement for improved iris recognition publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.03.135 – volume: 29 start-page: 32 year: 2016 ident: 10.1016/j.compbiomed.2017.12.024_bib9 article-title: Decision support for fatty liver disease using GIST descriptors extracted from ultrasound images publication-title: Inf. Fusion doi: 10.1016/j.inffus.2015.09.006 – volume: 35 start-page: 315 year: 2011 ident: 10.1016/j.compbiomed.2017.12.024_bib19 article-title: Neural network based focal liver lesion diagnosis using ultrasound images publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2011.01.007 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.compbiomed.2017.12.024_bib36 article-title: Support vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 8 start-page: 267 year: 2011 ident: 10.1016/j.compbiomed.2017.12.024_bib37 article-title: Principal component analysis-linear discriminant analysis feature extractor for pattern recognition publication-title: Int. J. Comput. Sci. – ident: 10.1016/j.compbiomed.2017.12.024_bib2 – volume: 4 start-page: 479 year: 2001 ident: 10.1016/j.compbiomed.2017.12.024_bib5 article-title: Benign neoplasms of the liver publication-title: Curr. Treat. Options Gastroenterology doi: 10.1007/s11938-001-0013-7 – volume: 76 start-page: 22 issue: 1 year: 2007 ident: 10.1016/j.compbiomed.2017.12.024_bib14 article-title: The use of contrast-enhanced ultrasound in the characterization of focal liver lesions publication-title: Ulster Med. J. – volume: 67 start-page: 7 issue: 1 year: 2017 ident: 10.1016/j.compbiomed.2017.12.024_bib3 article-title: Cancer statistics, 2017 publication-title: CA A Cancer J. Clin. doi: 10.3322/caac.21387 – start-page: 1942 year: 1995 ident: 10.1016/j.compbiomed.2017.12.024_bib34 article-title: Particle swarm optimization – volume: 13 start-page: 21 issue: 1 year: 1967 ident: 10.1016/j.compbiomed.2017.12.024_bib38 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1053964 – ident: 10.1016/j.compbiomed.2017.12.024_bib7 – volume: 79 start-page: 250 year: 2016 ident: 10.1016/j.compbiomed.2017.12.024_bib11 article-title: Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.10.022 – volume: vol. 630 start-page: 385 year: 2016 ident: 10.1016/j.compbiomed.2017.12.024_bib24 article-title: Application of texture features for classification of primary benign and primary malignant focal liver lesions – volume: vol. 454 start-page: 903 year: 1998 ident: 10.1016/j.compbiomed.2017.12.024_bib28 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis – volume: 205 start-page: W56 year: 2015 ident: 10.1016/j.compbiomed.2017.12.024_bib18 article-title: Contrast-enhanced ultrasound for focal liver lesions publication-title: Am. J. Radiology – year: 2001 ident: 10.1016/j.compbiomed.2017.12.024_bib40 – ident: 10.1016/j.compbiomed.2017.12.024_bib4 – volume: 2 start-page: 215 issue: 6 year: 2010 ident: 10.1016/j.compbiomed.2017.12.024_bib16 article-title: Computer-aided diagnosis for contrast-enhanced ultrasound in liver publication-title: World J. Radiology doi: 10.4329/wjr.v2.i6.215 |
