Automated diagnosis of focal liver lesions using bidirectional empirical mode decomposition features

Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultra...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 94; pp. 11 - 18
Main Authors Acharya, U. Rajendra, Koh, Joel En Wei, Hagiwara, Yuki, Tan, Jen Hong, Gertych, Arkadiusz, Vijayananthan, Anushya, Yaakup, Nur Adura, Abdullah, Basri Johan Jeet, Bin Mohd Fabell, Mohd Kamil, Yeong, Chai Hong
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.03.2018
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2017.12.024

Cover

More Information
Summary:Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultrasound imaging is a safe, non-invasive, and cost-effective way of diagnosing liver lesions. However, this technique has limited performance in determining the nature of the lesions. This study initiates a computer-aided diagnosis (CAD) system to aid radiologists in an objective and more reliable interpretation of ultrasound images of liver lesions. In this work, we have employed radon transform and bi-directional empirical mode decomposition (BEMD) to extract features from the focal liver lesions. After which, the extracted features were subjected to particle swarm optimization (PSO) technique for the selection of a set of optimized features for classification. Our automated CAD system can differentiate normal, malignant, and benign liver lesions using machine learning algorithms. It was trained using 78 normal, 26 benign and 36 malignant focal lesions of the liver. The accuracy, sensitivity, and specificity of lesion classification were 92.95%, 90.80%, and 97.44%, respectively. The proposed CAD system is fully automatic as no segmentation of region-of-interest (ROI) is required. [Display omitted] •Classification of normal, benign and malignant liver images.•Bidirectional empirical mode decomposition performed.•Particle swarm optimization is used for feature selection.•Obtained accuracy of 92.95% using 29 features with PNN classifier.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0010-4825
1879-0534
1879-0534
DOI:10.1016/j.compbiomed.2017.12.024