LiCoO2电池正极微结构重构及有效传输系数预测

采用MonteCarlo方法重构了LiCoO2电池正极的三维微结构,重构单元的特征尺寸为几十纳米量级,从而得到了明确区分活性材料、固体添加物以及孔相(电解液)的微结构.通过对重构电极的特征化分析,得到了微结构中特定相的连通性和扭曲率、组分体积分数的空间分布、比表面积、孔径分布等特征信息.采用D3Q15格子Boltzmann模型(LBM)计算了该重构电极的有效热导率、电解液(或固相)的有效传输系数.同时发现,与随机行走方法以及Bruggemann关系式计算获得的扭曲率数值相比,LBM预测值更可靠....

Full description

Saved in:
Bibliographic Details
Published in物理化学学报 Vol. 29; no. 11; pp. 2361 - 2370
Main Author 吴伟 蒋方明 曾建邦
Format Journal Article
LanguageChinese
Published 中国科学院大学,北京100049%中国科学院广州能源研究所先进能源系统实验室,中国科学院可再生能源重点实验室,广州510640 2013
中国科学院广州能源研究所先进能源系统实验室,中国科学院可再生能源重点实验室,广州510640
Subjects
Online AccessGet full text
ISSN1000-6818
DOI10.3866/PKU.WHXB201309032

Cover

More Information
Summary:采用MonteCarlo方法重构了LiCoO2电池正极的三维微结构,重构单元的特征尺寸为几十纳米量级,从而得到了明确区分活性材料、固体添加物以及孔相(电解液)的微结构.通过对重构电极的特征化分析,得到了微结构中特定相的连通性和扭曲率、组分体积分数的空间分布、比表面积、孔径分布等特征信息.采用D3Q15格子Boltzmann模型(LBM)计算了该重构电极的有效热导率、电解液(或固相)的有效传输系数.同时发现,与随机行走方法以及Bruggemann关系式计算获得的扭曲率数值相比,LBM预测值更可靠.
Bibliography:WU Wei, JIANG Fang-Ming, ZENG Jian-Bang(1 Laboratory of Advanced Energy Systems, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Aeademy of Sciences, Guangzhou 510640, P. R. China; 2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China)
11-1892/06
Pore-scale modeling to lithium-ion battery; Microstructure reconstruction; Monte Carlo approach; Characterization; Tortuosity; Effective transport coefficient Lattice Boltzmann method: Random walk method
Understanding the impact of microstructure of lithium-ion battery electrodes on performance is important for the development of relevant technologies. In the present work, the Monte Carlo Ising model was extended for the reconstruction of three-dimensional (3D) microstructure of a LiCoO2 lithium-ion battery cathode. The electrode is reconstructed with a resolution on the scale of 50 nanometers, which allows three individual phases to be evidently distinguished: LiCoO2 particles as the active material, pores or
ISSN:1000-6818
DOI:10.3866/PKU.WHXB201309032