| SSID | ssj0004030 |
| Score | 2.4198475 |
| Snippet | Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation... AbstractLiver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 11 |
| SubjectTerms | Adult Automation Benign Cirrhosis Classification Computer-aided diagnostic system Decomposition Diagnosis Diagnosis, Computer-Assisted - methods Discriminant analysis Fatty liver Feature extraction Female Human performance Humans Image processing Image Processing, Computer-Assisted - methods Image segmentation Internal Medicine International conferences Learning algorithms Lesions Liver Liver cancer Liver cirrhosis Liver Cirrhosis - diagnosis Liver Cirrhosis - diagnostic imaging Liver diseases Liver lesions Liver Neoplasms - diagnosis Liver Neoplasms - diagnostic imaging Machine Learning Male Malignant Medical diagnosis Middle Aged Neural networks Other Particle swarm optimization Principal components analysis Radon Radon transformation Ultrasonic imaging Ultrasonography Ultrasound Variance analysis |
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Ni9UwEA_LHsSLuH7WXSWC17pJmzYNnpbFZRH05MLeQtNMpPJ872Hfu_q3O5OkXUQXHnhsmyHpZDIzSX4zw9i7YED2rTAlaDWUqpeydEF0pTJdO7QeKHiS0BZf2usb9em2uT1il3MsDMEqs-5POj1q6_zmPHPzfDuOFOOLWwmKvNS0JY-Va5XSVMXg_a87mIcSdQpDQX1DrTOaJ2G8CLadwtwJ5KXjwWCl7jNR97mg0RRdPWaPsg_JL9IwT9gRrJ-wB5_zLflT5i_2uw16ouC5T0i6ceKbwAPZLb4iJAZfAR2TTZxw79-4GxMb4rkghx_bMWYO4VQnh3ugH8jgLh4gpgKdnrGbq49fL6_LXE2hHJpO7EoY0DmTLTS16L3ztffeqSZoAZSvZ5B1HwJ0re5rHZQJxjhpoPJGBzn0snX1c3a83qzhJeNCBGeavjMtVGpAo-_jBAhHu5mgmoLpmYF2yKnGqeLFys6Ysu_2jvWWWG9lZZH1BZML5Tal2ziAxsxzZOdwUlSAFm3CAbT6X7Qw5ZU8WWknbGn_kraCfVgo_xDYA_s9m4XJLl3RsTGqyK7uCvZ2-YzLne5w-jVs9jgcgxtkWaFYF-xFEsKFUei5oUZt5av_Gtope4hPXcLZnbHj3c89vEbHa-fexJX1G3QsLUM priority: 102 providerName: Elsevier |
| Title | Automated diagnosis of focal liver lesions using bidirectional empirical mode decomposition features |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482517304213 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482517304213 https://dx.doi.org/10.1016/j.compbiomed.2017.12.024 https://www.ncbi.nlm.nih.gov/pubmed/29353161 https://www.proquest.com/docview/2007510838 https://www.proquest.com/docview/1989912040 |
