In vivo kinematical validated knee model for preclinical testing of total knee replacement

A computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic loadings. However, the development of a highly mimicked dynamic whole knee model with specified ligament constraints that provides high predictive accuracy with in-vivo experim...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 132; p. 104311
Main Authors Shu, Liming, Yao, Jiang, Yamamoto, Ko, Sato, Takashi, Sugita, Naohiko
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.05.2021
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2021.104311

Cover

More Information
Summary:A computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic loadings. However, the development of a highly mimicked dynamic whole knee model with specified ligament constraints that provides high predictive accuracy with in-vivo experiments remains a challenge. In the present study, a musculoskeletal integrated force-driven explicit finite-element knee model with tibiofemoral and patellofemoral joints constrained with detailed soft tissue was developed. A proportional-integral-derivative controller was concurrently added to the knee model to track the boundary conditions. The actuations of the quadriceps and hamstrings were predicted via a subject-specific musculoskeletal model and matched with electromyography results. Compared to in-vivo fluoroscopic results in a gait cycle, the predicted results of the kinematics of the tibiofemoral joint exhibited an agreement in terms of tendency and magnitude (anterior–posterior translation: RMSE = 1.1 mm, r2 = 0.87; inferior–superior translation: RMSE = 0.83 mm, r2 = 0.84; medial–lateral translation: RMSE = 0.82 mm, r2 = 0.05; flexion–extension rotation: RMSE = 0.23°, r2 = 1; internal-external rotation: RMSE = 1.85°, r2 = 0.65; varus–valgus rotation: RMSE = 1.39°, r2 = 0.08). Contact mechanics, including the contact area, pressure, and stress, were synchronously simulated on the tibiofemoral and patellofemoral joints. The study provides a calibrated knee model and a kinematical validation approach that can be widely used in preclinical testing and knee prosthesis design. •A musculoskeletal integrated force-driven finite element knee model was developed and verified by experiments.•The predicted results of kinematics of the tibiofemoral joint exhibited an agreement with in-vivo fluoroscopic results.•Contact mechanics including the contact area, pressure, and stress can be synchronously simulated by the proposed knee model.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0010-4825
1879-0534
1879-0534
DOI:10.1016/j.compbiomed.2021.104311