In vivo kinematical validated knee model for preclinical testing of total knee replacement
A computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic loadings. However, the development of a highly mimicked dynamic whole knee model with specified ligament constraints that provides high predictive accuracy with in-vivo experim...
Saved in:
| Published in | Computers in biology and medicine Vol. 132; p. 104311 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.05.2021
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2021.104311 |
Cover
| Abstract | A computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic loadings. However, the development of a highly mimicked dynamic whole knee model with specified ligament constraints that provides high predictive accuracy with in-vivo experiments remains a challenge.
In the present study, a musculoskeletal integrated force-driven explicit finite-element knee model with tibiofemoral and patellofemoral joints constrained with detailed soft tissue was developed. A proportional-integral-derivative controller was concurrently added to the knee model to track the boundary conditions. The actuations of the quadriceps and hamstrings were predicted via a subject-specific musculoskeletal model and matched with electromyography results.
Compared to in-vivo fluoroscopic results in a gait cycle, the predicted results of the kinematics of the tibiofemoral joint exhibited an agreement in terms of tendency and magnitude (anterior–posterior translation: RMSE = 1.1 mm, r2 = 0.87; inferior–superior translation: RMSE = 0.83 mm, r2 = 0.84; medial–lateral translation: RMSE = 0.82 mm, r2 = 0.05; flexion–extension rotation: RMSE = 0.23°, r2 = 1; internal-external rotation: RMSE = 1.85°, r2 = 0.65; varus–valgus rotation: RMSE = 1.39°, r2 = 0.08). Contact mechanics, including the contact area, pressure, and stress, were synchronously simulated on the tibiofemoral and patellofemoral joints.
The study provides a calibrated knee model and a kinematical validation approach that can be widely used in preclinical testing and knee prosthesis design.
•A musculoskeletal integrated force-driven finite element knee model was developed and verified by experiments.•The predicted results of kinematics of the tibiofemoral joint exhibited an agreement with in-vivo fluoroscopic results.•Contact mechanics including the contact area, pressure, and stress can be synchronously simulated by the proposed knee model. |
|---|---|
| AbstractList | AbstractBackground and objectiveA computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic loadings. However, the development of a highly mimicked dynamic whole knee model with specified ligament constraints that provides high predictive accuracy with in -vivo experiments remains a challenge. MethodsIn the present study, a musculoskeletal integrated force-driven explicit finite-element knee model with tibiofemoral and patellofemoral joints constrained with detailed soft tissue was developed. A proportional-integral-derivative controller was concurrently added to the knee model to track the boundary conditions. The actuations of the quadriceps and hamstrings were predicted via a subject-specific musculoskeletal model and matched with electromyography results. ResultsCompared to in -vivo fluoroscopic results in a gait cycle, the predicted results of the kinematics of the tibiofemoral joint exhibited an agreement in terms of tendency and magnitude (anterior–posterior translation: RMSE = 1.1 mm, r2 = 0.87; inferior–superior translation: RMSE = 0.83 mm, r2 = 0.84; medial–lateral translation: RMSE = 0.82 mm, r2 = 0.05; flexion–extension rotation: RMSE = 0.23°, r2 = 1; internal-external rotation: RMSE = 1.85°, r2 = 0.65; varus–valgus rotation: RMSE = 1.39°, r2 = 0.08). Contact mechanics, including the contact area, pressure, and stress, were synchronously simulated on the tibiofemoral and patellofemoral joints. ConclusionsThe study provides a calibrated knee model and a kinematical validation approach that can be widely used in preclinical testing and knee prosthesis design. A computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic loadings. However, the development of a highly mimicked dynamic whole knee model with specified ligament constraints that provides high predictive accuracy with in-vivo experiments remains a challenge. In the present study, a musculoskeletal integrated force-driven explicit finite-element knee model with tibiofemoral and patellofemoral joints constrained with detailed soft tissue was developed. A proportional-integral-derivative controller was concurrently added to the knee model to track the boundary conditions. The actuations of the quadriceps and hamstrings were predicted via a subject-specific musculoskeletal model and matched with electromyography results. Compared to in-vivo fluoroscopic results in a gait cycle, the predicted results of the kinematics of the tibiofemoral joint exhibited an agreement in terms of tendency and magnitude (anterior–posterior translation: RMSE = 1.1 mm, r2 = 0.87; inferior–superior translation: RMSE = 0.83 mm, r2 = 0.84; medial–lateral translation: RMSE = 0.82 mm, r2 = 0.05; flexion–extension rotation: RMSE = 0.23°, r2 = 1; internal-external rotation: RMSE = 1.85°, r2 = 0.65; varus–valgus rotation: RMSE = 1.39°, r2 = 0.08). Contact mechanics, including the contact area, pressure, and stress, were synchronously simulated on the tibiofemoral and patellofemoral joints. The study provides a calibrated knee model and a kinematical validation approach that can be widely used in preclinical testing and knee prosthesis design. •A musculoskeletal integrated force-driven finite element knee model was developed and verified by experiments.•The predicted results of kinematics of the tibiofemoral joint exhibited an agreement with in-vivo fluoroscopic results.