In vivo kinematical validated knee model for preclinical testing of total knee replacement

A computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic loadings. However, the development of a highly mimicked dynamic whole knee model with specified ligament constraints that provides high predictive accuracy with in-vivo experim...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 132; p. 104311
Main Authors Shu, Liming, Yao, Jiang, Yamamoto, Ko, Sato, Takashi, Sugita, Naohiko
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.05.2021
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2021.104311

Cover

Abstract A computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic loadings. However, the development of a highly mimicked dynamic whole knee model with specified ligament constraints that provides high predictive accuracy with in-vivo experiments remains a challenge. In the present study, a musculoskeletal integrated force-driven explicit finite-element knee model with tibiofemoral and patellofemoral joints constrained with detailed soft tissue was developed. A proportional-integral-derivative controller was concurrently added to the knee model to track the boundary conditions. The actuations of the quadriceps and hamstrings were predicted via a subject-specific musculoskeletal model and matched with electromyography results. Compared to in-vivo fluoroscopic results in a gait cycle, the predicted results of the kinematics of the tibiofemoral joint exhibited an agreement in terms of tendency and magnitude (anterior–posterior translation: RMSE = 1.1 mm, r2 = 0.87; inferior–superior translation: RMSE = 0.83 mm, r2 = 0.84; medial–lateral translation: RMSE = 0.82 mm, r2 = 0.05; flexion–extension rotation: RMSE = 0.23°, r2 = 1; internal-external rotation: RMSE = 1.85°, r2 = 0.65; varus–valgus rotation: RMSE = 1.39°, r2 = 0.08). Contact mechanics, including the contact area, pressure, and stress, were synchronously simulated on the tibiofemoral and patellofemoral joints. The study provides a calibrated knee model and a kinematical validation approach that can be widely used in preclinical testing and knee prosthesis design. •A musculoskeletal integrated force-driven finite element knee model was developed and verified by experiments.•The predicted results of kinematics of the tibiofemoral joint exhibited an agreement with in-vivo fluoroscopic results.•Contact mechanics including the contact area, pressure, and stress can be synchronously simulated by the proposed knee model.
AbstractList AbstractBackground and objectiveA computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic loadings. However, the development of a highly mimicked dynamic whole knee model with specified ligament constraints that provides high predictive accuracy with in -vivo experiments remains a challenge. MethodsIn the present study, a musculoskeletal integrated force-driven explicit finite-element knee model with tibiofemoral and patellofemoral joints constrained with detailed soft tissue was developed. A proportional-integral-derivative controller was concurrently added to the knee model to track the boundary conditions. The actuations of the quadriceps and hamstrings were predicted via a subject-specific musculoskeletal model and matched with electromyography results. ResultsCompared to in -vivo fluoroscopic results in a gait cycle, the predicted results of the kinematics of the tibiofemoral joint exhibited an agreement in terms of tendency and magnitude (anterior–posterior translation: RMSE = 1.1 mm, r2 = 0.87; inferior–superior translation: RMSE = 0.83 mm, r2 = 0.84; medial–lateral translation: RMSE = 0.82 mm, r2 = 0.05; flexion–extension rotation: RMSE = 0.23°, r2 = 1; internal-external rotation: RMSE = 1.85°, r2 = 0.65; varus–valgus rotation: RMSE = 1.39°, r2 = 0.08). Contact mechanics, including the contact area, pressure, and stress, were synchronously simulated on the tibiofemoral and patellofemoral joints. ConclusionsThe study provides a calibrated knee model and a kinematical validation approach that can be widely used in preclinical testing and knee prosthesis design.
A computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic loadings. However, the development of a highly mimicked dynamic whole knee model with specified ligament constraints that provides high predictive accuracy with in-vivo experiments remains a challenge. In the present study, a musculoskeletal integrated force-driven explicit finite-element knee model with tibiofemoral and patellofemoral joints constrained with detailed soft tissue was developed. A proportional-integral-derivative controller was concurrently added to the knee model to track the boundary conditions. The actuations of the quadriceps and hamstrings were predicted via a subject-specific musculoskeletal model and matched with electromyography results. Compared to in-vivo fluoroscopic results in a gait cycle, the predicted results of the kinematics of the tibiofemoral joint exhibited an agreement in terms of tendency and magnitude (anterior–posterior translation: RMSE = 1.1 mm, r2 = 0.87; inferior–superior translation: RMSE = 0.83 mm, r2 = 0.84; medial–lateral translation: RMSE = 0.82 mm, r2 = 0.05; flexion–extension rotation: RMSE = 0.23°, r2 = 1; internal-external rotation: RMSE = 1.85°, r2 = 0.65; varus–valgus rotation: RMSE = 1.39°, r2 = 0.08). Contact mechanics, including the contact area, pressure, and stress, were synchronously simulated on the tibiofemoral and patellofemoral joints. The study provides a calibrated knee model and a kinematical validation approach that can be widely used in preclinical testing and knee prosthesis design. •A musculoskeletal integrated force-driven finite element knee model was developed and verified by experiments.•The predicted results of kinematics of the tibiofemoral joint exhibited an agreement with in-vivo fluoroscopic results.•Contact mechanics including the contact area, pressure, and stress can be synchronously simulated by the proposed knee model.
A computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic loadings. However, the development of a highly mimicked dynamic whole knee model with specified ligament constraints that provides high predictive accuracy with in-vivo experiments remains a challenge. In the present study, a musculoskeletal integrated force-driven explicit finite-element knee model with tibiofemoral and patellofemoral joints constrained with detailed soft tissue was developed. A proportional-integral-derivative controller was concurrently added to the knee model to track the boundary conditions. The actuations of the quadriceps and hamstrings were predicted via a subject-specific musculoskeletal model and matched with electromyography results. Compared to in-vivo fluoroscopic results in a gait cycle, the predicted results of the kinematics of the tibiofemoral joint exhibited an agreement in terms of tendency and magnitude (anterior-posterior translation: RMSE = 1.1 mm, r  = 0.87; inferior-superior translation: RMSE = 0.83 mm, r  = 0.84; medial-lateral translation: RMSE = 0.82 mm, r  = 0.05; flexion-extension rotation: RMSE = 0.23°, r  = 1; internal-external rotation: RMSE = 1.85°, r  = 0.65; varus-valgus rotation: RMSE = 1.39°, r  = 0.08). Contact mechanics, including the contact area, pressure, and stress, were synchronously simulated on the tibiofemoral and patellofemoral joints. The study provides a calibrated knee model and a kinematical validation approach that can be widely used in preclinical testing and knee prosthesis design.
A computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic loadings. However, the development of a highly mimicked dynamic whole knee model with specified ligament constraints that provides high predictive accuracy with in-vivo experiments remains a challenge.BACKGROUND AND OBJECTIVEA computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic loadings. However, the development of a highly mimicked dynamic whole knee model with specified ligament constraints that provides high predictive accuracy with in-vivo experiments remains a challenge.In the present study, a musculoskeletal integrated force-driven explicit finite-element knee model with tibiofemoral and patellofemoral joints constrained with detailed soft tissue was developed. A proportional-integral-derivative controller was concurrently added to the knee model to track the boundary conditions. The actuations of the quadriceps and hamstrings were predicted via a subject-specific musculoskeletal model and matched with electromyography results.METHODSIn the present study, a musculoskeletal integrated force-driven explicit finite-element knee model with tibiofemoral and patellofemoral joints constrained with detailed soft tissue was developed. A proportional-integral-derivative controller was concurrently added to the knee model to track the boundary conditions. The actuations of the quadriceps and hamstrings were predicted via a subject-specific musculoskeletal model and matched with electromyography results.Compared to in-vivo fluoroscopic results in a gait cycle, the predicted results of the kinematics of the tibiofemoral joint exhibited an agreement in terms of tendency and magnitude (anterior-posterior translation: RMSE = 1.1 mm, r2 = 0.87; inferior-superior translation: RMSE = 0.83 mm, r2 = 0.84; medial-lateral translation: RMSE = 0.82 mm, r2 = 0.05; flexion-extension rotation: RMSE = 0.23°, r2 = 1; internal-external rotation: RMSE = 1.85°, r2 = 0.65; varus-valgus rotation: RMSE = 1.39°, r2 = 0.08). Contact mechanics, including the contact area, pressure, and stress, were synchronously simulated on the tibiofemoral and patellofemoral joints.RESULTSCompared to in-vivo fluoroscopic results in a gait cycle, the predicted results of the kinematics of the tibiofemoral joint exhibited an agreement in terms of tendency and magnitude (anterior-posterior translation: RMSE = 1.1 mm, r2 = 0.87; inferior-superior translation: RMSE = 0.83 mm, r2 = 0.84; medial-lateral translation: RMSE = 0.82 mm, r2 = 0.05; flexion-extension rotation: RMSE = 0.23°, r2 = 1; internal-external rotation: RMSE = 1.85°, r2 = 0.65; varus-valgus rotation: RMSE = 1.39°, r2 = 0.08). Contact mechanics, including the contact area, pressure, and stress, were synchronously simulated on the tibiofemoral and patellofemoral joints.The study provides a calibrated knee model and a kinematical validation approach that can be widely used in preclinical testing and knee prosthesis design.CONCLUSIONSThe study provides a calibrated knee model and a kinematical validation approach that can be widely used in preclinical testing and knee prosthesis design.
Background and objectiveA computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic loadings. However, the development of a highly mimicked dynamic whole knee model with specified ligament constraints that provides high predictive accuracy with in-vivo experiments remains a challenge.MethodsIn the present study, a musculoskeletal integrated force-driven explicit finite-element knee model with tibiofemoral and patellofemoral joints constrained with detailed soft tissue was developed. A proportional-integral-derivative controller was concurrently added to the knee model to track the boundary conditions. The actuations of the quadriceps and hamstrings were predicted via a subject-specific musculoskeletal model and matched with electromyography results.ResultsCompared to in-vivo fluoroscopic results in a gait cycle, the predicted results of the kinematics of the tibiofemoral joint exhibited an agreement in terms of tendency and magnitude (anterior–posterior translation: RMSE = 1.1 mm, r2 = 0.87; inferior–superior translation: RMSE = 0.83 mm, r2 = 0.84; medial–lateral translation: RMSE = 0.82 mm, r2 = 0.05; flexion–extension rotation: RMSE = 0.23°, r2 = 1; internal-external rotation: RMSE = 1.85°, r2 = 0.65; varus–valgus rotation: RMSE = 1.39°, r2 = 0.08). Contact mechanics, including the contact area, pressure, and stress, were synchronously simulated on the tibiofemoral and patellofemoral joints.ConclusionsThe study provides a calibrated knee model and a kinematical validation approach that can be widely used in preclinical testing and knee prosthesis design.
ArticleNumber 104311
Author Yao, Jiang
Sato, Takashi
Yamamoto, Ko
Shu, Liming
Sugita, Naohiko
Author_xml – sequence: 1
  givenname: Liming
  orcidid: 0000-0002-5780-9420
  surname: Shu
  fullname: Shu, Liming
  email: l.shu@mfg.t.u-tokyo.ac.jp
  organization: Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
– sequence: 2
  givenname: Jiang
  surname: Yao
  fullname: Yao, Jiang
  organization: Dassault Systemes Simulia Corp, Johnston, RI, USA
– sequence: 3
  givenname: Ko
  orcidid: 0000-0002-9558-3880
  surname: Yamamoto
  fullname: Yamamoto, Ko
  organization: Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
– sequence: 4
  givenname: Takashi
  surname: Sato
  fullname: Sato, Takashi
  organization: Niigata Medical Center, Niigata, Japan
– sequence: 5
  givenname: Naohiko
  orcidid: 0000-0002-1369-0747
  surname: Sugita
  fullname: Sugita, Naohiko
  organization: Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33721735$$D View this record in MEDLINE/PubMed
BookMark eNqNkkFrGzEQhUVJaZy0f6EIeullXY12Ze9eQpvQpIFAD20vvQitNCqydyVXkg3599XGcQuGgk-Shm-ehvfmgpz54JEQCmwODBYfVnMdxk3vwohmzhmHUm5qgBdkBu2yq5iomzMyYwxY1bRcnJOLlFaMsYbV7BU5r-slh2UtZuTnvac7twt07TyOKjutBrpTgzMqo6Frj0jHYHCgNkS6iagH55-gjCk7_4sGS3PIpfDERtwMSuOIPr8mL60aEr55Pi_Jj9vP32--VA9f7-5vPj1UWrQsV63u-UIgQKeQNxYWFm3P0CrTGzB9r8pjYZUynbACe7O0tTDaajCiFmi7-pK83-tuYvi9LVPJ0SWNw6A8hm2SXDBomw5qUdB3R-gqbKMv0xWKQ9MKJtpCvX2mtn0xWG6iG1V8lAfXCnC1B3QMKUW0UrtcvAs-R-UGCUxOMcmV_BeTnGKS-5iKQHskcPjjhNbrfSsWS3cOo0zaoddoXAknSxPcKSJXRyKHWNf4iOmvKSATl0x-mxZp2iMO002wIvDx_wKnzfAHBK_fEw