| Volume | 94 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dj9MwDLfuNgnxgvimxzEFiddC06ZNI4TQQDcGiAkBJ-0tapvkNDTWHd1e-dux27R74dBe-tK6bRzHdpyfbYAXTlleZJEKrRRVKArOw9JFeShUnlWZsZQ8SWiLRTa_FJ-W6fIEFn0uDMEqe53YKmpTVxQjf0UxNZSfPMnfbq9D6hpFp6t9C43Ct1Ywb9oSY6cwjqky1gjG7y4WX78dMiWjpEtKQe0jcHPksT0d4otA3F3SO0G-ZBsmjMVNBusmh7Q1TLO7cMd7lGzaicA9OLGb-3Driz8zfwBmut_V6Jdaw0yHq1s1rHbMkRVja8JlsLWloFnDCAV_xcpVZ-jaKCGzv7arto4Io645zFgagId6MWfbwqDNQ7icXfx4Pw99b4WwSvNoF9oKXTWe2TSJClOaxBhTitTJyFL1noonhXM2z2SRSCeUU6rkysZGScergmdl8ghGm3pjnwCLIleqtMhVZmNRoQtgUBGgaSxpb-NEGoDsGagrX3ic-l-sdY8w-6kPrNfEes1jjawPgA-U2674xhE0qp8j3SeXojrUaCGOoJX_orWNX9eN5rrBJ_X3tqwRZf3KpB1sAK8HSu-6dDN15HfPe2HSw6cOAh_A8-E2Ln460Sk2tt7j7yjcLvMYxTqAx50QDoxCPw71a8bP_v_yp3Ab_yTvYHXnMNr93ttn6GftygmcvvzD8SqXEq_57MMExtOPn-eLiV9WfwFrzSzS |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgIuiDeBAkaCY0ScOA8LVahAqy1tVwhaqTc3iW201XazkF0h_hy_jZnYyV4o2kvPyeQxHs_L38wAvLbS8DKLZGhyUYei5DysbFSEQhZZnWlDxZOEthhno1Px-Sw924A_fS0MwSp7ndgpat3UlCN_Szk1lJ8iKd7Pf4Q0NYpOV_sRGqUfraB3uhZjvrDj0Pz-hSFcu3PwCdf7TRzv7518HIV-ykBYp0W0CE2NTgvPTJpEpa50orWuRGrzyFAfm5onpbWmyPIyya2QVsqKSxNrmVtelzyrEnzuDdgSiZAY_G192Bt_-bqqzIwSVwSD2k5gMOaxRA5hRqBxV2RPELO8S0vG4ioDeZUD3BnC_btwx3uwbNeJ3D3YMLP7cPPYn9E_AL27XDToBxvNtMPxTVrWWGbJarIp4UDY1FCSrmWEuv_OqokzrF1WkpnL-aTrW8JoSg_Thn7AQ8uYNV0j0vYhnF4Llx_B5qyZmSfAoshWMi0LmZlY1OhyaFQ8aIoriqWsSAPIewaq2jc6p3kbU9Uj2i7UivWKWK94rJD1AfCBcu6afaxBI_s1Un0xK6pfhRZpDdr8X7Sm9XqkVVy1eKf61rVRoirjPOl-NoB3A6V3ldxKrfne7V6Y1PCq1QYL4NVwGZUNnSCVM9Ms8XMkhuc8RrEO4LETwoFR6DeiPs_40_8__CXcGp0cH6mjg_HhM7iNX1U4SN82bC5-Ls1z9PEW1Qu_kRicX_fe_QvJh2bN |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDI_GkCZeEP9XGBAkeKzWNGnTCCE0MU4bgwkJJt1baBsHHTquB70T4qvx6bCbtvfC0L3suXWbOI7tOD_bjD33BkSZJyYGrepYlULElU-KWJkir3MHlDxJaIvz_ORCvZtm0x32Z8iFIVjloBM7Re2ammLkhxRTQ_kpZHHoe1jEx-PJ6-WPmDpI0U3r0E4jiMgZ_P6Fx7f21ekxrvWLNJ28_fzmJO47DMR1ViSrGGp0WEQOmUxKVznpnKtU5nUCVMOmFrL0Hopcl1J7ZbwxlTCQOqO9qEuRVxK_e41d11IaghPqqd7kZCYypL-gnlN4DOtRRAFbRnDxkF5P4DLdBSRTdZlpvMz17Uzg5Ba72fuu_CgI2222A4s7bO9Dfzt_l7mj9apBDxgcdwHBN2t547kne8nnhADhc6DwXMsJb_-VV7NgUrt4JIfvy1lXsYRTfx7ugCbQg8q4h64EaXuPXVwJj--z3UWzgH3Gk8RXJisLk0OqanQ2HKocNMIVnaK8yiKmBwbaui9xTp025nbAsn2zG9ZbYr0VqUXWR0yMlMtQ5mMLGjOskR3SWFHxWrRFW9Dqf9FC22uQ1grb4pv2U1dAifKLtewmG7GXI2XvJIWV2vK_B4Mw2fFXm60VsWfjY1QzdHdULqBZ43AMHsxFimIdsQdBCEdGoceImjwXD___8adsD3esfX96fvaI3cBBFQHLd8B2Vz_X8Bidu1X1pNtFnH256m37FwN-ZGc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+diagnosis+of+focal+liver+lesions+using+bidirectional+empirical+mode+decomposition+features&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Acharya%2C+U+Rajendra&rft.au=Joel+En+Wei+Koh&rft.au=Hagiwara%2C+Yuki&rft.au=Jen+Hong+Tan&rft.date=2018-03-01&rft.pub=Elsevier+Limited&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=94&rft.spage=11&rft_id=info:doi/10.1016%2Fj.compbiomed.2017.12.024&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482518X0002X%2Fcov150h.gif |