•Contact mechanics including the contact area, pressure, and stress can be synchronously simulated by the proposed knee model. A computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic loadings. However, the development of a highly mimicked dynamic whole knee model with specified ligament constraints that provides high predictive accuracy with in-vivo experiments remains a challenge. In the present study, a musculoskeletal integrated force-driven explicit finite-element knee model with tibiofemoral and patellofemoral joints constrained with detailed soft tissue was developed. A proportional-integral-derivative controller was concurrently added to the knee model to track the boundary conditions. The actuations of the quadriceps and hamstrings were predicted via a subject-specific musculoskeletal model and matched with electromyography results. Compared to in-vivo fluoroscopic results in a gait cycle, the predicted results of the kinematics of the tibiofemoral joint exhibited an agreement in terms of tendency and magnitude (anterior-posterior translation: RMSE = 1.1 mm, r = 0.87; inferior-superior translation: RMSE = 0.83 mm, r = 0.84; medial-lateral translation: RMSE = 0.82 mm, r = 0.05; flexion-extension rotation: RMSE = 0.23°, r = 1; internal-external rotation: RMSE = 1.85°, r = 0.65; varus-valgus rotation: RMSE = 1.39°, r = 0.08). Contact mechanics, including the contact area, pressure, and stress, were synchronously simulated on the tibiofemoral and patellofemoral joints. The study provides a calibrated knee model and a kinematical validation approach that can be widely used in preclinical testing and knee prosthesis design. A computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic loadings. However, the development of a highly mimicked dynamic whole knee model with specified ligament constraints that provides high predictive accuracy with in-vivo experiments remains a challenge.BACKGROUND AND OBJECTIVEA computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic loadings. However, the development of a highly mimicked dynamic whole knee model with specified ligament constraints that provides high predictive accuracy with in-vivo experiments remains a challenge.In the present study, a musculoskeletal integrated force-driven explicit finite-element knee model with tibiofemoral and patellofemoral joints constrained with detailed soft tissue was developed. A proportional-integral-derivative controller was concurrently added to the knee model to track the boundary conditions. The actuations of the quadriceps and hamstrings were predicted via a subject-specific musculoskeletal model and matched with electromyography results.METHODSIn the present study, a musculoskeletal integrated force-driven explicit finite-element knee model with tibiofemoral and patellofemoral joints constrained with detailed soft tissue was developed. A proportional-integral-derivative controller was concurrently added to the knee model to track the boundary conditions. The actuations of the quadriceps and hamstrings were predicted via a subject-specific musculoskeletal model and matched with electromyography results.Compared to in-vivo fluoroscopic results in a gait cycle, the predicted results of the kinematics of the tibiofemoral joint exhibited an agreement in terms of tendency and magnitude (anterior-posterior translation: RMSE = 1.1 mm, r2 = 0.87; inferior-superior translation: RMSE = 0.83 mm, r2 = 0.84; medial-lateral translation: RMSE = 0.82 mm, r2 = 0.05; flexion-extension rotation: RMSE = 0.23°, r2 = 1; internal-external rotation: RMSE = 1.85°, r2 = 0.65; varus-valgus rotation: RMSE = 1.39°, r2 = 0.08). Contact mechanics, including the contact area, pressure, and stress, were synchronously simulated on the tibiofemoral and patellofemoral joints.RESULTSCompared to in-vivo fluoroscopic results in a gait cycle, the predicted results of the kinematics of the tibiofemoral joint exhibited an agreement in terms of tendency and magnitude (anterior-posterior translation: RMSE = 1.1 mm, r2 = 0.87; inferior-superior translation: RMSE = 0.83 mm, r2 = 0.84; medial-lateral translation: RMSE = 0.82 mm, r2 = 0.05; flexion-extension rotation: RMSE = 0.23°, r2 = 1; internal-external rotation: RMSE = 1.85°, r2 = 0.65; varus-valgus rotation: RMSE = 1.39°, r2 = 0.08). Contact mechanics, including the contact area, pressure, and stress, were synchronously simulated on the tibiofemoral and patellofemoral joints.The study provides a calibrated knee model and a kinematical validation approach that can be widely used in preclinical testing and knee prosthesis design.CONCLUSIONSThe study provides a calibrated knee model and a kinematical validation approach that can be widely used in preclinical testing and knee prosthesis design. Background and objectiveA computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic loadings. However, the development of a highly mimicked dynamic whole knee model with specified ligament constraints that provides high predictive accuracy with in-vivo experiments remains a challenge.MethodsIn the present study, a musculoskeletal integrated force-driven explicit finite-element knee model with tibiofemoral and patellofemoral joints constrained with detailed soft tissue was developed. A proportional-integral-derivative controller was concurrently added to the knee model to track the boundary conditions. The actuations of the quadriceps and hamstrings were predicted via a subject-specific musculoskeletal model and matched with electromyography results.ResultsCompared to in-vivo fluoroscopic results in a gait cycle, the predicted results of the kinematics of the tibiofemoral joint exhibited an agreement in terms of tendency and magnitude (anterior–posterior translation: RMSE = 1.1 mm, r2 = 0.87; inferior–superior translation: RMSE = 0.83 mm, r2 = 0.84; medial–lateral translation: RMSE = 0.82 mm, r2 = 0.05; flexion–extension rotation: RMSE = 0.23°, r2 = 1; internal-external rotation: RMSE = 1.85°, r2 = 0.65; varus–valgus rotation: RMSE = 1.39°, r2 = 0.08). Contact mechanics, including the contact area, pressure, and stress, were synchronously simulated on the tibiofemoral and patellofemoral joints.ConclusionsThe study provides a calibrated knee model and a kinematical validation approach that can be widely used in preclinical testing and knee prosthesis design. |
| ArticleNumber | 104311 |
| Author | Yao, Jiang Sato, Takashi Yamamoto, Ko Shu, Liming Sugita, Naohiko |
| Author_xml | – sequence: 1 givenname: Liming orcidid: 0000-0002-5780-9420 surname: Shu fullname: Shu, Liming email: l.shu@mfg.t.u-tokyo.ac.jp organization: Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan – sequence: 2 givenname: Jiang surname: Yao fullname: Yao, Jiang organization: Dassault Systemes Simulia Corp, Johnston, RI, USA – sequence: 3 givenname: Ko orcidid: 0000-0002-9558-3880 surname: Yamamoto fullname: Yamamoto, Ko organization: Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan – sequence: 4 givenname: Takashi surname: Sato fullname: Sato, Takashi organization: Niigata Medical Center, Niigata, Japan – sequence: 5 givenname: Naohiko orcidid: 0000-0002-1369-0747 surname: Sugita fullname: Sugita, Naohiko organization: Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33721735$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkkFrGzEQhUVJaZy0f6EIeullXY12Ze9eQpvQpIFAD20vvQitNCqydyVXkg3599XGcQuGgk-Shm-ehvfmgpz54JEQCmwODBYfVnMdxk3vwohmzhmHUm5qgBdkBu2yq5iomzMyYwxY1bRcnJOLlFaMsYbV7BU5r-slh2UtZuTnvac7twt07TyOKjutBrpTgzMqo6Frj0jHYHCgNkS6iagH55-gjCk7_4sGS3PIpfDERtwMSuOIPr8mL60aEr55Pi_Jj9vP32--VA9f7-5vPj1UWrQsV63u-UIgQKeQNxYWFm3P0CrTGzB9r8pjYZUynbACe7O0tTDaajCiFmi7-pK83-tuYvi9LVPJ0SWNw6A8hm2SXDBomw5qUdB3R-gqbKMv0xWKQ9MKJtpCvX2mtn0xWG6iG1V8lAfXCnC1B3QMKUW0UrtcvAs-R-UGCUxOMcmV_BeTnGKS-5iKQHskcPjjhNbrfSsWS3cOo0zaoddoXAknSxPcKSJXRyKHWNf4iOmvKSATl0x-mxZp2iMO002wIvDx_wKnzfAHBK_fEw |