CitedBy_id crossref_primary_10_1302_2046_3758_1110_BJR_2022_0039_R1
crossref_primary_10_1080_10255842_2024_2329946
crossref_primary_10_1007_s10439_021_02812_0
crossref_primary_10_3390_app112110322
crossref_primary_10_1007_s11042_024_19661_3
crossref_primary_10_1111_os_13980
crossref_primary_10_3390_ani14223296
Cites_doi 10.1115/1.1634282
10.1302/0301-620X.81B4.0810636
10.1016/j.jbiomech.2011.11.052
10.1007/s00402-012-1591-7
10.1016/j.jbiomech.2019.07.042
10.1016/j.jbiomech.2016.07.040
10.1016/j.medengphy.2020.11.009
10.1016/j.jbiomech.2015.09.007
10.1049/bsbt.2019.0012
10.2106/00004623-199409000-00008
10.1016/S0021-9290(03)00255-0
10.1002/jor.1100170605
10.1016/S0021-9290(03)00176-3
10.1002/jor.21211
10.1177/0363546503262694
10.1016/S0021-9290(01)00179-8
10.1016/j.jbiomech.2012.05.035
10.1016/j.matdes.2008.03.032
10.1115/1.3138397
10.1002/jor.1100180115
10.2106/JBJS.J.00772
10.1016/j.jbiomech.2014.04.024
10.1016/j.cmpb.2020.105446
10.1016/j.cmpb.2020.105671
10.1115/1.4033882
10.1002/jor.22023
10.1097/JSA.0b013e318210c0aa
10.1016/j.jbiomech.2018.07.008
10.1016/j.jbiomech.2008.04.021
10.1016/j.compbiomed.2019.03.005
10.1115/1.4001678
10.1115/1.1992522
10.1007/s10237-020-01295-7
10.1109/10.102791
10.1016/j.jbiomech.2018.09.009
10.1016/1050-6411(91)90035-4
10.1007/s00167-005-0020-7
10.1007/s10439-020-02555-4
10.1016/j.medengphy.2014.06.022
10.1007/s11999-012-2745-1
10.1177/0363546508322890
10.1115/1.2894090
10.1016/j.jbiomech.2013.01.025
10.1016/j.cmpb.2009.07.005
10.1016/j.knee.2013.08.004
10.1111/joa.12087
10.1016/j.jbiomech.2009.06.028
10.1016/j.jbiomech.2014.05.011
10.1016/j.cmpb.2019.105109
10.1016/j.jbiomech.2017.08.030
10.1016/j.jbiomech.2017.04.008
10.1177/03635465990270011301
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
2021. Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
– notice: 2021. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2021.104311
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic

Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 104311
ExternalDocumentID 33721735
10_1016_j_compbiomed_2021_104311
S0010482521001050
1_s2_0_S0010482521001050
Genre Journal Article
GeographicLocations United States--US
Kansas
GeographicLocations_xml – name: Kansas
– name: United States--US
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
PUEGO
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c580t-8cb265e119ae24f16fefb0efadbd1dbbab0e6faad95f5ebd7f35dcfc1d535ef93
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Sun Sep 28 00:16:42 EDT 2025
Tue Oct 07 06:15:05 EDT 2025
Thu Apr 03 07:07:19 EDT 2025
Wed Oct 01 05:26:12 EDT 2025
Thu Apr 24 22:58:49 EDT 2025
Fri Feb 23 02:39:50 EST 2024
Tue Feb 25 20:08:36 EST 2025
Tue Oct 14 19:33:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Knee kinematics
Experimental validation
Knee model
Total knee replacement
Finite element
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c580t-8cb265e119ae24f16fefb0efadbd1dbbab0e6faad95f5ebd7f35dcfc1d535ef93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9558-3880
0000-0002-1369-0747
0000-0002-5780-9420
PMID 33721735
PQID 2521485058
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2501849135
proquest_journals_2521485058
pubmed_primary_33721735
crossref_citationtrail_10_1016_j_compbiomed_2021_104311
crossref_primary_10_1016_j_compbiomed_2021_104311
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2021_104311
elsevier_clinicalkeyesjournals_1_s2_0_S0010482521001050
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2021_104311
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Hirokawa, Solomonow, Luo, Lu, D'Ambrosia (bib22) 1991; 1
Ali, Clary, Smoger, Dennis, Fitzpatrick, Rullkoetter, Laz (bib50) 2020; 19
Li, Marra, Verdonschot, Lu (bib54) 2021; 87
Clary, Fitzpatrick, Maletsky, Rullkoetter (bib8) 2013; 46
MacWilliams, Wilson, Desjardins, Romero, Chao (bib16) 1999; 17
Fregly, Bei, Sylvester (bib48) 2003; 36
Okamoto, Okazaki, Mitsuyasu, Matsuda, Iwamoto (bib31) 2013; 471
Stäubli, Schatzmann, Brunner, Rincón, Nolte (bib40) 1999; 27
Hughston (bib28) 1994; 76
Swedberg, Reese, Maas, Ellis, Weiss (bib41) 2014; 47
Fitzpatrick, Maag, Clary, Metcalfe, Langhorn, Rullkoetter (bib15) 2016; 49
Blankevoort, Huiskes, de Lange (bib34) 1991; 113
Halilaj, Rajagopal, Fiterau, Hicks, Hastie, Delp (bib51) 2018; 81
Von Keudell, Sodha, Collins, Minas, Fitz, Gomoll (bib2) 2014; 21
Bellemans, Vereecke, Verdonk, Maes, Victor, Claes (bib33) 2013; 223
Halloran, Easley, Petrella, Rullkoetter (bib25) 2005; 127
Flandry, Hommel (bib32) 2011; 19
Carr, Goswami (bib1) 2009; 30
Nikkhoo, Hassani, Tavakoli Golpayegani, Karimi (bib11) 2020; 183
Fitzpatrick, Baldwin, Ali, Laz, Rullkoetter (bib47) 2011; 29
Fitzpatrick, a Baldwin, Clary, Maletsky, Rullkoetter (bib20) 2012; 5842
Kwak, Ahmad, Gardner, Grelsamer, Henry, Blankevoort, Ateshian, Mow (bib17) 2000; 18
Ali, Harris, Shalhoub, Maletsky, Rullkoetter, Shelburne (bib21) 2017; 57
Shu, Yamamoto, Yao, Saraswat, Liu, Mitsuishi, Sugita (bib24) 2018; 77
Delp, Loan, Hoy, Zajac, Topp, Rosen (bib43) 1990; 37
Li, Lu, Miller, Jin, Hua (bib53) 2019; 94
Goldsmith, Smith, Jansson, LaPrade, Wijdicks (bib7) 2014; 36
Shu, Teng, Shao, Zheng, Liu, Liu (bib12) 2020; 195
Arab, Merdji, Benaissa, Roy, Bachir Bouiadjra, Layadi, Ouddane, Mukdadi (bib10) 2020; 192
Abdel-Jaber, Belvedere, Leardini, Affatato (bib5) 2015; 48
Fitzpatrick, Komistek, Rullkoetter (bib19) 2014; 47
Fitzpatrick, Clary, Rullkoetter (bib45) 2012; 45
Baldwin, Clary, Fitzpatrick, Deacy, Maletsky, Rullkoetter (bib18) 2012; 45
Varadarajan, Moynihan, D'Lima, Colwell, Li (bib27) 2008; 41
Harris, Cyr, Ali, Fitzpatrick, Rullkoetter, Maletsky, Shelburne (bib37) 2016; 138
Shu, Li, Sugita (bib9) 2020; 6
Villa, Migliavacca, Gastaldi, Colombo, Pietrabissa (bib49) 2004; 37
Baldwin, Langenderfer, Rullkoetter, Laz (bib52) 2010; 97
Grood, Suntay (bib44) 1983; 105
Ritter, Davis, Meding, Pierson, Berend, Malinzak (bib4) 2011; 93
McLean, Su, van den Bogert (bib42) 2003; 125
Shu, Hashimoto, Sugita (bib14) 2021; 49
LaPrade, Tso, Wentorf (bib38) 2004; 32
Baldwin, Clary, Maletsky, Rullkoetter (bib35) 2009; 42
Fregly, Besier, Lloyd, Delp, Banks, Pandy, D'Lima (bib23) 2012; 30
McKay, Beckman, Conover (bib46) 1979; 21
Griffith, Wijdicks, LaPrade, Armitage, Johansen, Engebretsen (bib39) 2009; 37
Shu, Yamamoto, Kai, Inagaki, Sugita (bib13) 2019; 108
Godest, Beaugonin, Haug, Taylor, Gregson (bib26) 2002; 35
Naghibi Beidokhti, Janssen, van de Groes, Hazrati, Van den Boogaard, Verdonschot (bib36) 2017; 65
Luring, Bathis, Oczipka, Trepte, Lufen, Perlick, Grifka (bib3) 2006; 14
a Shahane, Ibbotson, Strachan, Bickerstaff (bib29) 1999; 81
Lim, Bae, Bae, Moon, Shyam, Wang (bib30) 2012; 132
Halloran, Clary, Maletsky, Taylor, Petrella, Rullkoetter (bib6) 2010; 132
Swedberg (10.1016/j.compbiomed.2021.104311_bib41) 2014; 47
Fitzpatrick (10.1016/j.compbiomed.2021.104311_bib15) 2016; 49
Grood (10.1016/j.compbiomed.2021.104311_bib44) 1983; 105
Lim (10.1016/j.compbiomed.2021.104311_bib30) 2012; 132
Flandry (10.1016/j.compbiomed.2021.104311_bib32) 2011; 19
Fitzpatrick (10.1016/j.compbiomed.2021.104311_bib19) 2014; 47
Harris (10.1016/j.compbiomed.2021.104311_bib37) 2016; 138
Fitzpatrick (10.1016/j.compbiomed.2021.104311_bib20) 2012; 5842
Naghibi Beidokhti (10.1016/j.compbiomed.2021.104311_bib36) 2017; 65
Shu (10.1016/j.compbiomed.2021.104311_bib13) 2019; 108
Shu (10.1016/j.compbiomed.2021.104311_bib12) 2020; 195
Godest (10.1016/j.compbiomed.2021.104311_bib26) 2002; 35
Von Keudell (10.1016/j.compbiomed.2021.104311_bib2) 2014; 21
Bellemans (10.1016/j.compbiomed.2021.104311_bib33) 2013; 223
Baldwin (10.1016/j.compbiomed.2021.104311_bib52) 2010; 97
Baldwin (10.1016/j.compbiomed.2021.104311_bib35) 2009; 42
Halloran (10.1016/j.compbiomed.2021.104311_bib6) 2010; 132
Shu (10.1016/j.compbiomed.2021.104311_bib9) 2020; 6
Hirokawa (10.1016/j.compbiomed.2021.104311_bib22) 1991; 1
Shu (10.1016/j.compbiomed.2021.104311_bib24) 2018; 77
Shu (10.1016/j.compbiomed.2021.104311_bib14) 2021; 49
Okamoto (10.1016/j.compbiomed.2021.104311_bib31) 2013; 471
Fitzpatrick (10.1016/j.compbiomed.2021.104311_bib47) 2011; 29
Nikkhoo (10.1016/j.compbiomed.2021.104311_bib11) 2020; 183
Fitzpatrick (10.1016/j.compbiomed.2021.104311_bib45) 2012; 45
Li (10.1016/j.compbiomed.2021.104311_bib53) 2019; 94
Goldsmith (10.1016/j.compbiomed.2021.104311_bib7) 2014; 36
Ali (10.1016/j.compbiomed.2021.104311_bib21) 2017; 57
Halloran (10.1016/j.compbiomed.2021.104311_bib25) 2005; 127
McLean (10.1016/j.compbiomed.2021.104311_bib42) 2003; 125
MacWilliams (10.1016/j.compbiomed.2021.104311_bib16) 1999; 17
Ali (10.1016/j.compbiomed.2021.104311_bib50) 2020; 19
Kwak (10.1016/j.compbiomed.2021.104311_bib17) 2000; 18
Ritter (10.1016/j.compbiomed.2021.104311_bib4) 2011; 93
Fregly (10.1016/j.compbiomed.2021.104311_bib23) 2012; 30
Delp (10.1016/j.compbiomed.2021.104311_bib43) 1990; 37
Halilaj (10.1016/j.compbiomed.2021.104311_bib51) 2018; 81
Li (10.1016/j.compbiomed.2021.104311_bib54) 2021; 87
Carr (10.1016/j.compbiomed.2021.104311_bib1) 2009; 30
Arab (10.1016/j.compbiomed.2021.104311_bib10) 2020; 192
Varadarajan (10.1016/j.compbiomed.2021.104311_bib27) 2008; 41
Villa (10.1016/j.compbiomed.2021.104311_bib49) 2004; 37
Clary (10.1016/j.compbiomed.2021.104311_bib8) 2013; 46
a Shahane (10.1016/j.compbiomed.2021.104311_bib29) 1999; 81
Baldwin (10.1016/j.compbiomed.2021.104311_bib18) 2012; 45
Luring (10.1016/j.compbiomed.2021.104311_bib3) 2006; 14
Griffith (10.1016/j.compbiomed.2021.104311_bib39) 2009; 37
McKay (10.1016/j.compbiomed.2021.104311_bib46) 1979; 21
Hughston (10.1016/j.compbiomed.2021.104311_bib28) 1994; 76
Blankevoort (10.1016/j.compbiomed.2021.104311_bib34) 1991; 113
Fregly (10.1016/j.compbiomed.2021.104311_bib48) 2003; 36
LaPrade (10.1016/j.compbiomed.2021.104311_bib38) 2004; 32
Abdel-Jaber (10.1016/j.compbiomed.2021.104311_bib5) 2015; 48
Stäubli (10.1016/j.compbiomed.2021.104311_bib40) 1999; 27
References_xml – volume: 195
  start-page: 105671
  year: 2020
  ident: bib12
  article-title: Biomechanical responses of temporomandibular joints during the lateral protrusions: a 3D finite element study
  publication-title: Comput. Methods Progr. Biomed.
– volume: 49
  start-page: 322
  year: 2021
  end-page: 333
  ident: bib14
  article-title: Enhanced in-silico polyethylene wear simulation of total knee replacements during daily activities
  publication-title: Ann. Biomed. Eng.
– volume: 42
  start-page: 2341
  year: 2009
  end-page: 2348
  ident: bib35
  article-title: Verification of predicted specimen-specific natural and implanted patellofemoral kinematics during simulated deep knee bend
  publication-title: J. Biomech.
– volume: 77
  start-page: 146
  year: 2018
  end-page: 154
  ident: bib24
  article-title: A subject-specific finite element musculoskeletal framework for mechanics analysis of a total knee replacement
  publication-title: J. Biomech.
– volume: 1
  start-page: 199
  year: 1991
  end-page: 208
  ident: bib22
  article-title: Muscular co-contraction and control of knee stability
  publication-title: J. Electromyogr. Kinesiol.
– volume: 87
  start-page: 38
  year: 2021
  end-page: 44
  ident: bib54
  article-title: A three-dimensional finite-element model of gluteus medius muscle incorporating inverse-dynamics-based optimization for simulation of non-uniform muscle contraction
  publication-title: Med. Eng. Phys.
– volume: 132
  start-page: 1631
  year: 2012
  end-page: 1636
  ident: bib30
  article-title: Relative role changing of lateral collateral ligament on the posterolateral rotatory instability according to the knee flexion angles: a biomechanical comparative study of role of lateral collateral ligament and popliteofibular ligament
  publication-title: Arch. Orthop. Trauma Surg.
– volume: 138
  start-page: 1
  year: 2016
  end-page: 8
  ident: bib37
  article-title: A combined experimental and computational approach to subject-specific analysis of knee joint laxity
  publication-title: J. Biomech. Eng.
– volume: 97
  start-page: 232
  year: 2010
  end-page: 240
  ident: bib52
  article-title: Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach
  publication-title: Comput. Methods Progr. Biomed.
– volume: 45
  start-page: 2092
  year: 2012
  end-page: 2102
  ident: bib45
  article-title: The role of patient, surgical, and implant design variation in total knee replacement performance
  publication-title: J. Biomech.
– volume: 132
  year: 2010
  ident: bib6
  article-title: Verification of predicted knee replacement kinematics during simulated gait in the Kansas knee simulator
  publication-title: J. Biomech. Eng.
– volume: 37
  start-page: 757
  year: 1990
  end-page: 767
  ident: bib43
  article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 48
  start-page: 3830
  year: 2015
  end-page: 3836
  ident: bib5
  article-title: Wear simulation of total knee prostheses using load and kinematics waveforms from stair climbing
  publication-title: J. Biomech.
– volume: 46
  start-page: 1351
  year: 2013
  end-page: 1357
  ident: bib8
  article-title: The influence of total knee arthroplasty geometry on mid-flexion stability: an experimental and finite element study
  publication-title: J. Biomech.
– volume: 113
  start-page: 94
  year: 1991
  ident: bib34
  article-title: Recruitment of knee joint ligaments
  publication-title: J. Biomech. Eng.
– volume: 37
  start-page: 140
  year: 2009
  end-page: 148
  ident: bib39
  article-title: Force measurements on the posterior oblique ligament and superficial medial collateral ligament proximal and distal divisions to applied loads
  publication-title: Am. J. Sports Med.
– volume: 19
  start-page: 82
  year: 2011
  end-page: 92
  ident: bib32
  article-title: Normal anatomy and biomechanics of the knee
  publication-title: Sports Med. Arthrosc.
– volume: 49
  start-page: 3177
  year: 2016
  end-page: 3184
  ident: bib15
  article-title: Validation of a new computational 6-DOF knee simulator during dynamic activities
  publication-title: J. Biomech.
– volume: 6
  start-page: 3
  year: 2020
  end-page: 11
  ident: bib9
  article-title: Systematic review of computational modelling for biomechanics analysis of total knee replacement
  publication-title: Biosurface and Biotribology
– volume: 65
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib36
  article-title: The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint
  publication-title: J. Biomech.
– volume: 32
  start-page: 1695
  year: 2004
  end-page: 1701
  ident: bib38
  article-title: Force measurements on the fibular collateral ligament, popliteofibular ligament, and popliteus tendon to applied loads
  publication-title: Am. J. Sports Med.
– volume: 108
  start-page: 101
  year: 2019
  end-page: 110
  ident: bib13
  article-title: Symmetrical cruciate-retaining versus medial pivot prostheses: the effect of intercondylar sagittal conformity on knee kinematics and contact mechanics
  publication-title: Comput. Biol. Med.
– volume: 223
  start-page: 321
  year: 2013
  end-page: 328
  ident: bib33
  article-title: Anatomy of the anterolateral ligament of the knee
  publication-title: J. Anat.
– volume: 76
  start-page: 1328
  year: 1994
  end-page: 1344
  ident: bib28
  article-title: The importance of the posterior oblique ligament in repairs of acute tears of the medial ligaments in knees with and without an associated rupture of the anterior cruciate ligament. Results of long-term follow-up
  publication-title: J. Bone Jt. Surg. - Ser. A.
– volume: 5842
  start-page: 3
  year: 2012
  ident: bib20
  article-title: Evaluating knee replacement mechanics during ADL with PID-controlled dynamic finite element analysis
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 47
  start-page: 3201
  year: 2014
  end-page: 3209
  ident: bib41
  article-title: Continuum description of the Poisson[U+05F3]s ratio of ligament and tendon under finite deformation
  publication-title: J. Biomech.
– volume: 183
  start-page: 105109
  year: 2020
  ident: bib11
  article-title: Biomechanical role of posterior cruciate ligament in total knee arthroplasty: a finite element analysis
  publication-title: Comput. Methods Progr. Biomed.
– volume: 81
  start-page: 636
  year: 1999
  end-page: 642
  ident: bib29
  article-title: The popliteofibular ligament. An anatomical study of the posterolateral corner of the knee
  publication-title: J. Bone Jt. Surg.
– volume: 30
  start-page: 503
  year: 2012
  end-page: 513
  ident: bib23
  article-title: Grand challenge competition to predict in vivo knee loads
  publication-title: J. Orthop. Res.
– volume: 105
  start-page: 136
  year: 1983
  end-page: 144
  ident: bib44
  article-title: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee
  publication-title: J. Biomech. Eng.
– volume: 17
  start-page: 817
  year: 1999
  end-page: 822
  ident: bib16
  article-title: Hamstrings cocontraction reduces internal rotation, anterior translation, and anterior cruciate ligament load in weight-bearing flexion
  publication-title: J. Orthop. Res.
– volume: 37
  start-page: 45
  year: 2004
  end-page: 53
  ident: bib49
  article-title: Contact stresses and fatigue life in a knee prosthesis: comparison between in vitro measurements and computational simulations
  publication-title: J. Biomech.
– volume: 21
  start-page: 180
  year: 2014
  end-page: 184
  ident: bib2
  article-title: Patient satisfaction after primary total and unicompartmental knee arthroplasty: an age-dependent analysis
  publication-title: Knee
– volume: 94
  start-page: 230
  year: 2019
  end-page: 234
  ident: bib53
  article-title: Development of a finite element musculoskeletal model with the ability to predict contractions of three-dimensional muscles
  publication-title: J. Biomech.
– volume: 21
  start-page: 239
  year: 1979
  end-page: 245
  ident: bib46
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
– volume: 471
  start-page: 1334
  year: 2013
  end-page: 1342
  ident: bib31
  article-title: Lateral soft tissue laxity increases but medial laxity does not contract with varus deformity in total knee arthroplasty knee
  publication-title: Clin. Orthop. Relat. Res.
– volume: 41
  start-page: 2159
  year: 2008
  end-page: 2168
  ident: bib27
  article-title: In vivo contact kinematics and contact forces of the knee after total knee arthroplasty during dynamic weight-bearing activities
  publication-title: J. Biomech.
– volume: 29
  start-page: 232
  year: 2011
  end-page: 239
  ident: bib47
  article-title: Comparison of patellar bone strain in the natural and implanted knee during simulated deep flexion
  publication-title: J. Orthop. Res.
– volume: 36
  start-page: 1331
  year: 2014
  end-page: 1337
  ident: bib7
  article-title: Characterization of robotic system passive path repeatability during specimen removal and reinstallation for in vitro knee joint testing
  publication-title: Med. Eng. Phys.
– volume: 14
  start-page: 605
  year: 2006
  end-page: 611
  ident: bib3
  article-title: Two-year follow-up on joint stability and muscular function comparing rotating versus fixed bearing TKR, Knee Surgery, Sport
  publication-title: Traumatol. Arthrosc.
– volume: 45
  start-page: 474
  year: 2012
  end-page: 483
  ident: bib18
  article-title: Dynamic finite element knee simulation for evaluation of knee replacement mechanics
  publication-title: J. Biomech.
– volume: 47
  start-page: 2398
  year: 2014
  end-page: 2405
  ident: bib19
  article-title: Developing simulations to reproduce in vivo fluoroscopy kinematics in total knee replacement patients
  publication-title: J. Biomech.
– volume: 81
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib51
  article-title: Machine learning in human movement biomechanics: best practices, common pitfalls, and new opportunities
  publication-title: J. Biomech.
– volume: 36
  start-page: 1659
  year: 2003
  end-page: 1668
  ident: bib48
  article-title: Experimental evaluation of an elastic foundation model to predict contact pressures in knee replacements
  publication-title: J. Biomech.
– volume: 35
  start-page: 267
  year: 2002
  end-page: 275
  ident: bib26
  article-title: Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis
  publication-title: J. Biomech.
– volume: 30
  start-page: 398
  year: 2009
  end-page: 413
  ident: bib1
  article-title: Knee implants - review of models and biomechanics
  publication-title: Mater. Des.
– volume: 127
  start-page: 813
  year: 2005
  ident: bib25
  article-title: Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics
  publication-title: J. Biomech. Eng.
– volume: 27
  start-page: 27
  year: 1999
  end-page: 34
  ident: bib40
  article-title: Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults
  publication-title: Am. J. Sports Med.
– volume: 18
  start-page: 101
  year: 2000
  end-page: 108
  ident: bib17
  article-title: Hamstrings and iliotibial band forces affect knee kinematics and contact pattern
  publication-title: J. Orthop. Res.
– volume: 192
  year: 2020
  ident: bib10
  article-title: Finite-Element analysis of a lateral femoro-tibial impact on the total knee arthroplasty
  publication-title: Comput. Methods Progr. Biomed.
– volume: 125
  start-page: 864
  year: 2003
  ident: bib42
  article-title: Development and validation of a 3-D model to predict knee joint loading during dynamic movement
  publication-title: J. Biomech. Eng.
– volume: 93
  start-page: 1588
  year: 2011
  end-page: 1596
  ident: bib4
  article-title: The effect of alignment and BMI on failure of total knee replacement
  publication-title: J. Bone Jt. Surg. - Ser. A.
– volume: 57
  start-page: 117
  year: 2017
  end-page: 124
  ident: bib21
  article-title: Combined measurement and modeling of specimen-specific knee mechanics for healthy and ACL-deficient conditions
  publication-title: J. Biomech.
– volume: 19
  start-page: 1309
  year: 2020
  end-page: 1317
  ident: bib50
  article-title: Computational framework for population-based evaluation of TKR-implanted patellofemoral joint mechanics
  publication-title: Biomech. Model. Mechanobiol.
– volume: 125
  start-page: 864
  year: 2003
  ident: 10.1016/j.compbiomed.2021.104311_bib42
  article-title: Development and validation of a 3-D model to predict knee joint loading during dynamic movement
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1634282
– volume: 81
  start-page: 636
  year: 1999
  ident: 10.1016/j.compbiomed.2021.104311_bib29
  article-title: The popliteofibular ligament. An anatomical study of the posterolateral corner of the knee
  publication-title: J. Bone Jt. Surg.
  doi: 10.1302/0301-620X.81B4.0810636
– volume: 45
  start-page: 474
  year: 2012
  ident: 10.1016/j.compbiomed.2021.104311_bib18
  article-title: Dynamic finite element knee simulation for evaluation of knee replacement mechanics
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.11.052
– volume: 132
  start-page: 1631
  year: 2012
  ident: 10.1016/j.compbiomed.2021.104311_bib30
  article-title: Relative role changing of lateral collateral ligament on the posterolateral rotatory instability according to the knee flexion angles: a biomechanical comparative study of role of lateral collateral ligament and popliteofibular ligament
  publication-title: Arch. Orthop. Trauma Surg.
  doi: 10.1007/s00402-012-1591-7
– volume: 94
  start-page: 230
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104311_bib53
  article-title: Development of a finite element musculoskeletal model with the ability to predict contractions of three-dimensional muscles
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2019.07.042
– volume: 49
  start-page: 3177
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104311_bib15
  article-title: Validation of a new computational 6-DOF knee simulator during dynamic activities
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.07.040
– volume: 87
  start-page: 38
  year: 2021
  ident: 10.1016/j.compbiomed.2021.104311_bib54
  article-title: A three-dimensional finite-element model of gluteus medius muscle incorporating inverse-dynamics-based optimization for simulation of non-uniform muscle contraction
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2020.11.009
– volume: 48
  start-page: 3830
  year: 2015
  ident: 10.1016/j.compbiomed.2021.104311_bib5
  article-title: Wear simulation of total knee prostheses using load and kinematics waveforms from stair climbing
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.09.007
– volume: 21
  start-page: 239
  year: 1979
  ident: 10.1016/j.compbiomed.2021.104311_bib46
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
– volume: 6
  start-page: 3
  year: 2020
  ident: 10.1016/j.compbiomed.2021.104311_bib9
  article-title: Systematic review of computational modelling for biomechanics analysis of total knee replacement
  publication-title: Biosurface and Biotribology
  doi: 10.1049/bsbt.2019.0012
– volume: 76
  start-page: 1328
  year: 1994
  ident: 10.1016/j.compbiomed.2021.104311_bib28
  article-title: The importance of the posterior oblique ligament in repairs of acute tears of the medial ligaments in knees with and without an associated rupture of the anterior cruciate ligament. Results of long-term follow-up
  publication-title: J. Bone Jt. Surg. - Ser. A.
  doi: 10.2106/00004623-199409000-00008
– volume: 37
  start-page: 45
  year: 2004
  ident: 10.1016/j.compbiomed.2021.104311_bib49
  article-title: Contact stresses and fatigue life in a knee prosthesis: comparison between in vitro measurements and computational simulations
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00255-0
– volume: 17
  start-page: 817
  year: 1999
  ident: 10.1016/j.compbiomed.2021.104311_bib16
  article-title: Hamstrings cocontraction reduces internal rotation, anterior translation, and anterior cruciate ligament load in weight-bearing flexion
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100170605
– volume: 5842
  start-page: 3
  year: 2012
  ident: 10.1016/j.compbiomed.2021.104311_bib20
  article-title: Evaluating knee replacement mechanics during ADL with PID-controlled dynamic finite element analysis
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 36
  start-page: 1659
  year: 2003
  ident: 10.1016/j.compbiomed.2021.104311_bib48
  article-title: Experimental evaluation of an elastic foundation model to predict contact pressures in knee replacements
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00176-3
– volume: 29
  start-page: 232
  year: 2011
  ident: 10.1016/j.compbiomed.2021.104311_bib47
  article-title: Comparison of patellar bone strain in the natural and implanted knee during simulated deep flexion
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.21211
– volume: 32
  start-page: 1695
  year: 2004
  ident: 10.1016/j.compbiomed.2021.104311_bib38
  article-title: Force measurements on the fibular collateral ligament, popliteofibular ligament, and popliteus tendon to applied loads
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546503262694
– volume: 35
  start-page: 267
  year: 2002
  ident: 10.1016/j.compbiomed.2021.104311_bib26
  article-title: Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00179-8
– volume: 45
  start-page: 2092
  year: 2012
  ident: 10.1016/j.compbiomed.2021.104311_bib45
  article-title: The role of patient, surgical, and implant design variation in total knee replacement performance
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.05.035
– volume: 30
  start-page: 398
  year: 2009
  ident: 10.1016/j.compbiomed.2021.104311_bib1
  article-title: Knee implants - review of models and biomechanics
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2008.03.032
– volume: 105
  start-page: 136
  year: 1983
  ident: 10.1016/j.compbiomed.2021.104311_bib44
  article-title: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3138397
– volume: 18
  start-page: 101
  year: 2000
  ident: 10.1016/j.compbiomed.2021.104311_bib17
  article-title: Hamstrings and iliotibial band forces affect knee kinematics and contact pattern
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100180115
– volume: 93
  start-page: 1588
  year: 2011
  ident: 10.1016/j.compbiomed.2021.104311_bib4
  article-title: The effect of alignment and BMI on failure of total knee replacement
  publication-title: J. Bone Jt. Surg. - Ser. A.
  doi: 10.2106/JBJS.J.00772
– volume: 47
  start-page: 2398
  year: 2014
  ident: 10.1016/j.compbiomed.2021.104311_bib19
  article-title: Developing simulations to reproduce in vivo fluoroscopy kinematics in total knee replacement patients
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.04.024
– volume: 192
  year: 2020
  ident: 10.1016/j.compbiomed.2021.104311_bib10
  article-title: Finite-Element analysis of a lateral femoro-tibial impact on the total knee arthroplasty
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2020.105446
– volume: 195
  start-page: 105671
  year: 2020
  ident: 10.1016/j.compbiomed.2021.104311_bib12
  article-title: Biomechanical responses of temporomandibular joints during the lateral protrusions: a 3D finite element study
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2020.105671
– volume: 138
  start-page: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104311_bib37
  article-title: A combined experimental and computational approach to subject-specific analysis of knee joint laxity
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4033882
– volume: 30
  start-page: 503
  year: 2012
  ident: 10.1016/j.compbiomed.2021.104311_bib23
  article-title: Grand challenge competition to predict in vivo knee loads
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.22023
– volume: 19
  start-page: 82
  year: 2011
  ident: 10.1016/j.compbiomed.2021.104311_bib32
  article-title: Normal anatomy and biomechanics of the knee
  publication-title: Sports Med. Arthrosc.
  doi: 10.1097/JSA.0b013e318210c0aa
– volume: 77
  start-page: 146
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104311_bib24
  article-title: A subject-specific finite element musculoskeletal framework for mechanics analysis of a total knee replacement
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2018.07.008
– volume: 41
  start-page: 2159
  year: 2008
  ident: 10.1016/j.compbiomed.2021.104311_bib27
  article-title: In vivo contact kinematics and contact forces of the knee after total knee arthroplasty during dynamic weight-bearing activities
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.04.021
– volume: 108
  start-page: 101
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104311_bib13
  article-title: Symmetrical cruciate-retaining versus medial pivot prostheses: the effect of intercondylar sagittal conformity on knee kinematics and contact mechanics
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.03.005
– volume: 132
  year: 2010
  ident: 10.1016/j.compbiomed.2021.104311_bib6
  article-title: Verification of predicted knee replacement kinematics during simulated gait in the Kansas knee simulator
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4001678
– volume: 127
  start-page: 813
  year: 2005
  ident: 10.1016/j.compbiomed.2021.104311_bib25
  article-title: Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1992522
– volume: 19
  start-page: 1309
  year: 2020
  ident: 10.1016/j.compbiomed.2021.104311_bib50
  article-title: Computational framework for population-based evaluation of TKR-implanted patellofemoral joint mechanics
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-020-01295-7
– volume: 37
  start-page: 757
  year: 1990
  ident: 10.1016/j.compbiomed.2021.104311_bib43
  article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.102791
– volume: 81
  start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104311_bib51
  article-title: Machine learning in human movement biomechanics: best practices, common pitfalls, and new opportunities
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2018.09.009
– volume: 1
  start-page: 199
  year: 1991
  ident: 10.1016/j.compbiomed.2021.104311_bib22
  article-title: Muscular co-contraction and control of knee stability
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/1050-6411(91)90035-4
– volume: 14
  start-page: 605
  year: 2006
  ident: 10.1016/j.compbiomed.2021.104311_bib3
  article-title: Two-year follow-up on joint stability and muscular function comparing rotating versus fixed bearing TKR, Knee Surgery, Sport
  publication-title: Traumatol. Arthrosc.
  doi: 10.1007/s00167-005-0020-7
– volume: 49
  start-page: 322
  year: 2021
  ident: 10.1016/j.compbiomed.2021.104311_bib14
  article-title: Enhanced in-silico polyethylene wear simulation of total knee replacements during daily activities
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-020-02555-4
– volume: 36
  start-page: 1331
  year: 2014
  ident: 10.1016/j.compbiomed.2021.104311_bib7
  article-title: Characterization of robotic system passive path repeatability during specimen removal and reinstallation for in vitro knee joint testing
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2014.06.022
– volume: 471
  start-page: 1334
  year: 2013
  ident: 10.1016/j.compbiomed.2021.104311_bib31
  article-title: Lateral soft tissue laxity increases but medial laxity does not contract with varus deformity in total knee arthroplasty knee
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1007/s11999-012-2745-1
– volume: 37
  start-page: 140
  year: 2009
  ident: 10.1016/j.compbiomed.2021.104311_bib39
  article-title: Force measurements on the posterior oblique ligament and superficial medial collateral ligament proximal and distal divisions to applied loads
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546508322890
– volume: 113
  start-page: 94
  year: 1991
  ident: 10.1016/j.compbiomed.2021.104311_bib34
  article-title: Recruitment of knee joint ligaments
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2894090
– volume: 46
  start-page: 1351
  year: 2013
  ident: 10.1016/j.compbiomed.2021.104311_bib8
  article-title: The influence of total knee arthroplasty geometry on mid-flexion stability: an experimental and finite element study
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.01.025
– volume: 97
  start-page: 232
  year: 2010
  ident: 10.1016/j.compbiomed.2021.104311_bib52
  article-title: Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2009.07.005
– volume: 21
  start-page: 180
  year: 2014
  ident: 10.1016/j.compbiomed.2021.104311_bib2
  article-title: Patient satisfaction after primary total and unicompartmental knee arthroplasty: an age-dependent analysis
  publication-title: Knee
  doi: 10.1016/j.knee.2013.08.004
– volume: 223
  start-page: 321
  year: 2013
  ident: 10.1016/j.compbiomed.2021.104311_bib33
  article-title: Anatomy of the anterolateral ligament of the knee
  publication-title: J. Anat.
  doi: 10.1111/joa.12087
– volume: 42
  start-page: 2341
  year: 2009
  ident: 10.1016/j.compbiomed.2021.104311_bib35
  article-title: Verification of predicted specimen-specific natural and implanted patellofemoral kinematics during simulated deep knee bend
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.06.028
– volume: 47
  start-page: 3201
  year: 2014
  ident: 10.1016/j.compbiomed.2021.104311_bib41
  article-title: Continuum description of the Poisson[U+05F3]s ratio of ligament and tendon under finite deformation
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.05.011
– volume: 183
  start-page: 105109
  year: 2020
  ident: 10.1016/j.compbiomed.2021.104311_bib11
  article-title: Biomechanical role of posterior cruciate ligament in total knee arthroplasty: a finite element analysis
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2019.105109
– volume: 65
  start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104311_bib36
  article-title: The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.08.030
– volume: 57
  start-page: 117
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104311_bib21
  article-title: Combined measurement and modeling of specimen-specific knee mechanics for healthy and ACL-deficient conditions
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.04.008
– volume: 27
  start-page: 27
  year: 1999
  ident: 10.1016/j.compbiomed.2021.104311_bib40
  article-title: Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults
  publication-title: Am. J. Sports Med.
  doi: 10.1177/03635465990270011301
SSID ssj0004030
Score 2.352177
Snippet A computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic loadings. However, the development...
AbstractBackground and objectiveA computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic...
Background and objectiveA computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic loadings....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104311
SubjectTerms Boundary conditions
Computer applications
Constraint modelling
Contact pressure
Contact stresses
Design
Electromyography
Experimental validation
Finite element
Finite element method
Fitness equipment
Fluoroscopy
Force
Gait
In vivo methods and tests
Internal Medicine
Joints (anatomy)
Kinematics
Knee
Knee kinematics
Knee model
Ligaments
Mathematical models
Mechanics
Model matching
Model testing
Motion capture
Other
Patients
Proportional integral derivative
Prostheses
Quadriceps muscle
Rotation
Soft tissues
Surgical implants
Total knee replacement
Translation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1baxUxEB7qKYgv4t2tVSL4urhJNntBRFRaqtCDqIXiS8i11Mruac-2v9_JJrvnxcp5DJvZLLOTmfmSuQC8odS6wiA6qSrEJqUwNteFdrlila6pYky7cDRwvKyOTsqvp-J0B5ZTLkwIq5x04qiobW_CGflbhnambNBeNx9Wl3noGhVuV6cWGiq1VrDvxxJjd2CXhcpYC9j9dLD89n2TKVnwmJSC2qdEcJRie2LEVwjijknviBsZDdefnNLbDNZtDulomA4fwP3kUZKPUQQewo7rHsHd43Rn_hh-fenIzflNTy5wOBZoxdkoX-cB61ty0TlHxn44BP1XskINmJIlyRAqcHRnpPdk6NFJj3Ov3BjHFU4Vn8DJ4cHPz0d56qiQG9EUQ94YzSrhKG2VY6WnlXdeF84rqy21WiscVF4p2wovnLa158Iab6gVXDjf8qew6PrOPQeiWmYaigDI86pUXuha2aZlwqCL2VLvM6gntkmTyo2Hrhd_5BRX9ltuGC4Dw2VkeAZ0plzFkhtb0LTTn5ETl1AJSrQLW9DW_6J167Sb15LKNZOF_DEWM2qCJI6NRYsM3s2UyWGJjsiW6-5PIiTnpTZinsHr-TFu-XCPozrXX4c5BeLylnKRwbMoejOjOEdIX3Ox9_-Xv4B74Uti5OY-LIara_cSvatBv0pb5i-dEyWt
  priority: 102
  providerName: ProQuest
Title In vivo kinematical validated knee model for preclinical testing of total knee replacement
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482521001050
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482521001050
https://dx.doi.org/10.1016/j.compbiomed.2021.104311
https://www.ncbi.nlm.nih.gov/pubmed/33721735
https://www.proquest.com/docview/2521485058
https://www.proquest.com/docview/2501849135
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250903
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9UwFA9jgvgiflvdRgRf65qkaVp8mmPXO2UXEQcXX0I-5TppL7vdHv3bPWnSjqGDC76kpM1p09OTk_NrzslB6C0h1hUG0ElVATYpubG5LrTLFa20IIpS7cKvgbNFNT8vPy35cgcdj7Ewwa0y6f6o0wdtnc4cJm4erlerEOMLUAIADiVDmseA28tShCwG737fuHmUBYthKKBvQuvkzRN9vILbdgxzB6RISVjwZITcNUXdZYIOU9HsEXqYbEh8FLv5GO249gm6f5ZWyZ-i76ctvl5dd_gCqsOWrNAaJGoV0L3FF61zeMiAg8FixWt4_xQeifuw50b7A3ce9x2Y5bHtpRs8t8J_xGfofHby7XiepxwKueF10ee10bTijpBGOVp6UnnndeG8stoSq7WCSuWVsg333GkrPOPWeEMsZ9z5hj1Hu23XupcIq4aamgDk8awqledaKFs3lBswKhvifYbEyDZp0gbjIc_FLzl6kv2UNwyXgeEyMjxDZKJcx002tqBpxi8jRy6B2pMwE2xBK_5F6zZp_G4kkRsqC_mXjGXo_UR5S0y3fO7eKEJyelS4eVmDIVpn6M10GQZ5WLlRreuuQpsCkHhDGM_Qiyh6E6MYAxAvGH_1X117jR6EWnTl3EO7_eWV2wdzq9cHw3iCUiwFlPXs4wG6d3T6eb6A44eTxZevfwBpJC8h
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVgIuiDcpBYwEx4jYjvMQqhCPVru0u0LQShUX109UWiVLNy3iz_HbGMfO7oWivfQYxRNH4_HMfPY8EHpJiLGZBnRSFIBNcq5NqjJlU0kLVRJJqbL-aGAyLUaH-acjfrSG_gy5MD6sctCJvaI2rfZn5K8p2Jm8AntdvZ39TH3XKH-7OrTQkLG1gtnuS4zFxI49-_sXQLj59vgjrPcrSnd3Dj6M0thlINW8yrq00ooW3BJSS0tzRwpnncqsk0YZYpSS8FA4KU3NHbfKlI5xo50mhjNunS_GBCZgI2d5DeBv4_3O9POXZWZmxkISDGi7HMBYjCUKEWY-aDwk2QNOpcRftzJCrjKQVznAvSHcvYNuRw8Wvwsidxet2eYeujGJd_T30bdxgy9PLlt8Co99QVgYDfJ84s8WDD5trMV9_x0M_jKegcaNyZm48xU_mu-4dbhrARSEsee2jxvzp5gP0OG18PYhWm_axj5GWNZUVwQAl2NFLh1XpTRVTbkGl7YmziWoHNgmdCxv7rtsnIkhju2HWDJceIaLwPAEkQXlLJT4WIGmHlZGDFwCpSvADq1AW_6L1s6j9pgLIuZUZOJrXzyp8pLfNzLNEvRmQRkdpOD4rDjv1iBCYjHVclsl6MXiNagYf28kG9te-DEZqfKaMJ6gR0H0FoxirARQy_jm_z_-HN0cHUz2xf54uvcE3fJ_FaJGt9B6d35hn4Jn16lncftgdHzdO_YvAQ1nnw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRaq4IN6EFjASHKPGdpyHEEKIsupSWiFBpRUX4ycqrZKlmxbx1_h1jONk90LRXnqM4omj8Xge9jczAC8otS4zGJ0UBcYmuTA21Zl2qWKFLqliTLtwNHB4VOwf5x9mYrYBf8ZcmACrHHVir6hta8IZ-S5DO5NXaK-rXT_AIj7tTd7Mf6ahg1S4aR3baUQROXC_f2H4tng93cO1fsnY5P2Xd_vp0GEgNaLKurQymhXCUVorx3JPC--8zpxXVltqtVb4UHilbC28cNqWngtrvKFWcOF8KMSE6v9GyXkd4ITlrFzlZGY8pr-gnssxDBtQRBFbFuDiMb0eI1RGw0Urp_Qq03iV69ubwMltuDX4ruRtFLY7sOGau7B1ONzO34Ov04Zcnly25BQf-1KwOBol-SScKlhy2jhH-s47BD1lMkddO6Rlki7U-mi-k9aTrsVwII49dz1iLJxf3ofja-HsA9hs2sY9AqJqZiqKoZbnRa680KWyVc2EQWe2pt4nUI5sk2YobB76a5zJEcH2Q64YLgPDZWR4AnRJOY_FPdagqceVkSOXUN1KtEBr0Jb_onWLQW8sJJULJjP5uS-bVAWZ71uYZgm8WlIOrlF0edacd2cUIbmcarWhEni-fI3KJdwYqca1F2FMRqu8plwk8DCK3pJRnJcYznLx-P8ffwZbuE_lx-nRwTbcDD8V4aI7sNmdX7gn6NJ1-mm_dwh8u-7N-hdGTmU5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+kinematical+validated+knee+model+for+preclinical+testing+of+total+knee+replacement&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Shu%2C+Liming&rft.au=Yao%2C+Jiang&rft.au=Yamamoto%2C+Ko&rft.au=Sato%2C+Takashi&rft.date=2021-05-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=132&rft_id=info:doi/10.1016%2Fj.compbiomed.2021.104311&rft.externalDocID=S0010482521001050
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif