基于多层次多方向分解的医学图像融合算法
传统多模态医学图像融合技术融合后图像的细节表达不清晰、病灶不明显。为此,设计一种V-变换与非下采样Contourlet变换(NSCT)相结合的融合方法。对源图像进行多层次V-分解,使其被分解为轮廓图像和细节图像两部分,对其中的轮廓图像做NSCT变换,在NSCT域中设计融合方案,针对细节图像给出细节信息的融合策略,将融合后的轮廓图像和细节图像叠加,以得到最终融合图像。实验结果表明,与传统离散小波变换、NSCT变换的方法相比,该算法在视觉效果和评价指标方面都有较好的表现。...
Saved in:
Published in | 计算机工程 Vol. 43; no. 10; pp. 179 - 185 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
北方工业大学理学院,北京,100144%北京林业大学理学院,北京,100083%澳门科技大学资讯科技学院,澳门,999078
2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1000-3428 |
DOI | 10.3969/j.issn.1000-3428.2017.10.030 |
Cover
Summary: | 传统多模态医学图像融合技术融合后图像的细节表达不清晰、病灶不明显。为此,设计一种V-变换与非下采样Contourlet变换(NSCT)相结合的融合方法。对源图像进行多层次V-分解,使其被分解为轮廓图像和细节图像两部分,对其中的轮廓图像做NSCT变换,在NSCT域中设计融合方案,针对细节图像给出细节信息的融合策略,将融合后的轮廓图像和细节图像叠加,以得到最终融合图像。实验结果表明,与传统离散小波变换、NSCT变换的方法相比,该算法在视觉效果和评价指标方面都有较好的表现。 |
---|---|
Bibliography: | SONG Ruixia1, WANG Meng1 , WANG Xiaochun2 , YU Jiande3 ( 1. College of Science,North China University of Technology, Beijing 100144, China ; 2. School of Science, Beijing Forestry University, Beijing 100083, China ; 3. Faculty of Information Technology ,Macau University of Science and Technology, Macao 999078, China) 31-1289/TP image fusion; medical image; V-system; multi-layer V-decomposition; Non-subsampled ContourletTransform (NSCT) Fused images obtained using the traditional multi-modal medical image fusion technology cannot express details clearly and lesion obviously. In view of this, a new fusion method which combines the V-transform and Non- subsampled Contourlet Transform(NSCT) is proposed. The source images are first decomposed into contour sub-image and detail sub-images by applying the multi-layer V-decomposition, and then NSCT transform is performed on the contour sub-image. Fusion rule in NSCT domain is designed. Fusion strategy for detail information is presented on detail sub-images. The fused im |
ISSN: | 1000-3428 |
DOI: | 10.3969/j.issn.1000-3428.2017.10.030 |