| CitedBy_id | crossref_primary_10_1302_2046_3758_1110_BJR_2022_0039_R1 crossref_primary_10_1080_10255842_2024_2329946 crossref_primary_10_1007_s10439_021_02812_0 crossref_primary_10_3390_app112110322 crossref_primary_10_1007_s11042_024_19661_3 crossref_primary_10_1111_os_13980 crossref_primary_10_3390_ani14223296 |
| Cites_doi | 10.1115/1.1634282 10.1302/0301-620X.81B4.0810636 10.1016/j.jbiomech.2011.11.052 10.1007/s00402-012-1591-7 10.1016/j.jbiomech.2019.07.042 10.1016/j.jbiomech.2016.07.040 10.1016/j.medengphy.2020.11.009 10.1016/j.jbiomech.2015.09.007 10.1049/bsbt.2019.0012 10.2106/00004623-199409000-00008 10.1016/S0021-9290(03)00255-0 10.1002/jor.1100170605 10.1016/S0021-9290(03)00176-3 10.1002/jor.21211 10.1177/0363546503262694 10.1016/S0021-9290(01)00179-8 10.1016/j.jbiomech.2012.05.035 10.1016/j.matdes.2008.03.032 10.1115/1.3138397 10.1002/jor.1100180115 10.2106/JBJS.J.00772 10.1016/j.jbiomech.2014.04.024 10.1016/j.cmpb.2020.105446 10.1016/j.cmpb.2020.105671 10.1115/1.4033882 10.1002/jor.22023 10.1097/JSA.0b013e318210c0aa 10.1016/j.jbiomech.2018.07.008 10.1016/j.jbiomech.2008.04.021 10.1016/j.compbiomed.2019.03.005 10.1115/1.4001678 10.1115/1.1992522 10.1007/s10237-020-01295-7 10.1109/10.102791 10.1016/j.jbiomech.2018.09.009 10.1016/1050-6411(91)90035-4 10.1007/s00167-005-0020-7 10.1007/s10439-020-02555-4 10.1016/j.medengphy.2014.06.022 10.1007/s11999-012-2745-1 10.1177/0363546508322890 10.1115/1.2894090 10.1016/j.jbiomech.2013.01.025 10.1016/j.cmpb.2009.07.005 10.1016/j.knee.2013.08.004 10.1111/joa.12087 10.1016/j.jbiomech.2009.06.028 10.1016/j.jbiomech.2014.05.011 10.1016/j.cmpb.2019.105109 10.1016/j.jbiomech.2017.08.030 10.1016/j.jbiomech.2017.04.008 10.1177/03635465990270011301 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. 2021. Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. – notice: 2021. Elsevier Ltd |
| DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.compbiomed.2021.104311 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 104311 |
| ExternalDocumentID | 33721735 10_1016_j_compbiomed_2021_104311 S0010482521001050 1_s2_0_S0010482521001050 |
| Genre | Journal Article |
| GeographicLocations | United States--US Kansas |
| GeographicLocations_xml | – name: Kansas – name: United States--US |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR AAYXX CITATION PUEGO NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c580t-8cb265e119ae24f16fefb0efadbd1dbbab0e6faad95f5ebd7f35dcfc1d535ef93 |
| IEDL.DBID | .~1 |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Sun Sep 28 00:16:42 EDT 2025 Tue Oct 07 06:15:05 EDT 2025 Thu Apr 03 07:07:19 EDT 2025 Wed Oct 01 05:26:12 EDT 2025 Thu Apr 24 22:58:49 EDT 2025 Fri Feb 23 02:39:50 EST 2024 Tue Feb 25 20:08:36 EST 2025 Tue Oct 14 19:33:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Knee kinematics Experimental validation Knee model Total knee replacement Finite element |
| Language | English |
| License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c580t-8cb265e119ae24f16fefb0efadbd1dbbab0e6faad95f5ebd7f35dcfc1d535ef93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9558-3880 0000-0002-1369-0747 0000-0002-5780-9420 |
| PMID | 33721735 |
| PQID | 2521485058 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2501849135 proquest_journals_2521485058 pubmed_primary_33721735 crossref_citationtrail_10_1016_j_compbiomed_2021_104311 crossref_primary_10_1016_j_compbiomed_2021_104311 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2021_104311 elsevier_clinicalkeyesjournals_1_s2_0_S0010482521001050 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2021_104311 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-01 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Hirokawa, Solomonow, Luo, Lu, D'Ambrosia (bib22) 1991; 1 Ali, Clary, Smoger, Dennis, Fitzpatrick, Rullkoetter, Laz (bib50) 2020; 19 Li, Marra, Verdonschot, Lu (bib54) 2021; 87 Clary, Fitzpatrick, Maletsky, Rullkoetter (bib8) 2013; 46 MacWilliams, Wilson, Desjardins, Romero, Chao (bib16) 1999; 17 Fregly, Bei, Sylvester (bib48) 2003; 36 Okamoto, Okazaki, Mitsuyasu, Matsuda, Iwamoto (bib31) 2013; 471 Stäubli, Schatzmann, Brunner, Rincón, Nolte (bib40) 1999; 27 Hughston (bib28) 1994; 76 Swedberg, Reese, Maas, Ellis, Weiss (bib41) 2014; 47 Fitzpatrick, Maag, Clary, Metcalfe, Langhorn, Rullkoetter (bib15) 2016; 49 Blankevoort, Huiskes, de Lange (bib34) 1991; 113 Halilaj, Rajagopal, Fiterau, Hicks, Hastie, Delp (bib51) 2018; 81 Von Keudell, Sodha, Collins, Minas, Fitz, Gomoll (bib2) 2014; 21 Bellemans, Vereecke, Verdonk, Maes, Victor, Claes (bib33) 2013; 223 Halloran, Easley, Petrella, Rullkoetter (bib25) 2005; 127 Flandry, Hommel (bib32) 2011; 19 Carr, Goswami (bib1) 2009; 30 Nikkhoo, Hassani, Tavakoli Golpayegani, Karimi (bib11) 2020; 183 Fitzpatrick, Baldwin, Ali, Laz, Rullkoetter (bib47) 2011; 29 Fitzpatrick, a Baldwin, Clary, Maletsky, Rullkoetter (bib20) 2012; 5842 Kwak, Ahmad, Gardner, Grelsamer, Henry, Blankevoort, Ateshian, Mow (bib17) 2000; 18 Ali, Harris, Shalhoub, Maletsky, Rullkoetter, Shelburne (bib21) 2017; 57 Shu, Yamamoto, Yao, Saraswat, Liu, Mitsuishi, Sugita (bib24) 2018; 77 Delp, Loan, Hoy, Zajac, Topp, Rosen (bib43) 1990; 37 Li, Lu, Miller, Jin, Hua (bib53) 2019; 94 Goldsmith, Smith, Jansson, LaPrade, Wijdicks (bib7) 2014; 36 Shu, Teng, Shao, Zheng, Liu, Liu (bib12) 2020; 195 Arab, Merdji, Benaissa, Roy, Bachir Bouiadjra, Layadi, Ouddane, Mukdadi (bib10) 2020; 192 Abdel-Jaber, Belvedere, Leardini, Affatato (bib5) 2015; 48 Fitzpatrick, Komistek, Rullkoetter (bib19) 2014; 47 Fitzpatrick, Clary, Rullkoetter (bib45) 2012; 45 Baldwin, Clary, Fitzpatrick, Deacy, Maletsky, Rullkoetter (bib18) 2012; 45 Varadarajan, Moynihan, D'Lima, Colwell, Li (bib27) 2008; 41 Harris, Cyr, Ali, Fitzpatrick, Rullkoetter, Maletsky, Shelburne (bib37) 2016; 138 Shu, Li, Sugita (bib9) 2020; 6 Villa, Migliavacca, Gastaldi, Colombo, Pietrabissa (bib49) 2004; 37 Baldwin, Langenderfer, Rullkoetter, Laz (bib52) 2010; 97 Grood, Suntay (bib44) 1983; 105 Ritter, Davis, Meding, Pierson, Berend, Malinzak (bib4) 2011; 93 McLean, Su, van den Bogert (bib42) 2003; 125 Shu, Hashimoto, Sugita (bib14) 2021; 49 LaPrade, Tso, Wentorf (bib38) 2004; 32 Baldwin, Clary, Maletsky, Rullkoetter (bib35) 2009; 42 Fregly, Besier, Lloyd, Delp, Banks, Pandy, D'Lima (bib23) 2012; 30 McKay, Beckman, Conover (bib46) 1979; 21 Griffith, Wijdicks, LaPrade, Armitage, Johansen, Engebretsen (bib39) 2009; 37 Shu, Yamamoto, Kai, Inagaki, Sugita (bib13) 2019; 108 Godest, Beaugonin, Haug, Taylor, Gregson (bib26) 2002; 35 Naghibi Beidokhti, Janssen, van de Groes, Hazrati, Van den Boogaard, Verdonschot (bib36) 2017; 65 Luring, Bathis, Oczipka, Trepte, Lufen, Perlick, Grifka (bib3) 2006; 14 a Shahane, Ibbotson, Strachan, Bickerstaff (bib29) 1999; 81 Lim, Bae, Bae, Moon, Shyam, Wang (bib30) 2012; 132 Halloran, Clary, Maletsky, Taylor, Petrella, Rullkoetter (bib6) 2010; 132 Swedberg (10.1016/j.compbiomed.2021.104311_bib41) 2014; 47 Fitzpatrick (10.1016/j.compbiomed.2021.104311_bib15) 2016; 49 Grood (10.1016/j.compbiomed.2021.104311_bib44) 1983; 105 Lim (10.1016/j.compbiomed.2021.104311_bib30) 2012; 132 Flandry (10.1016/j.compbiomed.2021.104311_bib32) 2011; 19 Fitzpatrick (10.1016/j.compbiomed.2021.104311_bib19) 2014; 47 Harris (10.1016/j.compbiomed.2021.104311_bib37) 2016; 138 Fitzpatrick (10.1016/j.compbiomed.2021.104311_bib20) 2012; 5842 Naghibi Beidokhti (10.1016/j.compbiomed.2021.104311_bib36) 2017; 65 Shu (10.1016/j.compbiomed.2021.104311_bib13) 2019; 108 Shu (10.1016/j.compbiomed.2021.104311_bib12) 2020; 195 Godest (10.1016/j.compbiomed.2021.104311_bib26) 2002; 35 Von Keudell (10.1016/j.compbiomed.2021.104311_bib2) 2014; 21 Bellemans (10.1016/j.compbiomed.2021.104311_bib33) 2013; 223 Baldwin (10.1016/j.compbiomed.2021.104311_bib52) 2010; 97 Baldwin (10.1016/j.compbiomed.2021.104311_bib35) 2009; 42 Halloran (10.1016/j.compbiomed.2021.104311_bib6) 2010; 132 Shu (10.1016/j.compbiomed.2021.104311_bib9) 2020; 6 Hirokawa (10.1016/j.compbiomed.2021.104311_bib22) 1991; 1 Shu (10.1016/j.compbiomed.2021.104311_bib24) 2018; 77 Shu (10.1016/j.compbiomed.2021.104311_bib14) 2021; 49 Okamoto (10.1016/j.compbiomed.2021.104311_bib31) 2013; 471 Fitzpatrick (10.1016/j.compbiomed.2021.104311_bib47) 2011; 29 Nikkhoo (10.1016/j.compbiomed.2021.104311_bib11) 2020; 183 Fitzpatrick (10.1016/j.compbiomed.2021.104311_bib45) 2012; 45 Li (10.1016/j.compbiomed.2021.104311_bib53) 2019; 94 Goldsmith (10.1016/j.compbiomed.2021.104311_bib7) 2014; 36 Ali (10.1016/j.compbiomed.2021.104311_bib21) 2017; 57 Halloran (10.1016/j.compbiomed.2021.104311_bib25) 2005; 127 McLean (10.1016/j.compbiomed.2021.104311_bib42) 2003; 125 MacWilliams (10.1016/j.compbiomed.2021.104311_bib16) 1999; 17 Ali (10.1016/j.compbiomed.2021.104311_bib50) 2020; 19 Kwak (10.1016/j.compbiomed.2021.104311_bib17) 2000; 18 Ritter (10.1016/j.compbiomed.2021.104311_bib4) 2011; 93 Fregly (10.1016/j.compbiomed.2021.104311_bib23) 2012; 30 Delp (10.1016/j.compbiomed.2021.104311_bib43) 1990; 37 Halilaj (10.1016/j.compbiomed.2021.104311_bib51) 2018; 81 Li (10.1016/j.compbiomed.2021.104311_bib54) 2021; 87 Carr (10.1016/j.compbiomed.2021.104311_bib1) 2009; 30 Arab (10.1016/j.compbiomed.2021.104311_bib10) 2020; 192 Varadarajan (10.1016/j.compbiomed.2021.104311_bib27) 2008; 41 Villa (10.1016/j.compbiomed.2021.104311_bib49) 2004; 37 Clary (10.1016/j.compbiomed.2021.104311_bib8) 2013; 46 a Shahane (10.1016/j.compbiomed.2021.104311_bib29) 1999; 81 Baldwin (10.1016/j.compbiomed.2021.104311_bib18) 2012; 45 Luring (10.1016/j.compbiomed.2021.104311_bib3) 2006; 14 Griffith (10.1016/j.compbiomed.2021.104311_bib39) 2009; 37 McKay (10.1016/j.compbiomed.2021.104311_bib46) 1979; 21 Hughston (10.1016/j.compbiomed.2021.104311_bib28) 1994; 76 Blankevoort (10.1016/j.compbiomed.2021.104311_bib34) 1991; 113 Fregly (10.1016/j.compbiomed.2021.104311_bib48) 2003; 36 LaPrade (10.1016/j.compbiomed.2021.104311_bib38) 2004; 32 Abdel-Jaber (10.1016/j.compbiomed.2021.104311_bib5) 2015; 48 Stäubli (10.1016/j.compbiomed.2021.104311_bib40) 1999; 27 |
| References_xml | – volume: 195 start-page: 105671 year: 2020 ident: bib12 article-title: Biomechanical responses of temporomandibular joints during the lateral protrusions: a 3D finite element study publication-title: Comput. Methods Progr. Biomed. – volume: 49 start-page: 322 year: 2021 end-page: 333 ident: bib14 article-title: Enhanced in-silico polyethylene wear simulation of total knee replacements during daily activities publication-title: Ann. Biomed. Eng. – volume: 42 start-page: 2341 year: 2009 end-page: 2348 ident: bib35 article-title: Verification of predicted specimen-specific natural and implanted patellofemoral kinematics during simulated deep knee bend publication-title: J. Biomech. – volume: 77 start-page: 146 year: 2018 end-page: 154 ident: bib24 article-title: A subject-specific finite element musculoskeletal framework for mechanics analysis of a total knee replacement publication-title: J. Biomech. – volume: 1 start-page: 199 year: 1991 end-page: 208 ident: bib22 article-title: Muscular co-contraction and control of knee stability publication-title: J. Electromyogr. Kinesiol. – volume: 87 start-page: 38 year: 2021 end-page: 44 ident: bib54 article-title: A three-dimensional finite-element model of gluteus medius muscle incorporating inverse-dynamics-based optimization for simulation of non-uniform muscle contraction publication-title: Med. Eng. Phys. – volume: 132 start-page: 1631 year: 2012 end-page: 1636 ident: bib30 article-title: Relative role changing of lateral collateral ligament on the posterolateral rotatory instability according to the knee flexion angles: a biomechanical comparative study of role of lateral collateral ligament and popliteofibular ligament publication-title: Arch. Orthop. Trauma Surg. – volume: 138 start-page: 1 year: 2016 end-page: 8 ident: bib37 article-title: A combined experimental and computational approach to subject-specific analysis of knee joint laxity publication-title: J. Biomech. Eng. – volume: 97 start-page: 232 year: 2010 end-page: 240 ident: bib52 article-title: Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach publication-title: Comput. Methods Progr. Biomed. – volume: 45 start-page: 2092 year: 2012 end-page: 2102 ident: bib45 article-title: The role of patient, surgical, and implant design variation in total knee replacement performance publication-title: J. Biomech. – volume: 132 year: 2010 ident: bib6 article-title: Verification of predicted knee replacement kinematics during simulated gait in the Kansas knee simulator publication-title: J. Biomech. Eng. – volume: 37 start-page: 757 year: 1990 end-page: 767 ident: bib43 article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures publication-title: IEEE Trans. Biomed. Eng. – volume: 48 start-page: 3830 year: 2015 end-page: 3836 ident: bib5 article-title: Wear simulation of total knee prostheses using load and kinematics waveforms from stair climbing publication-title: J. Biomech. – volume: 46 start-page: 1351 year: 2013 end-page: 1357 ident: bib8 article-title: The influence of total knee arthroplasty geometry on mid-flexion stability: an experimental and finite element study publication-title: J. Biomech. – volume: 113 start-page: 94 year: 1991 ident: bib34 article-title: Recruitment of knee joint ligaments publication-title: J. Biomech. Eng. – volume: 37 start-page: 140 year: 2009 end-page: 148 ident: bib39 article-title: Force measurements on the posterior oblique ligament and superficial medial collateral ligament proximal and distal divisions to applied loads publication-title: Am. J. Sports Med. – volume: 19 start-page: 82 year: 2011 end-page: 92 ident: bib32 article-title: Normal anatomy and biomechanics of the knee publication-title: Sports Med. Arthrosc. – volume: 49 start-page: 3177 year: 2016 end-page: 3184 ident: bib15 article-title: Validation of a new computational 6-DOF knee simulator during dynamic activities publication-title: J. Biomech. – volume: 6 start-page: 3 year: 2020 end-page: 11 ident: bib9 article-title: Systematic review of computational modelling for biomechanics analysis of total knee replacement publication-title: Biosurface and Biotribology – volume: 65 start-page: 1 year: 2017 end-page: 11 ident: bib36 article-title: The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint publication-title: J. Biomech. – volume: 32 start-page: 1695 year: 2004 end-page: 1701 ident: bib38 article-title: Force measurements on the fibular collateral ligament, popliteofibular ligament, and popliteus tendon to applied loads publication-title: Am. J. Sports Med. – volume: 108 start-page: 101 year: 2019 end-page: 110 ident: bib13 article-title: Symmetrical cruciate-retaining versus medial pivot prostheses: the effect of intercondylar sagittal conformity on knee kinematics and contact mechanics publication-title: Comput. Biol. Med. – volume: 223 start-page: 321 year: 2013 end-page: 328 ident: bib33 article-title: Anatomy of the anterolateral ligament of the knee publication-title: J. Anat. – volume: 76 start-page: 1328 year: 1994 end-page: 1344 ident: bib28 article-title: The importance of the posterior oblique ligament in repairs of acute tears of the medial ligaments in knees with and without an associated rupture of the anterior cruciate ligament. Results of long-term follow-up publication-title: J. Bone Jt. Surg. - Ser. A. – volume: 5842 start-page: 3 year: 2012 ident: bib20 article-title: Evaluating knee replacement mechanics during ADL with PID-controlled dynamic finite element analysis publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 47 start-page: 3201 year: 2014 end-page: 3209 ident: bib41 article-title: Continuum description of the Poisson[U+05F3]s ratio of ligament and tendon under finite deformation publication-title: J. Biomech. – volume: 183 start-page: 105109 year: 2020 ident: bib11 article-title: Biomechanical role of posterior cruciate ligament in total knee arthroplasty: a finite element analysis publication-title: Comput. Methods Progr. Biomed. – volume: 81 start-page: 636 year: 1999 end-page: 642 ident: bib29 article-title: The popliteofibular ligament. An anatomical study of the posterolateral corner of the knee publication-title: J. Bone Jt. Surg. – volume: 30 start-page: 503 year: 2012 end-page: 513 ident: bib23 article-title: Grand challenge competition to predict in vivo knee loads publication-title: J. Orthop. Res. – volume: 105 start-page: 136 year: 1983 end-page: 144 ident: bib44 article-title: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee publication-title: J. Biomech. Eng. – volume: 17 start-page: 817 year: 1999 end-page: 822 ident: bib16 article-title: Hamstrings cocontraction reduces internal rotation, anterior translation, and anterior cruciate ligament load in weight-bearing flexion publication-title: J. Orthop. Res. – volume: 37 start-page: 45 year: 2004 end-page: 53 ident: bib49 article-title: Contact stresses and fatigue life in a knee prosthesis: comparison between in vitro measurements and computational simulations publication-title: J. Biomech. – volume: 21 start-page: 180 year: 2014 end-page: 184 ident: bib2 article-title: Patient satisfaction after primary total and unicompartmental knee arthroplasty: an age-dependent analysis publication-title: Knee – volume: 94 start-page: 230 year: 2019 end-page: 234 ident: bib53 article-title: Development of a finite element musculoskeletal model with the ability to predict contractions of three-dimensional muscles publication-title: J. Biomech. – volume: 21 start-page: 239 year: 1979 end-page: 245 ident: bib46 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – volume: 471 start-page: 1334 year: 2013 end-page: 1342 ident: bib31 article-title: Lateral soft tissue laxity increases but medial laxity does not contract with varus deformity in total knee arthroplasty knee publication-title: Clin. Orthop. Relat. Res. – volume: 41 start-page: 2159 year: 2008 end-page: 2168 ident: bib27 article-title: In vivo contact kinematics and contact forces of the knee after total knee arthroplasty during dynamic weight-bearing activities publication-title: J. Biomech. – volume: 29 start-page: 232 year: 2011 end-page: 239 ident: bib47 article-title: Comparison of patellar bone strain in the natural and implanted knee during simulated deep flexion publication-title: J. Orthop. Res. – volume: 36 start-page: 1331 year: 2014 end-page: 1337 ident: bib7 article-title: Characterization of robotic system passive path repeatability during specimen removal and reinstallation for in vitro knee joint testing publication-title: Med. Eng. Phys. – volume: 14 start-page: 605 year: 2006 end-page: 611 ident: bib3 article-title: Two-year follow-up on joint stability and muscular function comparing rotating versus fixed bearing TKR, Knee Surgery, Sport publication-title: Traumatol. Arthrosc. – volume: 45 start-page: 474 year: 2012 end-page: 483 ident: bib18 article-title: Dynamic finite element knee simulation for evaluation of knee replacement mechanics publication-title: J. Biomech. – volume: 47 start-page: 2398 year: 2014 end-page: 2405 ident: bib19 article-title: Developing simulations to reproduce in vivo fluoroscopy kinematics in total knee replacement patients publication-title: J. Biomech. – volume: 81 start-page: 1 year: 2018 end-page: 11 ident: bib51 article-title: Machine learning in human movement biomechanics: best practices, common pitfalls, and new opportunities publication-title: J. Biomech. – volume: 36 start-page: 1659 year: 2003 end-page: 1668 ident: bib48 article-title: Experimental evaluation of an elastic foundation model to predict contact pressures in knee replacements publication-title: J. Biomech. – volume: 35 start-page: 267 year: 2002 end-page: 275 ident: bib26 article-title: Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis publication-title: J. Biomech. – volume: 30 start-page: 398 year: 2009 end-page: 413 ident: bib1 article-title: Knee implants - review of models and biomechanics publication-title: Mater. Des. – volume: 127 start-page: 813 year: 2005 ident: bib25 article-title: Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics publication-title: J. Biomech. Eng. – volume: 27 start-page: 27 year: 1999 end-page: 34 ident: bib40 