面向对象的多时相HJ星影像甘蔗识别方法

广西甘蔗种植区域离散,因混杂于多种农作物中,其光谱易受其他作物的影响,故利用单一时相多光谱遥感影像提取甘蔗有一定的困难。针对这一难题,该文首先提出甘蔗最佳识别时段,基于多时相HJ-1A/1B星CCD影像,以广西中部贵港市三区为研究区,通过面向对象分类软件eCognition,利用甘蔗在不同时相影像上的光谱特征:光谱均值、归一化植被指数NDVI和由灰度共生矩阵导出的局部一致性指数GLCM homogeneity,建立决策树逻辑的分类规则集提取甘蔗种植区。结果表明该方法能较精确地进行甘蔗识别,最大程度消除其他干扰因素影响,分类精度为91.3%,kappa系数为0.83,同时也证实了HJ卫星CCD多...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 30; no. 11; pp. 145 - 151
Main Author 王久玲 黄进良 王立辉 胡砚霞 韩鹏鹏 黄维
Format Journal Article
LanguageChinese
Published 中国科学院测量与地球物理研究所,武汉 430077 2014
中国科学院大学,北京 100049%中国科学院测量与地球物理研究所,武汉,430077%中国科学院大学,北京,100049
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2014.11.018

Cover

More Information
Summary:广西甘蔗种植区域离散,因混杂于多种农作物中,其光谱易受其他作物的影响,故利用单一时相多光谱遥感影像提取甘蔗有一定的困难。针对这一难题,该文首先提出甘蔗最佳识别时段,基于多时相HJ-1A/1B星CCD影像,以广西中部贵港市三区为研究区,通过面向对象分类软件eCognition,利用甘蔗在不同时相影像上的光谱特征:光谱均值、归一化植被指数NDVI和由灰度共生矩阵导出的局部一致性指数GLCM homogeneity,建立决策树逻辑的分类规则集提取甘蔗种植区。结果表明该方法能较精确地进行甘蔗识别,最大程度消除其他干扰因素影响,分类精度为91.3%,kappa系数为0.83,同时也证实了HJ卫星CCD多光谱遥感数据应用于甘蔗识别的有效性。
Bibliography:11-2047/S
remote sensing;vegetation;classification;sugarcane;object-oriented;phenology
Wang Jiuling, Huang Jinliang, Wang Lihui, Hu Yanxia, Han Pengpeng, Huang We(1. Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China; 2. University of Chinese Academy of Sciences, Beij'ing 100049, China)
Sugarcane identification on specific parcels and the assessment of soil management practices are important for agro-ecological studies, greenhouse gas modeling, and agrarian policy development. Information on the sugarcane cultivation areas is of global economic and environmental significance. The study area is Guigang City located in the central area of Guangxi Province which is a good representation of the agricultural conditions. Traditional pixel-based analysis of remotely sensed data results in inaccurate identification of some crops due to pixel heterogeneity, mixed pixels, spectral similarity. The growing region of sugarcane in Guangxi Province is discrete, so the remote sensing spectral
ISSN:1002-6819
DOI:10.3969/j.issn.1002-6819.2014.11.018