article-title: Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults publication-title: Am. J. Sports Med. – volume: 18 start-page: 101 year: 2000 end-page: 108 ident: bib17 article-title: Hamstrings and iliotibial band forces affect knee kinematics and contact pattern publication-title: J. Orthop. Res. – volume: 192 year: 2020 ident: bib10 article-title: Finite-Element analysis of a lateral femoro-tibial impact on the total knee arthroplasty publication-title: Comput. Methods Progr. Biomed. – volume: 125 start-page: 864 year: 2003 ident: bib42 article-title: Development and validation of a 3-D model to predict knee joint loading during dynamic movement publication-title: J. Biomech. Eng. – volume: 93 start-page: 1588 year: 2011 end-page: 1596 ident: bib4 article-title: The effect of alignment and BMI on failure of total knee replacement publication-title: J. Bone Jt. Surg. - Ser. A. – volume: 57 start-page: 117 year: 2017 end-page: 124 ident: bib21 article-title: Combined measurement and modeling of specimen-specific knee mechanics for healthy and ACL-deficient conditions publication-title: J. Biomech. – volume: 19 start-page: 1309 year: 2020 end-page: 1317 ident: bib50 article-title: Computational framework for population-based evaluation of TKR-implanted patellofemoral joint mechanics publication-title: Biomech. Model. Mechanobiol. – volume: 125 start-page: 864 year: 2003 ident: 10.1016/j.compbiomed.2021.104311_bib42 article-title: Development and validation of a 3-D model to predict knee joint loading during dynamic movement publication-title: J. Biomech. Eng. doi: 10.1115/1.1634282 – volume: 81 start-page: 636 year: 1999 ident: 10.1016/j.compbiomed.2021.104311_bib29 article-title: The popliteofibular ligament. An anatomical study of the posterolateral corner of the knee publication-title: J. Bone Jt. Surg. doi: 10.1302/0301-620X.81B4.0810636 – volume: 45 start-page: 474 year: 2012 ident: 10.1016/j.compbiomed.2021.104311_bib18 article-title: Dynamic finite element knee simulation for evaluation of knee replacement mechanics publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.11.052 – volume: 132 start-page: 1631 year: 2012 ident: 10.1016/j.compbiomed.2021.104311_bib30 article-title: Relative role changing of lateral collateral ligament on the posterolateral rotatory instability according to the knee flexion angles: a biomechanical comparative study of role of lateral collateral ligament and popliteofibular ligament publication-title: Arch. Orthop. Trauma Surg. doi: 10.1007/s00402-012-1591-7 – volume: 94 start-page: 230 year: 2019 ident: 10.1016/j.compbiomed.2021.104311_bib53 article-title: Development of a finite element musculoskeletal model with the ability to predict contractions of three-dimensional muscles publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2019.07.042 – volume: 49 start-page: 3177 year: 2016 ident: 10.1016/j.compbiomed.2021.104311_bib15 article-title: Validation of a new computational 6-DOF knee simulator during dynamic activities publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.07.040 – volume: 87 start-page: 38 year: 2021 ident: 10.1016/j.compbiomed.2021.104311_bib54 article-title: A three-dimensional finite-element model of gluteus medius muscle incorporating inverse-dynamics-based optimization for simulation of non-uniform muscle contraction publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2020.11.009 – volume: 48 start-page: 3830 year: 2015 ident: 10.1016/j.compbiomed.2021.104311_bib5 article-title: Wear simulation of total knee prostheses using load and kinematics waveforms from stair climbing publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.09.007 – volume: 21 start-page: 239 year: 1979 ident: 10.1016/j.compbiomed.2021.104311_bib46 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – volume: 6 start-page: 3 year: 2020 ident: 10.1016/j.compbiomed.2021.104311_bib9 article-title: Systematic review of computational modelling for biomechanics analysis of total knee replacement publication-title: Biosurface and Biotribology doi: 10.1049/bsbt.2019.0012 – volume: 76 start-page: 1328 year: 1994 ident: 10.1016/j.compbiomed.2021.104311_bib28 article-title: The importance of the posterior oblique ligament in repairs of acute tears of the medial ligaments in knees with and without an associated rupture of the anterior cruciate ligament. Results of long-term follow-up publication-title: J. Bone Jt. Surg. - Ser. A. doi: 10.2106/00004623-199409000-00008 – volume: 37 start-page: 45 year: 2004 ident: 10.1016/j.compbiomed.2021.104311_bib49 article-title: Contact stresses and fatigue life in a knee prosthesis: comparison between in vitro measurements and computational simulations publication-title: J. Biomech. doi: 10.1016/S0021-9290(03)00255-0 – volume: 17 start-page: 817 year: 1999 ident: 10.1016/j.compbiomed.2021.104311_bib16 article-title: Hamstrings cocontraction reduces internal rotation, anterior translation, and anterior cruciate ligament load in weight-bearing flexion publication-title: J. Orthop. Res. doi: 10.1002/jor.1100170605 – volume: 5842 start-page: 3 year: 2012 ident: 10.1016/j.compbiomed.2021.104311_bib20 article-title: Evaluating knee replacement mechanics during ADL with PID-controlled dynamic finite element analysis publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 36 start-page: 1659 year: 2003 ident: 10.1016/j.compbiomed.2021.104311_bib48 article-title: Experimental evaluation of an elastic foundation model to predict contact pressures in knee replacements publication-title: J. Biomech. doi: 10.1016/S0021-9290(03)00176-3 – volume: 29 start-page: 232 year: 2011 ident: 10.1016/j.compbiomed.2021.104311_bib47 article-title: Comparison of patellar bone strain in the natural and implanted knee during simulated deep flexion publication-title: J. Orthop. Res. doi: 10.1002/jor.21211 – volume: 32 start-page: 1695 year: 2004 ident: 10.1016/j.compbiomed.2021.104311_bib38 article-title: Force measurements on the fibular collateral ligament, popliteofibular ligament, and popliteus tendon to applied loads publication-title: Am. J. Sports Med. doi: 10.1177/0363546503262694 – volume: 35 start-page: 267 year: 2002 ident: 10.1016/j.compbiomed.2021.104311_bib26 article-title: Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00179-8 – volume: 45 start-page: 2092 year: 2012 ident: 10.1016/j.compbiomed.2021.104311_bib45 article-title: The role of patient, surgical, and implant design variation in total knee replacement performance publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.05.035 – volume: 30 start-page: 398 year: 2009 ident: 10.1016/j.compbiomed.2021.104311_bib1 article-title: Knee implants - review of models and biomechanics publication-title: Mater. Des. doi: 10.1016/j.matdes.2008.03.032 – volume: 105 start-page: 136 year: 1983 ident: 10.1016/j.compbiomed.2021.104311_bib44 article-title: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee publication-title: J. Biomech. Eng. doi: 10.1115/1.3138397 – volume: 18 start-page: 101 year: 2000 ident: 10.1016/j.compbiomed.2021.104311_bib17 article-title: Hamstrings and iliotibial band forces affect knee kinematics and contact pattern publication-title: J. Orthop. Res. doi: 10.1002/jor.1100180115 – volume: 93 start-page: 1588 year: 2011 ident: 10.1016/j.compbiomed.2021.104311_bib4 article-title: The effect of alignment and BMI on failure of total knee replacement publication-title: J. Bone Jt. Surg. - Ser. A. doi: 10.2106/JBJS.J.00772 – volume: 47 start-page: 2398 year: 2014 ident: 10.1016/j.compbiomed.2021.104311_bib19 article-title: Developing simulations to reproduce in vivo fluoroscopy kinematics in total knee replacement patients publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.04.024 – volume: 192 year: 2020 ident: 10.1016/j.compbiomed.2021.104311_bib10 article-title: Finite-Element analysis of a lateral femoro-tibial impact on the total knee arthroplasty publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2020.105446 – volume: 195 start-page: 105671 year: 2020 ident: 10.1016/j.compbiomed.2021.104311_bib12 article-title: Biomechanical responses of temporomandibular joints during the lateral protrusions: a 3D finite element study publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2020.105671 – volume: 138 start-page: 1 year: 2016 ident: 10.1016/j.compbiomed.2021.104311_bib37 article-title: A combined experimental and computational approach to subject-specific analysis of knee joint laxity publication-title: J. Biomech. Eng. doi: 10.1115/1.4033882 – volume: 30 start-page: 503 year: 2012 ident: 10.1016/j.compbiomed.2021.104311_bib23 article-title: Grand challenge competition to predict in vivo knee loads publication-title: J. Orthop. Res. doi: 10.1002/jor.22023 – volume: 19 start-page: 82 year: 2011 ident: 10.1016/j.compbiomed.2021.104311_bib32 article-title: Normal anatomy and biomechanics of the knee publication-title: Sports Med. Arthrosc. doi: 10.1097/JSA.0b013e318210c0aa – volume: 77 start-page: 146 year: 2018 ident: 10.1016/j.compbiomed.2021.104311_bib24 article-title: A subject-specific finite element musculoskeletal framework for mechanics analysis of a total knee replacement publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2018.07.008 – volume: 41 start-page: 2159 year: 2008 ident: 10.1016/j.compbiomed.2021.104311_bib27 article-title: In vivo contact kinematics and contact forces of the knee after total knee arthroplasty during dynamic weight-bearing activities publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.04.021 – volume: 108 start-page: 101 year: 2019 ident: 10.1016/j.compbiomed.2021.104311_bib13 article-title: Symmetrical cruciate-retaining versus medial pivot prostheses: the effect of intercondylar sagittal conformity on knee kinematics and contact mechanics publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.03.005 – volume: 132 year: 2010 ident: 10.1016/j.compbiomed.2021.104311_bib6 article-title: Verification of predicted knee replacement kinematics during simulated gait in the Kansas knee simulator publication-title: J. Biomech. Eng. doi: 10.1115/1.4001678 – volume: 127 start-page: 813 year: 2005 ident: 10.1016/j.compbiomed.2021.104311_bib25 article-title: Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics publication-title: J. Biomech. Eng. doi: 10.1115/1.1992522 – volume: 19 start-page: 1309 year: 2020 ident: 10.1016/j.compbiomed.2021.104311_bib50 article-title: Computational framework for population-based evaluation of TKR-implanted patellofemoral joint mechanics publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-020-01295-7 – volume: 37 start-page: 757 year: 1990 ident: 10.1016/j.compbiomed.2021.104311_bib43 article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.102791 – volume: 81 start-page: 1 year: 2018 ident: 10.1016/j.compbiomed.2021.104311_bib51 article-title: Machine learning in human movement biomechanics: best practices, common pitfalls, and new opportunities publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2018.09.009 – volume: 1 start-page: 199 year: 1991 ident: 10.1016/j.compbiomed.2021.104311_bib22 article-title: Muscular co-contraction and control of knee stability publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/1050-6411(91)90035-4 – volume: 14 start-page: 605 year: 2006 ident: 10.1016/j.compbiomed.2021.104311_bib3 article-title: Two-year follow-up on joint stability and muscular function comparing rotating versus fixed bearing TKR, Knee Surgery, Sport publication-title: Traumatol. Arthrosc. doi: 10.1007/s00167-005-0020-7 – volume: 49 start-page: 322 year: 2021 ident: 10.1016/j.compbiomed.2021.104311_bib14 article-title: Enhanced in-silico polyethylene wear simulation of total knee replacements during daily activities publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-020-02555-4 – volume: 36 start-page: 1331 year: 2014 ident: 10.1016/j.compbiomed.2021.104311_bib7 article-title: Characterization of robotic system passive path repeatability during specimen removal and reinstallation for in vitro knee joint testing publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2014.06.022 – volume: 471 start-page: 1334 year: 2013 ident: 10.1016/j.compbiomed.2021.104311_bib31 article-title: Lateral soft tissue laxity increases but medial laxity does not contract with varus deformity in total knee arthroplasty knee publication-title: Clin. Orthop. Relat. Res. doi: 10.1007/s11999-012-2745-1 – volume: 37 start-page: 140 year: 2009 ident: 10.1016/j.compbiomed.2021.104311_bib39 article-title: Force measurements on the posterior oblique ligament and superficial medial collateral ligament proximal and distal divisions to applied loads publication-title: Am. J. Sports Med. doi: 10.1177/0363546508322890 – volume: 113 start-page: 94 year: 1991 ident: 10.1016/j.compbiomed.2021.104311_bib34 article-title: Recruitment of knee joint ligaments publication-title: J. Biomech. Eng. doi: 10.1115/1.2894090 – volume: 46 start-page: 1351 year: 2013 ident: 10.1016/j.compbiomed.2021.104311_bib8 article-title: The influence of total knee arthroplasty geometry on mid-flexion stability: an experimental and finite element study publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.01.025 – volume: 97 start-page: 232 year: 2010 ident: 10.1016/j.compbiomed.2021.104311_bib52 article-title: Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2009.07.005 – volume: 21 start-page: 180 year: 2014 ident: 10.1016/j.compbiomed.2021.104311_bib2 article-title: Patient satisfaction after primary total and unicompartmental knee arthroplasty: an age-dependent analysis publication-title: Knee doi: 10.1016/j.knee.2013.08.004 – volume: 223 start-page: 321 year: 2013 ident: 10.1016/j.compbiomed.2021.104311_bib33 article-title: Anatomy of the anterolateral ligament of the knee publication-title: J. Anat. doi: 10.1111/joa.12087 – volume: 42 start-page: 2341 year: 2009 ident: 10.1016/j.compbiomed.2021.104311_bib35 article-title: Verification of predicted specimen-specific natural and implanted patellofemoral kinematics during simulated deep knee bend publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.06.028 – volume: 47 start-page: 3201 year: 2014 ident: 10.1016/j.compbiomed.2021.104311_bib41 article-title: Continuum description of the Poisson[U+05F3]s ratio of ligament and tendon under finite deformation publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.05.011 – volume: 183 start-page: 105109 year: 2020 ident: 10.1016/j.compbiomed.2021.104311_bib11 article-title: Biomechanical role of posterior cruciate ligament in total knee arthroplasty: a finite element analysis publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2019.105109 – volume: 65 start-page: 1 year: 2017 ident: 10.1016/j.compbiomed.2021.104311_bib36 article-title: The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.08.030 – volume: 57 start-page: 117 year: 2017 ident: 10.1016/j.compbiomed.2021.104311_bib21 article-title: Combined measurement and modeling of specimen-specific knee mechanics for healthy and ACL-deficient conditions publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.04.008 – volume: 27 start-page: 27 year: 1999 ident: 10.1016/j.compbiomed.2021.104311_bib40 article-title: Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults publication-title: Am. J. Sports Med. doi: 10.1177/03635465990270011301 |
| SSID | ssj0004030 |
| Score | 2.352177 |
| Snippet | A computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic loadings. However, the development... AbstractBackground and objectiveA computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic... Background and objectiveA computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic loadings.... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 104311 |
| SubjectTerms | Boundary conditions Computer applications Constraint modelling Contact pressure Contact stresses Design Electromyography Experimental validation Finite element Finite element method Fitness equipment Fluoroscopy Force Gait In vivo methods and tests Internal Medicine Joints (anatomy) Kinematics Knee Knee kinematics Knee model Ligaments Mathematical models Mechanics Model matching Model testing Motion capture Other Patients Proportional integral derivative Prostheses Quadriceps muscle Rotation Soft tissues Surgical implants Total knee replacement Translation |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1baxUxEB7qKYgv4t2tVSL4urhJNntBRFRaqtCDqIXiS8i11Mruac-2v9_JJrvnxcp5DJvZLLOTmfmSuQC8odS6wiA6qSrEJqUwNteFdrlila6pYky7cDRwvKyOTsqvp-J0B5ZTLkwIq5x04qiobW_CGflbhnambNBeNx9Wl3noGhVuV6cWGiq1VrDvxxJjd2CXhcpYC9j9dLD89n2TKVnwmJSC2qdEcJRie2LEVwjijknviBsZDdefnNLbDNZtDulomA4fwP3kUZKPUQQewo7rHsHd43Rn_hh-fenIzflNTy5wOBZoxdkoX-cB61ty0TlHxn44BP1XskINmJIlyRAqcHRnpPdk6NFJj3Ov3BjHFU4Vn8DJ4cHPz0d56qiQG9EUQ94YzSrhKG2VY6WnlXdeF84rqy21WiscVF4p2wovnLa158Iab6gVXDjf8qew6PrOPQeiWmYaigDI86pUXuha2aZlwqCL2VLvM6gntkmTyo2Hrhd_5BRX9ltuGC4Dw2VkeAZ0plzFkhtb0LTTn5ETl1AJSrQLW9DW_6J167Sb15LKNZOF_DEWM2qCJI6NRYsM3s2UyWGJjsiW6-5PIiTnpTZinsHr-TFu-XCPozrXX4c5BeLylnKRwbMoejOjOEdIX3Ox9_-Xv4B74Uti5OY-LIara_cSvatBv0pb5i-dEyWt priority: 102 providerName: ProQuest |
| Title | In vivo kinematical validated knee model for preclinical testing of total knee replacement |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482521001050 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482521001050 https://dx.doi.org/10.1016/j.compbiomed.2021.104311 https://www.ncbi.nlm.nih.gov/pubmed/33721735 https://www.proquest.com/docview/2521485058 https://www.proquest.com/docview/2501849135 |
| Volume | 132 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250903 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9UwFA9jgvgiflvdRgRf65qkaVp8mmPXO2UXEQcXX0I-5TppL7vdHv3bPWnSjqGDC76kpM1p09OTk_NrzslB6C0h1hUG0ElVATYpubG5LrTLFa20IIpS7cKvgbNFNT8vPy35cgcdj7Ewwa0y6f6o0wdtnc4cJm4erlerEOMLUAIADiVDmseA28tShCwG737fuHmUBYthKKBvQuvkzRN9vILbdgxzB6RISVjwZITcNUXdZYIOU9HsEXqYbEh8FLv5GO249gm6f5ZWyZ-i76ctvl5dd_gCqsOWrNAaJGoV0L3FF61zeMiAg8FixWt4_xQeifuw50b7A3ce9x2Y5bHtpRs8t8J_xGfofHby7XiepxwKueF10ee10bTijpBGOVp6UnnndeG8stoSq7WCSuWVsg333GkrPOPWeEMsZ9z5hj1Hu23XupcIq4aamgDk8awqledaKFs3lBswKhvifYbEyDZp0gbjIc_FLzl6kv2UNwyXgeEyMjxDZKJcx002tqBpxi8jRy6B2pMwE2xBK_5F6zZp_G4kkRsqC_mXjGXo_UR5S0y3fO7eKEJyelS4eVmDIVpn6M10GQZ5WLlRreuuQpsCkHhDGM_Qiyh6E6MYAxAvGH_1X117jR6EWnTl3EO7_eWV2wdzq9cHw3iCUiwFlPXs4wG6d3T6eb6A44eTxZevfwBpJC8h |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVgIuiDcpBYwEx4jYjvMQqhCPVru0u0LQShUX109UWiVLNy3iz_HbGMfO7oWivfQYxRNH4_HMfPY8EHpJiLGZBnRSFIBNcq5NqjJlU0kLVRJJqbL-aGAyLUaH-acjfrSG_gy5MD6sctCJvaI2rfZn5K8p2Jm8AntdvZ39TH3XKH-7OrTQkLG1gtnuS4zFxI49-_sXQLj59vgjrPcrSnd3Dj6M0thlINW8yrq00ooW3BJSS0tzRwpnncqsk0YZYpSS8FA4KU3NHbfKlI5xo50mhjNunS_GBCZgI2d5DeBv4_3O9POXZWZmxkISDGi7HMBYjCUKEWY-aDwk2QNOpcRftzJCrjKQVznAvSHcvYNuRw8Wvwsidxet2eYeujGJd_T30bdxgy9PLlt8Co99QVgYDfJ84s8WDD5trMV9_x0M_jKegcaNyZm48xU_mu-4dbhrARSEsee2jxvzp5gP0OG18PYhWm_axj5GWNZUVwQAl2NFLh1XpTRVTbkGl7YmziWoHNgmdCxv7rtsnIkhju2HWDJceIaLwPAEkQXlLJT4WIGmHlZGDFwCpSvADq1AW_6L1s6j9pgLIuZUZOJrXzyp8pLfNzLNEvRmQRkdpOD4rDjv1iBCYjHVclsl6MXiNagYf28kG9te-DEZqfKaMJ6gR0H0FoxirARQy_jm_z_-HN0cHUz2xf54uvcE3fJ_FaJGt9B6d35hn4Jn16lncftgdHzdO_YvAQ1nnw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRaq4IN6EFjASHKPGdpyHEEKIsupSWiFBpRUX4ycqrZKlmxbx1_h1jONk90LRXnqM4omj8Xge9jczAC8otS4zGJ0UBcYmuTA21Zl2qWKFLqliTLtwNHB4VOwf5x9mYrYBf8ZcmACrHHVir6hta8IZ-S5DO5NXaK-rXT_AIj7tTd7Mf6ahg1S4aR3baUQROXC_f2H4tng93cO1fsnY5P2Xd_vp0GEgNaLKurQymhXCUVorx3JPC--8zpxXVltqtVb4UHilbC28cNqWngtrvKFWcOF8KMSE6v9GyXkd4ITlrFzlZGY8pr-gnssxDBtQRBFbFuDiMb0eI1RGw0Urp_Qq03iV69ubwMltuDX4ruRtFLY7sOGau7B1ONzO34Ov04Zcnly25BQf-1KwOBol-SScKlhy2jhH-s47BD1lMkddO6Rlki7U-mi-k9aTrsVwII49dz1iLJxf3ofja-HsA9hs2sY9AqJqZiqKoZbnRa680KWyVc2EQWe2pt4nUI5sk2YobB76a5zJEcH2Q64YLgPDZWR4AnRJOY_FPdagqceVkSOXUN1KtEBr0Jb_onWLQW8sJJULJjP5uS-bVAWZ71uYZgm8WlIOrlF0edacd2cUIbmcarWhEni-fI3KJdwYqca1F2FMRqu8plwk8DCK3pJRnJcYznLx-P8ffwZbuE_lx-nRwTbcDD8V4aI7sNmdX7gn6NJ1-mm_dwh8u-7N-hdGTmU5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+kinematical+validated+knee+model+for+preclinical+testing+of+total+knee+replacement&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Shu%2C+Liming&rft.au=Yao%2C+Jiang&rft.au=Yamamoto%2C+Ko&rft.au=Sato%2C+Takashi&rft.date=2021-05-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=132&rft_id=info:doi/10.1016%2Fj.compbiomed.2021.104311&rft.externalDocID=S0010482521001050 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif |