Functional brain connectivity at rest changes after working memory training
Networks of functional connectivity are highly consistent across participants, suggesting that functional connectivity is for a large part predetermined. However, several studies have shown that functional connectivity may change depending on instructions or previous experience. In the present study...
Saved in:
Published in | Human brain mapping Vol. 34; no. 2; pp. 396 - 406 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.02.2013
Wiley-Liss John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1065-9471 1097-0193 1097-0193 |
DOI | 10.1002/hbm.21444 |
Cover
Abstract | Networks of functional connectivity are highly consistent across participants, suggesting that functional connectivity is for a large part predetermined. However, several studies have shown that functional connectivity may change depending on instructions or previous experience. In the present study, we investigated whether 6 weeks of practice with a working memory task changes functional connectivity during a resting period preceding the task. We focused on two task‐relevant networks, the frontoparietal network and the default network, using seed regions in the right middle frontal gyrus (MFG) and the medial prefrontal cortex (PFC), respectively. After practice, young adults showed increased functional connectivity between the right MFG and other regions of the frontoparietal network, including bilateral superior frontal gyrus, paracingulate gyrus, and anterior cingulate cortex. In addition, they showed reduced functional connectivity between the medial PFC and right posterior middle temporal gyrus. Moreover, a regression with performance changes revealed a positive relation between performance increases and changes of frontoparietal connectivity, and a negative relation between performance increases and changes of default network connectivity. Next, to study whether experience‐dependent effects would be different during development, we also examined practice effects in a pilot sample of 12‐year‐old children. No practice effects were found in this group, suggesting that practice‐related changes of functional connectivity are age‐dependent. Nevertheless, future studies with larger samples are necessary to confirm this hypothesis. Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc. |
---|---|
AbstractList | Networks of functional connectivity are highly consistent across participants, suggesting that functional connectivity is for a large part predetermined. However, several studies have shown that functional connectivity may change depending on instructions or previous experience. In the present study, we investigated whether 6 weeks of practice with a working memory task changes functional connectivity during a resting period preceding the task. We focused on two task‐relevant networks, the frontoparietal network and the default network, using seed regions in the right middle frontal gyrus (MFG) and the medial prefrontal cortex (PFC), respectively. After practice, young adults showed increased functional connectivity between the right MFG and other regions of the frontoparietal network, including bilateral superior frontal gyrus, paracingulate gyrus, and anterior cingulate cortex. In addition, they showed reduced functional connectivity between the medial PFC and right posterior middle temporal gyrus. Moreover, a regression with performance changes revealed a positive relation between performance increases and changes of frontoparietal connectivity, and a negative relation between performance increases and changes of default network connectivity. Next, to study whether experience‐dependent effects would be different during development, we also examined practice effects in a pilot sample of 12‐year‐old children. No practice effects were found in this group, suggesting that practice‐related changes of functional connectivity are age‐dependent. Nevertheless, future studies with larger samples are necessary to confirm this hypothesis. Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc. Networks of functional connectivity are highly consistent across participants, suggesting that functional connectivity is for a large part predetermined. However, several studies have shown that functional connectivity may change depending on instructions or previous experience. In the present study, we investigated whether 6 weeks of practice with a working memory task changes functional connectivity during a resting period preceding the task. We focused on two task-relevant networks, the frontoparietal network and the default network, using seed regions in the right middle frontal gyrus (MFG) and the medial prefrontal cortex (PFC), respectively. After practice, young adults showed increased functional connectivity between the right MFG and other regions of the frontoparietal network, including bilateral superior frontal gyrus, paracingulate gyrus, and anterior cingulate cortex. In addition, they showed reduced functional connectivity between the medial PFC and right posterior middle temporal gyrus. Moreover, a regression with performance changes revealed a positive relation between performance increases and changes of frontoparietal connectivity, and a negative relation between performance increases and changes of default network connectivity. Next, to study whether experience-dependent effects would be different during development, we also examined practice effects in a pilot sample of 12-year-old children. No practice effects were found in this group, suggesting that practice-related changes of functional connectivity are age-dependent. Nevertheless, future studies with larger samples are necessary to confirm this hypothesis.Networks of functional connectivity are highly consistent across participants, suggesting that functional connectivity is for a large part predetermined. However, several studies have shown that functional connectivity may change depending on instructions or previous experience. In the present study, we investigated whether 6 weeks of practice with a working memory task changes functional connectivity during a resting period preceding the task. We focused on two task-relevant networks, the frontoparietal network and the default network, using seed regions in the right middle frontal gyrus (MFG) and the medial prefrontal cortex (PFC), respectively. After practice, young adults showed increased functional connectivity between the right MFG and other regions of the frontoparietal network, including bilateral superior frontal gyrus, paracingulate gyrus, and anterior cingulate cortex. In addition, they showed reduced functional connectivity between the medial PFC and right posterior middle temporal gyrus. Moreover, a regression with performance changes revealed a positive relation between performance increases and changes of frontoparietal connectivity, and a negative relation between performance increases and changes of default network connectivity. Next, to study whether experience-dependent effects would be different during development, we also examined practice effects in a pilot sample of 12-year-old children. No practice effects were found in this group, suggesting that practice-related changes of functional connectivity are age-dependent. Nevertheless, future studies with larger samples are necessary to confirm this hypothesis. Networks of functional connectivity are highly consistent across participants, suggesting that functional connectivity is for a large part predetermined. However, several studies have shown that functional connectivity may change depending on instructions or previous experience. In the present study, we investigated whether 6 weeks of practice with a working memory task changes functional connectivity during a resting period preceding the task. We focused on two task-relevant networks, the frontoparietal network and the default network, using seed regions in the right middle frontal gyrus (MFG) and the medial prefrontal cortex (PFC), respectively. After practice, young adults showed increased functional connectivity between the right MFG and other regions of the frontoparietal network, including bilateral superior frontal gyrus, paracingulate gyrus, and anterior cingulate cortex. In addition, they showed reduced functional connectivity between the medial PFC and right posterior middle temporal gyrus. Moreover, a regression with performance changes revealed a positive relation between performance increases and changes of frontoparietal connectivity, and a negative relation between performance increases and changes of default network connectivity. Next, to study whether experience-dependent effects would be different during development, we also examined practice effects in a pilot sample of 12-year-old children. No practice effects were found in this group, suggesting that practice-related changes of functional connectivity are age-dependent. Nevertheless, future studies with larger samples are necessary to confirm this hypothesis. Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT] Networks of functional connectivity are highly consistent across participants, suggesting that functional connectivity is for a large part predetermined. However, several studies have shown that functional connectivity may change depending on instructions or previous experience. In the present study, we investigated whether 6 weeks of practice with a working memory task changes functional connectivity during a resting period preceding the task. We focused on two task-relevant networks, the frontoparietal network and the default network, using seed regions in the right middle frontal gyrus (MFG) and the medial prefrontal cortex (PFC), respectively. After practice, young adults showed increased functional connectivity between the right MFG and other regions of the frontoparietal network, including bilateral superior frontal gyrus, paracingulate gyrus, and anterior cingulate cortex. In addition, they showed reduced functional connectivity between the medial PFC and right posterior middle temporal gyrus. Moreover, a regression with performance changes revealed a positive relation between performance increases and changes of frontoparietal connectivity, and a negative relation between performance increases and changes of default network connectivity. Next, to study whether experience-dependent effects would be different during development, we also examined practice effects in a pilot sample of 12-year-old children. No practice effects were found in this group, suggesting that practice-related changes of functional connectivity are age-dependent. Nevertheless, future studies with larger samples are necessary to confirm this hypothesis. |
Author | Jolles, Dietsje D. Crone, Eveline A. van Buchem, Mark A. Rombouts, Serge A.R.B. |
AuthorAffiliation | 1 Leiden Institute for Brain and Cognition (LIBC), Leiden University, P.O. Box 9600, 2300 RC Leiden, The Netherlands 2 Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands 3 Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands |
AuthorAffiliation_xml | – name: 3 Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands – name: 2 Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands – name: 1 Leiden Institute for Brain and Cognition (LIBC), Leiden University, P.O. Box 9600, 2300 RC Leiden, The Netherlands |
Author_xml | – sequence: 1 givenname: Dietsje D. surname: Jolles fullname: Jolles, Dietsje D. email: d.d.jolles@lumc.nl organization: Leiden Institute for Brain and Cognition (LIBC), Leiden University, P.O. Box 9600, 2300 RC Leiden, The Netherlands – sequence: 2 givenname: Mark A. surname: van Buchem fullname: van Buchem, Mark A. organization: Leiden Institute for Brain and Cognition (LIBC), Leiden University, P.O. Box 9600, 2300 RC Leiden, The Netherlands – sequence: 3 givenname: Eveline A. surname: Crone fullname: Crone, Eveline A. organization: Leiden Institute for Brain and Cognition (LIBC), Leiden University, P.O. Box 9600, 2300 RC Leiden, The Netherlands – sequence: 4 givenname: Serge A.R.B. surname: Rombouts fullname: Rombouts, Serge A.R.B. organization: Leiden Institute for Brain and Cognition (LIBC), Leiden University, P.O. Box 9600, 2300 RC Leiden, The Netherlands |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26838595$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22076823$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctO3DAYha0KVG5d8AKVpQqpLAK-xHayQQLETaW0SCAQG8sxzowhsamdAPP2OJ0ZWlC78u07R8f_WQELzjsDwDpGWxghsj2u2i2C8zz_AJYxKkWGcEkXhj1nWZkLvARWYrxDCGOG8EewRAgSvCB0GXw77J3urHeqgVVQ1kHtnTPp6tF2E6g6GEzsoB4rNzIRqrozAT75cG_dCLam9WECu0GXzmtgsVZNNJ9m6yq4PDy42D_OTn8cnezvnmaaCZFntC4qkjNckBpzzTVJwbG6VcioGrOKGcZ5icuqZLxOIOFCE5IjRklSVJrSVbAz9X3oq9bcauNSgkY-BNuqMJFeWfn2xdmxHPlHyQuBKBbJ4OvMIPhfffqfbG3UpmmUM76PEhNBCROcDeiXd-id70Oa1kBxTgXleZmoz38neo0yn3MCNmaAilo1dVBO2_iH4wUtWMkStz3ldPAxBlNLbTs19DMMuZEYyaFxmRqXvxtPis13irnpv9iZ-5NtzOT_oDze-z5XZFOFjZ15flWocC-5oILJq7MjefXz_OJs7_xa3tAXIXDIyw |
CitedBy_id | crossref_primary_10_3389_fpsyg_2015_00687 crossref_primary_10_1016_j_bbr_2015_10_008 crossref_primary_10_1016_j_neuroscience_2022_10_024 crossref_primary_10_1093_cercor_bhz117 crossref_primary_10_1007_s12144_022_02989_0 crossref_primary_10_3389_fnins_2021_694010 crossref_primary_10_3389_fnhum_2019_00246 crossref_primary_10_3389_fnbeh_2014_00221 crossref_primary_10_1002_hbm_70111 crossref_primary_10_1016_j_tics_2014_06_007 crossref_primary_10_3389_fnhum_2020_497245 crossref_primary_10_1016_j_ijpsycho_2012_09_007 crossref_primary_10_1016_j_neubiorev_2018_03_019 crossref_primary_10_1093_cercor_bhad153 crossref_primary_10_3389_fnbeh_2019_00247 crossref_primary_10_1016_j_bbr_2018_12_008 crossref_primary_10_1002_hbm_22670 crossref_primary_10_1016_j_cobeha_2016_05_003 crossref_primary_10_1177_17470218211002509 crossref_primary_10_1097_WNR_0000000000000761 crossref_primary_10_1016_j_neuroimage_2015_09_010 crossref_primary_10_1016_j_neuroimage_2020_116887 crossref_primary_10_1016_j_neubiorev_2016_05_018 crossref_primary_10_1016_j_neubiorev_2020_07_027 crossref_primary_10_1093_cercor_bhae401 crossref_primary_10_1523_JNEUROSCI_1973_15_2016 crossref_primary_10_1111_desc_12756 crossref_primary_10_1016_j_nicl_2020_102488 crossref_primary_10_1016_j_schres_2014_10_015 crossref_primary_10_1007_s11065_014_9252_y crossref_primary_10_1162_jocn_a_01260 crossref_primary_10_1371_journal_pone_0170660 crossref_primary_10_3389_fnagi_2017_00033 crossref_primary_10_1155_2016_8240894 crossref_primary_10_1016_j_neuropsychologia_2015_05_029 crossref_primary_10_1177_2514183X20974231 crossref_primary_10_1016_j_cortex_2016_08_004 crossref_primary_10_1002_hbm_22615 crossref_primary_10_1016_j_dcn_2020_100753 crossref_primary_10_1016_j_bpsc_2024_04_017 crossref_primary_10_1002_hbm_25164 crossref_primary_10_1016_j_tine_2018_11_003 crossref_primary_10_1016_j_neuroimage_2023_120300 crossref_primary_10_1371_journal_pone_0105780 crossref_primary_10_1016_j_jocrd_2020_100617 crossref_primary_10_1371_journal_pone_0139930 crossref_primary_10_1371_journal_pone_0188329 crossref_primary_10_1038_s43587_022_00237_5 crossref_primary_10_1016_j_neurobiolaging_2017_01_020 crossref_primary_10_1016_j_nicl_2024_103696 crossref_primary_10_1016_j_neuroimage_2014_07_067 crossref_primary_10_1093_scan_nsad019 crossref_primary_10_1016_j_psyneuen_2022_105896 crossref_primary_10_47820_jht_v2i2_37 crossref_primary_10_1017_S0033291717001982 crossref_primary_10_1073_pnas_1817278116 crossref_primary_10_1016_j_cortex_2013_01_008 crossref_primary_10_1038_nrn3313 crossref_primary_10_1016_j_pbb_2020_172969 crossref_primary_10_1007_s41465_019_00150_7 crossref_primary_10_1371_journal_pone_0060312 crossref_primary_10_3389_fnhum_2020_00229 crossref_primary_10_1016_j_dcn_2019_100678 crossref_primary_10_1016_j_nicl_2021_102593 crossref_primary_10_1162_jocn_a_01127 crossref_primary_10_1371_journal_pcbi_1009634 crossref_primary_10_1016_j_brainresbull_2015_12_001 crossref_primary_10_1016_j_dcn_2019_100719 crossref_primary_10_1016_j_nicl_2018_01_030 crossref_primary_10_1007_s11682_020_00269_8 crossref_primary_10_1080_02640414_2021_1891722 crossref_primary_10_1038_nrn_2016_43 crossref_primary_10_1007_s10899_024_10354_y crossref_primary_10_3233_JAD_161099 crossref_primary_10_3389_fnhum_2014_00827 crossref_primary_10_1016_j_neuroimage_2020_116688 crossref_primary_10_1093_braincomms_fcaa115 crossref_primary_10_1007_s11682_019_00080_0 crossref_primary_10_3389_fpsyt_2020_512761 crossref_primary_10_1016_j_neuropharm_2015_05_036 crossref_primary_10_1038_s41467_021_27695_6 crossref_primary_10_1089_neur_2022_0074 crossref_primary_10_1371_journal_pone_0220790 crossref_primary_10_1016_j_pscychresns_2016_09_004 crossref_primary_10_1093_cercor_bhae445 crossref_primary_10_1002_brb3_687 crossref_primary_10_1016_j_neuroscience_2014_12_071 crossref_primary_10_3389_fnagi_2015_00134 crossref_primary_10_3389_fnhum_2021_698367 crossref_primary_10_1038_s42003_024_06969_x crossref_primary_10_1152_physrev_00033_2019 crossref_primary_10_1016_j_jadr_2024_100719 crossref_primary_10_3233_NRE_210264 crossref_primary_10_3389_fnsys_2015_00044 crossref_primary_10_1016_j_neuroimage_2014_11_037 crossref_primary_10_1080_09602011_2021_1987277 crossref_primary_10_1089_brain_2015_0389 crossref_primary_10_3389_fnhum_2019_00107 crossref_primary_10_1109_TNSRE_2014_2332353 crossref_primary_10_1016_j_dcn_2015_07_007 crossref_primary_10_3389_fnagi_2019_00216 crossref_primary_10_3389_fnhum_2017_00364 crossref_primary_10_1016_j_chaos_2024_114568 crossref_primary_10_1093_cercor_bhad527 crossref_primary_10_3724_SP_J_1042_2022_00255 crossref_primary_10_1016_j_intell_2021_101541 crossref_primary_10_1016_j_neuroimage_2021_118181 crossref_primary_10_1016_j_neuroimage_2024_120761 crossref_primary_10_1016_j_ijpsycho_2021_10_004 crossref_primary_10_1016_j_neuroimage_2016_01_007 crossref_primary_10_1016_j_neuroimage_2015_04_017 crossref_primary_10_1038_srep07622 crossref_primary_10_1089_brain_2011_0060 crossref_primary_10_3389_fpsyg_2020_570030 crossref_primary_10_1007_s11682_014_9306_z crossref_primary_10_1016_j_nicl_2020_102279 crossref_primary_10_3390_brainsci12020287 crossref_primary_10_1111_psyp_12010 crossref_primary_10_7554_eLife_55081 crossref_primary_10_1016_j_neuropsychologia_2018_12_001 crossref_primary_10_1038_s41598_021_02492_9 crossref_primary_10_1038_srep35481 crossref_primary_10_3389_fnins_2020_00182 crossref_primary_10_3389_fnbeh_2015_00244 crossref_primary_10_1016_j_heliyon_2017_e00373 crossref_primary_10_1109_ACCESS_2021_3074220 crossref_primary_10_1002_hbm_22644 crossref_primary_10_1515_revneuro_2016_0007 crossref_primary_10_1523_JNEUROSCI_4141_12_2013 crossref_primary_10_3389_fped_2019_00494 crossref_primary_10_1016_j_dr_2021_100964 crossref_primary_10_1016_j_neuropsychologia_2014_04_020 |
Cites_doi | 10.1073/pnas.0911855107 10.1073/pnas.0800376105 10.1038/35086012 10.1073/pnas.0510088103 10.1073/pnas.0504136102 10.1073/pnas.0401227101 10.1016/j.cub.2009.04.028 10.1016/j.mri.2010.03.021 10.1073/pnas.162486399 10.1093/cercor/12.1.17 10.1523/JNEUROSCI.1579-09.2009 10.1073/pnas.0705843104 10.1016/j.dcn.2010.07.003 10.1016/j.neuroimage.2006.11.054 10.1126/science.1194144 10.3389/fnhum.2010.00218 10.1196/annals.1440.011 10.1126/science. 1134405 10.1002/hbm.20616 10.1002/hbm.20531 10.1073/pnas.98.2.676 10.1159/000278340 10.1016/j.neuroimage.2010.04.009 10.1093/acprof:oso/9780192630711.003.0014 10.1038/35094565 10.1093/cercor/bhj007 10.1162/jocn.2006.18.7.1045 10.1002/hbm.10062 10.1002/hbm.10022 10.1073/pnas.0601417103 10.1006/brcg.1999.1096 10.1016/j.tics.2010.01.008 10.1016/j.neuropsychologia.2006.05.010 10.1126/science.1736359 10.1016/j.neuropsychologia.2006.06.017 10.1016/S1364-6613(03)00197-9 10.1006/nimg.2001.0936 10.1093/cercor/bhi005 10.1016/j.neuroimage.2004.07.051 10.7551/mitpress/4230.003.0005 10.1016/S1361-8415(01)00036-6 10.1016/j.neuropsychologia.2006.01.010 10.1016/j.neuroimage.2007.08.008 10.1038/nn987 10.1016/j.tics.2007.05.005 10.1038/35081509 10.1016/j.mri.2006.09.032 10.1016/S0896-6273(01)00583-9 10.1162/089892902317205276 10.1016/j.neuron.2010.08.017 10.1126/science.1099745 10.1016/j.neuroimage.2010.04.028 10.1038/nrn2201 10.1073/pnas.0135058100 10.1523/JNEUROSCI.3408-06.2006 10.1037/0894-4105.19.1.88 10.1371/journal.pcbi.1000381 10.1093/cercor/bhn117 10.1016/j.neuron.2010.08.035 10.1038/nrn1201 10.1126/science.283.5408.1657 10.1371/journal.pone.0006626 10.1523/JNEUROSCI.5587-06.2007 10.1093/brain/121.6.1013 10.1038/nn1165 10.1523/JNEUROSCI.6266-09.2010 10.1006/nimg.2002.1132 10.1093/cercor/bhq104 10.1016/j.brainres.2010.07.055 10.1093/cercor/bhl014 10.1073/pnas.0902455106 10.1016/j.tics.2006.05.003 10.1371/journal.pbio.1000157 10.1073/pnas.0905267106 10.1006/nimg.2001.0931 10.1093/acprof:oso/9780195134971.003.0029 10.1006/nimg.2000.0654 10.1126/science.1155466 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Wiley Periodicals, Inc. 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2011 Wiley Periodicals, Inc. – notice: 2015 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.21444 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Training and Functional Connectivity |
EISSN | 1097-0193 |
EndPage | 406 |
ExternalDocumentID | PMC6870317 2857020961 22076823 26838595 10_1002_hbm_21444 HBM21444 ark_67375_WNG_WPQTNBQX_Z |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: S.A.R.B.R. and E.A.C are supported by grants from the Netherlands Organization for Scientific Research (NWO, VIDI) funderid: 91786368; 45207011 – fundername: Gratama stichting and Leids Universiteits Fonds (granted to E.A.C.) – fundername: S.A.R.B.R. and E.A.C are supported by grants from the Netherlands Organization for Scientific Research (NWO, VIDI) grantid: 91786368; 45207011 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAFWJ AAMMB AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS AEFGJ AEIMD AENEX AFBPY AFGKR AFKRA AFPKN AFRAH AFZJQ AGQPQ AGXDD AHMBA AIDQK AIDYY AIQQE AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PHGZM PHGZT PIMPY PQQKQ PUEGO Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT 33P AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALIPV C45 RWD RWI WRC WUP AAYXX CITATION ACXME IQODW CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c5774-3f8b245182f16c6c24441ada0eaf15b5e566919b956fb24267c224053282fbc33 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 14:12:33 EDT 2025 Thu Sep 25 08:52:27 EDT 2025 Sat Jul 26 02:16:25 EDT 2025 Thu Apr 03 07:03:49 EDT 2025 Wed May 29 03:57:13 EDT 2024 Thu Apr 24 23:00:06 EDT 2025 Tue Jul 01 04:25:59 EDT 2025 Wed Jan 22 16:36:34 EST 2025 Sun Sep 21 06:18:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Nervous system diseases development practice Radiodiagnosis Central nervous system Nuclear magnetic resonance imaging Encephalon fMRI Rest resting state functional connectivity Plasticity Working memory |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright © 2011 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5774-3f8b245182f16c6c24441ada0eaf15b5e566919b956fb24267c224053282fbc33 |
Notes | ark:/67375/WNG-WPQTNBQX-Z ArticleID:HBM21444 S.A.R.B.R. and E.A.C are supported by grants from the Netherlands Organization for Scientific Research (NWO, VIDI) - No. 91786368; No. 45207011 Gratama stichting and Leids Universiteits Fonds (granted to E.A.C.) istex:4F5DC65BEB7ABC2CC355960CA5E6465615CE2F03 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6870317 |
PMID | 22076823 |
PQID | 1266373649 |
PQPubID | 996345 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6870317 proquest_miscellaneous_1273257657 proquest_journals_1266373649 pubmed_primary_22076823 pascalfrancis_primary_26838595 crossref_citationtrail_10_1002_hbm_21444 crossref_primary_10_1002_hbm_21444 wiley_primary_10_1002_hbm_21444_HBM21444 istex_primary_ark_67375_WNG_WPQTNBQX_Z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2013 |
PublicationDateYYYYMMDD | 2013-02-01 |
PublicationDate_xml | – month: 02 year: 2013 text: February 2013 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum. Brain Mapp |
PublicationYear | 2013 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss John Wiley & Sons, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss – name: John Wiley & Sons, Inc |
References | Finn AS, Sheridan MA, Kam CL, Hinshaw S, D'Esposito M ( 2010): Longitudinal evidence for functional specialization of the neural circuit supporting working memory in the human brain. J Neurosci 30: 11062-11067. Kording KP, Wolpert DM ( 2006): Bayesian decision theory in sensorimotor control. Trends Cogn Sci 10: 319-326. Bavelier D, Green CS, Dye MW ( 2010): Children, wired: For better and for worse. Neuron 67: 692-701. Uddin LQ, Kelly AM, Biswal BB, Xavier CF, Milham MP ( 2009): Functional connectivity of default mode network components: Correlation, anticorrelation, and causality. Hum Brain Mapp 30: 625-637. Wechsler D ( 1997): Wechsler Adult Intelligence Scale-Third Edition. Administration and Scoring Manual. San Antonio, TX: The Psychological Corporation. Achenbach TM ( 1991): Manual for the Child Behavior Checklist/4-18 and 1991 Profile. Burlington, VT: University of Vermont, Department of Psychiatry. Baddeley A ( 1992): Working memory. Science 255: 556-559. Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC ( 2002): Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp 15: 247-262. Mesulam MM ( 1998): From sensation to cognition. Brain 121: 1013-1052. Crone EA, Wendelken C, Donohue S, van Leijenhorst L, Bunge SA ( 2006): Neurocognitive development of the ability to manipulate information in working memory. Proc Natl Acad Sci U S A 103: 9315-9320. Johnson MH ( 2001): Functional brain development in humans. Nat Rev Neurosci 2: 475-483. Littow H, Elseoud AA, Haapea M, Isohanni M, Moilanen I, Mankinen K, Nikkinen J, Rahko J, Rantala H, Remes J, Starck T, Tervonen O, Veijola J, Beckmann C, Kiviniemi VJ( 2010): Age-related differences in functional nodes of the brain cortex-A high model order group ICA study. Front Syst Neurosci 4. Smith SM ( 2002): Fast robust automated brain extraction. Hum Brain Mapp 17: 143-155. Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR Jr, Barch DM, Petersen SE, Schlaggar BL ( 2010): Prediction of individual brain maturity using fMRI. Science 329: 1358-1361. Salinas E, Sejnowski TJ ( 2001): Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2: 539-550. Yuan W, Altaye M, Ret JR, Schmithorst VJ, Byars AW, Plante E, Holland SK ( 2009): Quantification of head motion in children during various fMRI language tasks. Hum Brain Mapp 30: 1481-1489. Huizinga M, Dolan CV, van der Molen MW ( 2006): Age-related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia 44: 2017-2036. Raichle ME ( 2006): The brain's dark energy. Science 314: 1249-1250. Kelly AM, Garavan H ( 2005): Human functional neuroimaging of brain changes associated with practice. Cereb Cortex 15: 1089-1102. Cole DM, Smith SM, Beckmann CF ( 2010): Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci 4: 8. Bar M ( 2007): The proactive brain: Using analogies and associations to generate predictions. Trends Cogn Sci 11: 280-289. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF ( 2006): Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103: 13848-13853. Jenkinson M, Bannister P, Brady M, Smith S ( 2002): Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17: 825-841. Williams BR, Hultsch DF, Strauss EH, Hunter MA, Tannock R ( 2005): Inconsistency in reaction time across the life span. Neuropsychology 19: 88-96. Johnson MH ( 2011): Interactive specialization: A domain-general framework for human functional brain development? Dev Cogn Neurosci 1: 7-21. Jolles DD, van Buchem MA, Crone EA, Rombouts SA ( 2011): A comprehensive study of whole-brain functional connectivity in children and young adults. Cereb Cortex 21: 385-391. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD ( 2007): Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27: 2349-2356. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME ( 2005): The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102: 9673-9678. Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP ( 2008): Competition between functional brain networks mediates behavioral variability. Neuroimage 39: 527-537. Supekar K, Uddin LQ, Prater K, Amin H, Greicius MD, Menon V ( 2010): Development of functional and structural connectivity within the default mode network in young children. Neuroimage 52: 290-301. Barnes A, Bullmore ET, Suckling J ( 2009): Endogenous human brain dynamics recover slowly following cognitive effort. PLoS One 4: e6626. Curtis CE, D'Esposito M ( 2003): Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci 7: 415-423. Sakai K, Passingham RE ( 2003): Prefrontal interactions reflect future task operations. Nat Neurosci 6: 75-81. Jolles DD, Grol MJ, van Buchem MA, Rombouts SA, Crone EA ( 2010): Practice effects in the brain: Changes in cerebral activation after working memory practice depend on task demands. Neuroimage 52: 658-668. Kelly AMC, Di Martino A, Uddin LQ, Shehzad Z, Gee DG, Reiss PT, Margulies DS, Castellanos FX, Milham MP ( 2009): Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cereb Cortex 19: 640-657. Albert NB, Robertson EM, Miall RC ( 2009): The resting human brain and motor learning. Curr Biol 19: 1023-1027. Smith EE, Jonides J ( 1999): Neuroscience-Storage and executive processes in the frontal lobes. Science 283: 1657-1661. Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT ( 2006): Brain connectivity related to working memory performance. J Neurosci 26: 13338-13343. Wagner AD, Maril A, Bjork RA, Schacter DL ( 2001): Prefrontal contributions to executive control: fMRI evidence for functional distinctions within lateral prefrontal cortex. Neuroimage 14: 1337-1347. Hampson M, Driesen N, Roth JK, Gore JC, Constable RT ( 2010): Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance. Magn Reson Imaging 28: 1051-1057. Fox MD, Raichle ME ( 2007): Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8: 700-711. Fair DA, Cohen AL, Dosenbach NUF, Church JA, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL ( 2008): The maturing architecture of the brain's default network. Proc Natl Acad Sci U S A 105: 4028-4032. Sowell ER, Thompson PM, Rex D, Kornsand D, Tessner KD, Jernigan TL, Toga AW ( 2002): Mapping sulcal pattern asymmetry and local cortical surface gray matter distribution in vivo: Maturation in perisylvian cortices. Cerebral Cortex 12: 17-26. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kötter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SA, Rypma B, Schlaggar BL, Schmidt S, Seidler RD, J Siegle G, Sorg C, Teng GJ, Veijola J, Villringer A, Walter M, Wang L, Weng XC, Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang YF, Zhang HY, Castellanos FX, Milham MP (2010): Toward discovery science of human brain function. Proc Natl Acad Sci U S A 107: 4734-4739. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL ( 2001): A default mode of brain function. Proc Natl Acad Sci U S A 98: 676-682. Engel AK, Fries P, Singer W ( 2001): Dynamic predictions: Oscillations and synchrony in top-down processing. Nat Rev Neurosci 2: 704-716. Asato MR, Sweeney JA, Luna B ( 2006): Cognitive processes in the development of TOL performance. Neuropsychologia 44: 2259-2269. Ma L, Wang B, Chen X, Xiong J ( 2007): Detecting functional connectivity in the resting brain: A comparison between ICA and CCA. Magn Reson Imaging 25: 47-56. Raichle ME ( 2010): Two views of brain function. Trends Cogn Sci 14: 180-190. Kwon H, Reiss AL, Menon V ( 2002): Neural basis of protracted developmental changes in visuo-spatial working memory. Proc Natl Acad Sci U S A 99: 13336-13341. Olesen PJ, Westerberg H, Klingberg T ( 2004): Increased prefrontal and parietal activity after training of working memory. Nat Neurosci 7: 75-79. Baddeley A ( 2003): Working memory: Looking back and looking forward. Nat Rev Neurosci 4: 829-839. Fransson P ( 2006): How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 44: 2836-2845. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF ( 2009): Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci U S A 106: 13040-13045. Wechsler D ( 1991): Wechsler Intelligence Scale for Children-Third Edition. Manual. San Antonio, TX: The Psychological Corporation. Klingberg T, Forssberg H, Westerberg H ( 2002): Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood. J Cogn Neurosci 14: 1-10. Pascual-Leone J ( 1995): Learning and development as dialectical factors in cognitive growth. Hum Dev 38: 338-348. Dahlin E, Neely AS, Larsson A, Backman L, Nyberg L ( 2008): Transfer of learning after updating training mediated by the striatum. Science 320: 1510-1512. Lewis CM, Baldassarre A, Committeri G, Romani GL, Corbetta M ( 2009): Learning sculpts the spontaneous activity of the resting human brain. Proc Natl Acad Sci U S A 106: 17558-17563. Woolrich MW, Ripley BD, Brady M, Smith SM ( 2001): Temporal autocorrelati 2007; 104 2002; 17 2002; 14 2002; 15 2010; 14 2010; 107 1995; 38 2002; 12 2004; 7 2004; 23 2008; 39 2002; 99 1999; 283 2008; 105 1999; 41 2007; 35 2010; 67 2008; 1124 2001 2000; 12 2005; 102 2010; 28 2003; 6 2003; 7 2006; 26 2007; 8 2003; 4 2011; 21 2009; 19 1998; 121 2010; 2 2010; 4 2001; 14 2010; 30 2007; 25 2001; 98 2007; 27 2007; 17 2004; 101 2010; 329 2011; 1 2006; 10 2006; 16 2002; 33 1997 2006; 18 1992 1991 2002 2006; 314 2008; 320 2007; 11 2010; 1354 2004; 304 2009; 29 2009; 30 2005; 19 2001; 5 2006; 44 1992; 255 2009; 7 2001; 2 2009; 5 2009; 4 2005; 15 2003; 100 2010; 52 2006; 103 2009; 106 e_1_2_8_28_1 Voss MW (e_1_2_8_79_1) 2010; 2 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Hitch GJ (e_1_2_8_37_1) 2002 e_1_2_8_3_1 Wechsler D (e_1_2_8_82_1) 1997 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 Cole DM (e_1_2_8_17_1) 2010; 4 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 Littow H (e_1_2_8_52_1) 2010; 4 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 Wechsler D (e_1_2_8_81_1) 1991 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 Achenbach TM (e_1_2_8_2_1) 1991 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – reference: Engel AK, Fries P, Singer W ( 2001): Dynamic predictions: Oscillations and synchrony in top-down processing. Nat Rev Neurosci 2: 704-716. – reference: Greicius MD, Krasnow B, Reiss AL, Menon V ( 2003): Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100: 253-258. – reference: Bunge SA, Dudukovic NM, Thomason ME, Vaidya CJ, Gabrieli JD ( 2002): Immature frontal lobe contributions to cognitive control in children: Evidence from fMRI. Neuron 33: 301-311. – reference: Velanova K, Wheeler ME, Luna B ( 2009): The maturation of task set-related activation supports late developmental improvements in inhibitory control. J Neurosci 29: 12558-12567. – reference: Williams BR, Hultsch DF, Strauss EH, Hunter MA, Tannock R ( 2005): Inconsistency in reaction time across the life span. Neuropsychology 19: 88-96. – reference: Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kötter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SA, Rypma B, Schlaggar BL, Schmidt S, Seidler RD, J Siegle G, Sorg C, Teng GJ, Veijola J, Villringer A, Walter M, Wang L, Weng XC, Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang YF, Zhang HY, Castellanos FX, Milham MP (2010): Toward discovery science of human brain function. Proc Natl Acad Sci U S A 107: 4734-4739. – reference: Uddin LQ, Kelly AM, Biswal BB, Xavier CF, Milham MP ( 2009): Functional connectivity of default mode network components: Correlation, anticorrelation, and causality. Hum Brain Mapp 30: 625-637. – reference: Brahmbhatt SB, White DA, Barch DM ( 2010): Developmental differences in sustained and transient activity underlying working memory. Brain Res 1354: 140-151. – reference: Supekar K, Musen M, Menon V ( 2009): Development of large-scale functional brain networks in children. PLoS Biol 7. – reference: Johnson MH ( 2011): Interactive specialization: A domain-general framework for human functional brain development? Dev Cogn Neurosci 1: 7-21. – reference: Lewis CM, Baldassarre A, Committeri G, Romani GL, Corbetta M ( 2009): Learning sculpts the spontaneous activity of the resting human brain. Proc Natl Acad Sci U S A 106: 17558-17563. – reference: Baddeley A ( 1992): Working memory. Science 255: 556-559. – reference: Albert NB, Robertson EM, Miall RC ( 2009): The resting human brain and motor learning. Curr Biol 19: 1023-1027. – reference: Fransson P ( 2006): How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 44: 2836-2845. – reference: Jolles DD, Grol MJ, van Buchem MA, Rombouts SA, Crone EA ( 2010): Practice effects in the brain: Changes in cerebral activation after working memory practice depend on task demands. Neuroimage 52: 658-668. – reference: Kelly AMC, Di Martino A, Uddin LQ, Shehzad Z, Gee DG, Reiss PT, Margulies DS, Castellanos FX, Milham MP ( 2009): Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cereb Cortex 19: 640-657. – reference: Lowe MJ, Dzemidzic M, Lurito JT, Mathews VP, Phillips MD ( 2000): Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. Neuroimage 12: 582-587. – reference: Smith EE, Jonides J ( 1999): Neuroscience-Storage and executive processes in the frontal lobes. Science 283: 1657-1661. – reference: Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF ( 2006): Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103: 13848-13853. – reference: Bavelier D, Green CS, Dye MW ( 2010): Children, wired: For better and for worse. Neuron 67: 692-701. – reference: Jolles DD, van Buchem MA, Crone EA, Rombouts SA ( 2011): A comprehensive study of whole-brain functional connectivity in children and young adults. Cereb Cortex 21: 385-391. – reference: Littow H, Elseoud AA, Haapea M, Isohanni M, Moilanen I, Mankinen K, Nikkinen J, Rahko J, Rantala H, Remes J, Starck T, Tervonen O, Veijola J, Beckmann C, Kiviniemi VJ( 2010): Age-related differences in functional nodes of the brain cortex-A high model order group ICA study. Front Syst Neurosci 4. – reference: Buzsaki G, Draguhn A ( 2004): Neuronal oscillations in cortical networks. Science 304: 1926-1929. – reference: Bar M ( 2007): The proactive brain: Using analogies and associations to generate predictions. Trends Cogn Sci 11: 280-289. – reference: Sayala S, Sala JB, Courtney SM ( 2006): Increased neural efficiency with repeated performance of a working memory task is information-type dependent. Cereb Cortex 16: 609-617. – reference: Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD ( 2007): Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27: 2349-2356. – reference: Johnson MH ( 2001): Functional brain development in humans. Nat Rev Neurosci 2: 475-483. – reference: Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De LM, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM ( 2004): Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23: S208-S219. – reference: Raichle ME ( 2006): The brain's dark energy. Science 314: 1249-1250. – reference: Thirion B, Pinel P, Meriaux S, Roche A, Dehaene S, Poline JB ( 2007): Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses. Neuroimage 35: 105-120. – reference: Mesulam MM ( 1998): From sensation to cognition. Brain 121: 1013-1052. – reference: Power JD, Fair DA, Schlaggar BL, Petersen SE ( 2010): The development of human functional brain networks. Neuron 67: 735-748. – reference: Ma L, Wang B, Chen X, Xiong J ( 2007): Detecting functional connectivity in the resting brain: A comparison between ICA and CCA. Magn Reson Imaging 25: 47-56. – reference: Baddeley A ( 2003): Working memory: Looking back and looking forward. Nat Rev Neurosci 4: 829-839. – reference: Fair DA, Cohen AL, Power JD, Dosenbach NUF, Church JA, Miezin FM, Schlaggar BL, Petersen SE ( 2009): Functional brain networks develop from a "local to distributed" organization. PLoS Comput Biol 5. – reference: Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT ( 2006): Brain connectivity related to working memory performance. J Neurosci 26: 13338-13343. – reference: Voss MW, Prakash RS, Erickson KI, Basak C, Chaddock L, Kim JS, Alves H, Heo S, Szabo AN, White SM, Wójcicki TR, Mailey EL, Gothe N, Olson EA, McAuley E, Kramer AF ( 2010): Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front Aging Neurosci 2. – reference: Finn AS, Sheridan MA, Kam CL, Hinshaw S, D'Esposito M ( 2010): Longitudinal evidence for functional specialization of the neural circuit supporting working memory in the human brain. J Neurosci 30: 11062-11067. – reference: Sowell ER, Thompson PM, Rex D, Kornsand D, Tessner KD, Jernigan TL, Toga AW ( 2002): Mapping sulcal pattern asymmetry and local cortical surface gray matter distribution in vivo: Maturation in perisylvian cortices. Cerebral Cortex 12: 17-26. – reference: D'Esposito M, Postle BR, Ballard D, Lease J ( 1999): Maintenance versus manipulation of information held in working memory: An event-related fMRI study. Brain Cogn 41: 66-86. – reference: Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC ( 2002): Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp 15: 247-262. – reference: Salinas E, Sejnowski TJ ( 2001): Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2: 539-550. – reference: Crone EA, Wendelken C, Donohue S, van Leijenhorst L, Bunge SA ( 2006): Neurocognitive development of the ability to manipulate information in working memory. Proc Natl Acad Sci U S A 103: 9315-9320. – reference: Jenkinson M, Bannister P, Brady M, Smith S ( 2002): Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17: 825-841. – reference: Fair DA, Dosenbach NUF, Church JA, Cohen AL, Brahmbhatt S, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL ( 2007): Development of distinct control networks through segregation and integration. Proc Natl Acad Sci U S A 104: 13507-13512. – reference: Dahlin E, Neely AS, Larsson A, Backman L, Nyberg L ( 2008): Transfer of learning after updating training mediated by the striatum. Science 320: 1510-1512. – reference: Olesen PJ, Macoveanu J, Tegner J, Klingberg T ( 2007): Brain activity related to working memory and distraction in children and adults. Cereb Cortex 17: 1047-1054. – reference: Yuan W, Altaye M, Ret JR, Schmithorst VJ, Byars AW, Plante E, Holland SK ( 2009): Quantification of head motion in children during various fMRI language tasks. Hum Brain Mapp 30: 1481-1489. – reference: Fox MD, Raichle ME ( 2007): Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8: 700-711. – reference: Kelly AM, Garavan H ( 2005): Human functional neuroimaging of brain changes associated with practice. Cereb Cortex 15: 1089-1102. – reference: Jenkinson M, Smith S ( 2001): A global optimisation method for robust affine registration of brain images. Med Image Anal 5: 143-156. – reference: Raichle ME ( 2010): Two views of brain function. Trends Cogn Sci 14: 180-190. – reference: Scherf KS, Sweeney JA, Luna B ( 2006): Brain basis of developmental change in visuospatial working memory. J Cogn Neurosci 18: 1045-1058. – reference: Wagner AD, Maril A, Bjork RA, Schacter DL ( 2001): Prefrontal contributions to executive control: fMRI evidence for functional distinctions within lateral prefrontal cortex. Neuroimage 14: 1337-1347. – reference: Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR Jr, Barch DM, Petersen SE, Schlaggar BL ( 2010): Prediction of individual brain maturity using fMRI. Science 329: 1358-1361. – reference: Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME ( 2005): The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102: 9673-9678. – reference: Pascual-Leone J ( 1995): Learning and development as dialectical factors in cognitive growth. Hum Dev 38: 338-348. – reference: Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP ( 2008): Competition between functional brain networks mediates behavioral variability. Neuroimage 39: 527-537. – reference: Hampson M, Driesen N, Roth JK, Gore JC, Constable RT ( 2010): Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance. Magn Reson Imaging 28: 1051-1057. – reference: Olesen PJ, Westerberg H, Klingberg T ( 2004): Increased prefrontal and parietal activity after training of working memory. Nat Neurosci 7: 75-79. – reference: Supekar K, Uddin LQ, Prater K, Amin H, Greicius MD, Menon V ( 2010): Development of functional and structural connectivity within the default mode network in young children. Neuroimage 52: 290-301. – reference: Barnes A, Bullmore ET, Suckling J ( 2009): Endogenous human brain dynamics recover slowly following cognitive effort. PLoS One 4: e6626. – reference: Benjamin C, Lieberman DA, Chang M, Ofen N, Whitfield-Gabrieli S, Gabrieli JD, Gaab N ( 2010): The influence of rest period instructions on the default mode network. Front Hum Neurosci 4: 218. – reference: Curtis CE, D'Esposito M ( 2003): Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci 7: 415-423. – reference: Achenbach TM ( 1991): Manual for the Child Behavior Checklist/4-18 and 1991 Profile. Burlington, VT: University of Vermont, Department of Psychiatry. – reference: Wechsler D ( 1997): Wechsler Adult Intelligence Scale-Third Edition. Administration and Scoring Manual. San Antonio, TX: The Psychological Corporation. – reference: Kwon H, Reiss AL, Menon V ( 2002): Neural basis of protracted developmental changes in visuo-spatial working memory. Proc Natl Acad Sci U S A 99: 13336-13341. – reference: Huizinga M, Dolan CV, van der Molen MW ( 2006): Age-related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia 44: 2017-2036. – reference: Klingberg T, Forssberg H, Westerberg H ( 2002): Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood. J Cogn Neurosci 14: 1-10. – reference: Wechsler D ( 1991): Wechsler Intelligence Scale for Children-Third Edition. Manual. San Antonio, TX: The Psychological Corporation. – reference: Sakai K, Passingham RE ( 2003): Prefrontal interactions reflect future task operations. Nat Neurosci 6: 75-81. – reference: Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF ( 2009): Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci U S A 106: 13040-13045. – reference: Woolrich MW, Ripley BD, Brady M, Smith SM ( 2001): Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage 14: 1370-1386. – reference: Fair DA, Cohen AL, Dosenbach NUF, Church JA, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL ( 2008): The maturing architecture of the brain's default network. Proc Natl Acad Sci U S A 105: 4028-4032. – reference: Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL ( 2001): A default mode of brain function. Proc Natl Acad Sci U S A 98: 676-682. – reference: Kording KP, Wolpert DM ( 2006): Bayesian decision theory in sensorimotor control. Trends Cogn Sci 10: 319-326. – reference: Asato MR, Sweeney JA, Luna B ( 2006): Cognitive processes in the development of TOL performance. Neuropsychologia 44: 2259-2269. – reference: Cole DM, Smith SM, Beckmann CF ( 2010): Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci 4: 8. – reference: Qin Y, Carter CS, Silk EM, Stenger VA, Fissell K, Goode A, Anderson JR ( 2004): The change of the brain activation patterns as children learn algebra equation solving. Proc Natl Acad Sci U S A 101: 5686-5691. – reference: Buckner RL, Andrews-Hanna JR, Schacter DL ( 2008): The Brain's Default Network: Anatomy, Function, and Relevance to Disease. Ann N Y Acad Sci 1124: 1-38. – reference: Smith SM ( 2002): Fast robust automated brain extraction. Hum Brain Mapp 17: 143-155. – volume: 15 start-page: 247 year: 2002 end-page: 262 article-title: Detection of functional connectivity using temporal correlations in MR images publication-title: Hum Brain Mapp – volume: 106 start-page: 17558 year: 2009 end-page: 17563 article-title: Learning sculpts the spontaneous activity of the resting human brain publication-title: Proc Natl Acad Sci U S A – volume: 283 start-page: 1657 year: 1999 end-page: 1661 article-title: Neuroscience—Storage and executive processes in the frontal lobes publication-title: Science – volume: 52 start-page: 290 year: 2010 end-page: 301 article-title: Development of functional and structural connectivity within the default mode network in young children publication-title: Neuroimage – volume: 15 start-page: 1089 year: 2005 end-page: 1102 article-title: Human functional neuroimaging of brain changes associated with practice publication-title: Cereb Cortex – volume: 38 start-page: 338 year: 1995 end-page: 348 article-title: Learning and development as dialectical factors in cognitive growth publication-title: Hum Dev – volume: 103 start-page: 9315 year: 2006 end-page: 9320 article-title: Neurocognitive development of the ability to manipulate information in working memory publication-title: Proc Natl Acad Sci U S A – volume: 30 start-page: 11062 year: 2010 end-page: 11067 article-title: Longitudinal evidence for functional specialization of the neural circuit supporting working memory in the human brain publication-title: J Neurosci – volume: 104 start-page: 13507 year: 2007 end-page: 13512 article-title: Development of distinct control networks through segregation and integration publication-title: Proc Natl Acad Sci U S A – volume: 2 start-page: 539 year: 2001 end-page: 550 article-title: Correlated neuronal activity and the flow of neural information publication-title: Nat Rev Neurosci – volume: 12 start-page: 582 year: 2000 end-page: 587 article-title: Correlations in low‐frequency BOLD fluctuations reflect cortico‐cortical connections publication-title: Neuroimage – volume: 6 start-page: 75 year: 2003 end-page: 81 article-title: Prefrontal interactions reflect future task operations publication-title: Nat Neurosci – volume: 304 start-page: 1926 year: 2004 end-page: 1929 article-title: Neuronal oscillations in cortical networks publication-title: Science – volume: 100 start-page: 253 year: 2003 end-page: 258 article-title: Functional connectivity in the resting brain: A network analysis of the default mode hypothesis publication-title: Proc Natl Acad Sci U S A – volume: 4 year: 2010 article-title: Age‐related differences in functional nodes of the brain cortex—A high model order group ICA study publication-title: Front Syst Neurosci – volume: 19 start-page: 1023 year: 2009 end-page: 1027 article-title: The resting human brain and motor learning publication-title: Curr Biol – start-page: 466 year: 2002 end-page: 503 – volume: 8 start-page: 700 year: 2007 end-page: 711 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nat Rev Neurosci – volume: 105 start-page: 4028 year: 2008 end-page: 4032 article-title: The maturing architecture of the brain's default network publication-title: Proc Natl Acad Sci U S A – volume: 28 start-page: 1051 year: 2010 end-page: 1057 article-title: Functional connectivity between task‐positive and task‐negative brain areas and its relation to working memory performance publication-title: Magn Reson Imaging – volume: 17 start-page: 825 year: 2002 end-page: 841 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage – volume: 329 start-page: 1358 year: 2010 end-page: 1361 article-title: Prediction of individual brain maturity using fMRI publication-title: Science – volume: 10 start-page: 319 year: 2006 end-page: 326 article-title: Bayesian decision theory in sensorimotor control publication-title: Trends Cogn Sci – volume: 44 start-page: 2017 year: 2006 end-page: 2036 article-title: Age‐related change in executive function: Developmental trends and a latent variable analysis publication-title: Neuropsychologia – volume: 101 start-page: 5686 year: 2004 end-page: 5691 article-title: The change of the brain activation patterns as children learn algebra equation solving publication-title: Proc Natl Acad Sci U S A – volume: 18 start-page: 1045 year: 2006 end-page: 1058 article-title: Brain basis of developmental change in visuospatial working memory publication-title: J Cogn Neurosci – volume: 106 start-page: 13040 year: 2009 end-page: 13045 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc Natl Acad Sci U S A – volume: 23 start-page: S208 year: 2004 end-page: S219 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage – volume: 67 start-page: 692 year: 2010 end-page: 701 article-title: Children, wired: For better and for worse publication-title: Neuron – volume: 44 start-page: 2836 year: 2006 end-page: 2845 article-title: How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations publication-title: Neuropsychologia – volume: 103 start-page: 13848 year: 2006 end-page: 13853 article-title: Consistent resting‐state networks across healthy subjects publication-title: Proc Natl Acad Sci U S A – volume: 4 start-page: 218 year: 2010 article-title: The influence of rest period instructions on the default mode network publication-title: Front Hum Neurosci – volume: 7 start-page: 75 year: 2004 end-page: 79 article-title: Increased prefrontal and parietal activity after training of working memory publication-title: Nat Neurosci – volume: 1124 start-page: 1 year: 2008 end-page: 38 article-title: The Brain's Default Network: Anatomy, Function, and Relevance to Disease publication-title: Ann N Y Acad Sci – year: 1997 – volume: 12 start-page: 17 year: 2002 end-page: 26 article-title: Mapping sulcal pattern asymmetry and local cortical surface gray matter distribution in vivo: Maturation in perisylvian cortices publication-title: Cerebral Cortex – volume: 39 start-page: 527 year: 2008 end-page: 537 article-title: Competition between functional brain networks mediates behavioral variability publication-title: Neuroimage – volume: 99 start-page: 13336 year: 2002 end-page: 13341 article-title: Neural basis of protracted developmental changes in visuo‐spatial working memory publication-title: Proc Natl Acad Sci U S A – volume: 14 start-page: 1337 year: 2001 end-page: 1347 article-title: Prefrontal contributions to executive control: fMRI evidence for functional distinctions within lateral prefrontal cortex publication-title: Neuroimage – volume: 33 start-page: 301 year: 2002 end-page: 311 article-title: Immature frontal lobe contributions to cognitive control in children: Evidence from fMRI publication-title: Neuron – volume: 5 start-page: 143 year: 2001 end-page: 156 article-title: A global optimisation method for robust affine registration of brain images publication-title: Med Image Anal – volume: 255 start-page: 556 year: 1992 end-page: 559 article-title: Working memory publication-title: Science – volume: 107 start-page: 4734 year: 2010 end-page: 4739 article-title: Toward discovery science of human brain function publication-title: Proc Natl Acad Sci U S A – volume: 26 start-page: 13338 year: 2006 end-page: 13343 article-title: Brain connectivity related to working memory performance publication-title: J Neurosci – start-page: 15 year: 2002 end-page: 37 – volume: 121 start-page: 1013 year: 1998 end-page: 1052 article-title: From sensation to cognition publication-title: Brain – volume: 27 start-page: 2349 year: 2007 end-page: 2356 article-title: Dissociable intrinsic connectivity networks for salience processing and executive control publication-title: J Neurosci – volume: 5 year: 2009 article-title: Functional brain networks develop from a “local to distributed” organization publication-title: PLoS Comput Biol – volume: 29 start-page: 12558 year: 2009 end-page: 12567 article-title: The maturation of task set‐related activation supports late developmental improvements in inhibitory control publication-title: J Neurosci – volume: 4 start-page: 8 year: 2010 article-title: Advances and pitfalls in the analysis and interpretation of resting‐state FMRI data publication-title: Front Syst Neurosci – volume: 16 start-page: 609 year: 2006 end-page: 617 article-title: Increased neural efficiency with repeated performance of a working memory task is information‐type dependent publication-title: Cereb Cortex – volume: 17 start-page: 1047 year: 2007 end-page: 1054 article-title: Brain activity related to working memory and distraction in children and adults publication-title: Cereb Cortex – volume: 320 start-page: 1510 year: 2008 end-page: 1512 article-title: Transfer of learning after updating training mediated by the striatum publication-title: Science – volume: 14 start-page: 1 year: 2002 end-page: 10 article-title: Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood publication-title: J Cogn Neurosci – volume: 2 start-page: 704 year: 2001 end-page: 716 article-title: Dynamic predictions: Oscillations and synchrony in top‐down processing publication-title: Nat Rev Neurosci – volume: 44 start-page: 2259 year: 2006 end-page: 2269 article-title: Cognitive processes in the development of TOL performance publication-title: Neuropsychologia – volume: 19 start-page: 88 year: 2005 end-page: 96 article-title: Inconsistency in reaction time across the life span publication-title: Neuropsychology – volume: 52 start-page: 658 year: 2010 end-page: 668 article-title: Practice effects in the brain: Changes in cerebral activation after working memory practice depend on task demands publication-title: Neuroimage – volume: 35 start-page: 105 year: 2007 end-page: 120 article-title: Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses publication-title: Neuroimage – year: 1992 – volume: 17 start-page: 143 year: 2002 end-page: 155 article-title: Fast robust automated brain extraction publication-title: Hum Brain Mapp – volume: 7 start-page: 415 year: 2003 end-page: 423 article-title: Persistent activity in the prefrontal cortex during working memory publication-title: Trends Cogn Sci – volume: 2 year: 2010 article-title: Plasticity of brain networks in a randomized intervention trial of exercise training in older adults publication-title: Front Aging Neurosci – volume: 14 start-page: 180 year: 2010 end-page: 190 article-title: Two views of brain function publication-title: Trends Cogn Sci – volume: 4 start-page: 829 year: 2003 end-page: 839 article-title: Working memory: Looking back and looking forward publication-title: Nat Rev Neurosci – volume: 7 year: 2009 article-title: Development of large‐scale functional brain networks in children publication-title: PLoS Biol – volume: 19 start-page: 640 year: 2009 end-page: 657 article-title: Development of anterior cingulate functional connectivity from late childhood to early adulthood publication-title: Cereb Cortex – volume: 30 start-page: 625 year: 2009 end-page: 637 article-title: Functional connectivity of default mode network components: Correlation, anticorrelation, and causality publication-title: Hum Brain Mapp – volume: 4 start-page: e6626 year: 2009 article-title: Endogenous human brain dynamics recover slowly following cognitive effort publication-title: PLoS One – volume: 21 start-page: 385 year: 2011 end-page: 391 article-title: A comprehensive study of whole‐brain functional connectivity in children and young adults publication-title: Cereb Cortex – volume: 11 start-page: 280 year: 2007 end-page: 289 article-title: The proactive brain: Using analogies and associations to generate predictions publication-title: Trends Cogn Sci – volume: 1 start-page: 7 year: 2011 end-page: 21 article-title: Interactive specialization: A domain‐general framework for human functional brain development? publication-title: Dev Cogn Neurosci – volume: 98 start-page: 676 year: 2001 end-page: 682 article-title: A default mode of brain function publication-title: Proc Natl Acad Sci U S A – volume: 314 start-page: 1249 year: 2006 end-page: 1250 article-title: The brain's dark energy publication-title: Science – year: 1991 – volume: 25 start-page: 47 year: 2007 end-page: 56 article-title: Detecting functional connectivity in the resting brain: A comparison between ICA and CCA publication-title: Magn Reson Imaging – volume: 67 start-page: 735 year: 2010 end-page: 748 article-title: The development of human functional brain networks publication-title: Neuron – start-page: 251 year: 2001 end-page: 270 – volume: 2 start-page: 475 year: 2001 end-page: 483 article-title: Functional brain development in humans publication-title: Nat Rev Neurosci – volume: 30 start-page: 1481 year: 2009 end-page: 1489 article-title: Quantification of head motion in children during various fMRI language tasks publication-title: Hum Brain Mapp – volume: 102 start-page: 9673 year: 2005 end-page: 9678 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc Natl Acad Sci U S A – volume: 14 start-page: 1370 year: 2001 end-page: 1386 article-title: Temporal autocorrelation in univariate linear modeling of FMRI data publication-title: Neuroimage – volume: 1354 start-page: 140 year: 2010 end-page: 151 article-title: Developmental differences in sustained and transient activity underlying working memory publication-title: Brain Res – volume: 41 start-page: 66 year: 1999 end-page: 86 article-title: Maintenance versus manipulation of information held in working memory: An event‐related fMRI study publication-title: Brain Cogn – ident: e_1_2_8_11_1 doi: 10.1073/pnas.0911855107 – ident: e_1_2_8_26_1 doi: 10.1073/pnas.0800376105 – ident: e_1_2_8_65_1 doi: 10.1038/35086012 – ident: e_1_2_8_18_1 doi: 10.1073/pnas.0510088103 – ident: e_1_2_8_31_1 doi: 10.1073/pnas.0504136102 – ident: e_1_2_8_60_1 doi: 10.1073/pnas.0401227101 – ident: e_1_2_8_3_1 doi: 10.1016/j.cub.2009.04.028 – ident: e_1_2_8_34_1 doi: 10.1016/j.mri.2010.03.021 – ident: e_1_2_8_50_1 doi: 10.1073/pnas.162486399 – ident: e_1_2_8_73_1 doi: 10.1093/cercor/12.1.17 – ident: e_1_2_8_78_1 doi: 10.1523/JNEUROSCI.1579-09.2009 – ident: e_1_2_8_28_1 doi: 10.1073/pnas.0705843104 – ident: e_1_2_8_42_1 doi: 10.1016/j.dcn.2010.07.003 – volume: 4 year: 2010 ident: e_1_2_8_52_1 article-title: Age‐related differences in functional nodes of the brain cortex—A high model order group ICA study publication-title: Front Syst Neurosci – volume-title: Wechsler Intelligence Scale for Children‐Third Edition year: 1991 ident: e_1_2_8_81_1 – ident: e_1_2_8_76_1 doi: 10.1016/j.neuroimage.2006.11.054 – ident: e_1_2_8_24_1 doi: 10.1126/science.1194144 – ident: e_1_2_8_10_1 doi: 10.3389/fnhum.2010.00218 – ident: e_1_2_8_13_1 doi: 10.1196/annals.1440.011 – ident: e_1_2_8_61_1 doi: 10.1126/science. 1134405 – ident: e_1_2_8_86_1 doi: 10.1002/hbm.20616 – ident: e_1_2_8_77_1 doi: 10.1002/hbm.20531 – ident: e_1_2_8_63_1 doi: 10.1073/pnas.98.2.676 – ident: e_1_2_8_58_1 doi: 10.1159/000278340 – ident: e_1_2_8_75_1 doi: 10.1016/j.neuroimage.2010.04.009 – ident: e_1_2_8_85_1 doi: 10.1093/acprof:oso/9780192630711.003.0014 – ident: e_1_2_8_25_1 doi: 10.1038/35094565 – ident: e_1_2_8_66_1 doi: 10.1093/cercor/bhj007 – ident: e_1_2_8_67_1 doi: 10.1162/jocn.2006.18.7.1045 – ident: e_1_2_8_70_1 doi: 10.1002/hbm.10062 – ident: e_1_2_8_36_1 doi: 10.1002/hbm.10022 – ident: e_1_2_8_22_1 doi: 10.1073/pnas.0601417103 – ident: e_1_2_8_20_1 doi: 10.1006/brcg.1999.1096 – ident: e_1_2_8_62_1 doi: 10.1016/j.tics.2010.01.008 – ident: e_1_2_8_4_1 doi: 10.1016/j.neuropsychologia.2006.05.010 – ident: e_1_2_8_5_1 doi: 10.1126/science.1736359 – ident: e_1_2_8_32_1 doi: 10.1016/j.neuropsychologia.2006.06.017 – ident: e_1_2_8_19_1 doi: 10.1016/S1364-6613(03)00197-9 – ident: e_1_2_8_80_1 doi: 10.1006/nimg.2001.0936 – ident: e_1_2_8_45_1 doi: 10.1093/cercor/bhi005 – ident: e_1_2_8_72_1 doi: 10.1016/j.neuroimage.2004.07.051 – start-page: 15 volume-title: Lifespan Development of Human Memory year: 2002 ident: e_1_2_8_37_1 doi: 10.7551/mitpress/4230.003.0005 – ident: e_1_2_8_40_1 doi: 10.1016/S1361-8415(01)00036-6 – ident: e_1_2_8_38_1 doi: 10.1016/j.neuropsychologia.2006.01.010 – ident: e_1_2_8_46_1 doi: 10.1016/j.neuroimage.2007.08.008 – ident: e_1_2_8_64_1 doi: 10.1038/nn987 – ident: e_1_2_8_7_1 doi: 10.1016/j.tics.2007.05.005 – ident: e_1_2_8_41_1 doi: 10.1038/35081509 – ident: e_1_2_8_54_1 doi: 10.1016/j.mri.2006.09.032 – volume-title: Manual for the Child Behavior Checklist/4–18 and 1991 Profile year: 1991 ident: e_1_2_8_2_1 – ident: e_1_2_8_14_1 doi: 10.1016/S0896-6273(01)00583-9 – ident: e_1_2_8_48_1 doi: 10.1162/089892902317205276 – ident: e_1_2_8_59_1 doi: 10.1016/j.neuron.2010.08.017 – ident: e_1_2_8_15_1 doi: 10.1126/science.1099745 – ident: e_1_2_8_43_1 doi: 10.1016/j.neuroimage.2010.04.028 – volume-title: Wechsler Adult Intelligence Scale‐Third Edition. Administration and Scoring Manual year: 1997 ident: e_1_2_8_82_1 – ident: e_1_2_8_30_1 doi: 10.1038/nrn2201 – ident: e_1_2_8_33_1 doi: 10.1073/pnas.0135058100 – ident: e_1_2_8_35_1 doi: 10.1523/JNEUROSCI.3408-06.2006 – volume: 4 start-page: 8 year: 2010 ident: e_1_2_8_17_1 article-title: Advances and pitfalls in the analysis and interpretation of resting‐state FMRI data publication-title: Front Syst Neurosci – ident: e_1_2_8_83_1 doi: 10.1037/0894-4105.19.1.88 – ident: e_1_2_8_27_1 doi: 10.1371/journal.pcbi.1000381 – ident: e_1_2_8_47_1 doi: 10.1093/cercor/bhn117 – ident: e_1_2_8_9_1 doi: 10.1016/j.neuron.2010.08.035 – ident: e_1_2_8_6_1 doi: 10.1038/nrn1201 – ident: e_1_2_8_16_1 – volume: 2 year: 2010 ident: e_1_2_8_79_1 article-title: Plasticity of brain networks in a randomized intervention trial of exercise training in older adults publication-title: Front Aging Neurosci – ident: e_1_2_8_69_1 doi: 10.1126/science.283.5408.1657 – ident: e_1_2_8_8_1 doi: 10.1371/journal.pone.0006626 – ident: e_1_2_8_68_1 doi: 10.1523/JNEUROSCI.5587-06.2007 – ident: e_1_2_8_55_1 doi: 10.1093/brain/121.6.1013 – ident: e_1_2_8_57_1 doi: 10.1038/nn1165 – ident: e_1_2_8_29_1 doi: 10.1523/JNEUROSCI.6266-09.2010 – ident: e_1_2_8_39_1 doi: 10.1006/nimg.2002.1132 – ident: e_1_2_8_44_1 doi: 10.1093/cercor/bhq104 – ident: e_1_2_8_12_1 doi: 10.1016/j.brainres.2010.07.055 – ident: e_1_2_8_56_1 doi: 10.1093/cercor/bhl014 – ident: e_1_2_8_51_1 doi: 10.1073/pnas.0902455106 – ident: e_1_2_8_49_1 doi: 10.1016/j.tics.2006.05.003 – ident: e_1_2_8_74_1 doi: 10.1371/journal.pbio.1000157 – ident: e_1_2_8_71_1 doi: 10.1073/pnas.0905267106 – ident: e_1_2_8_84_1 doi: 10.1006/nimg.2001.0931 – ident: e_1_2_8_23_1 doi: 10.1093/acprof:oso/9780195134971.003.0029 – ident: e_1_2_8_53_1 doi: 10.1006/nimg.2000.0654 – ident: e_1_2_8_21_1 doi: 10.1126/science.1155466 |
SSID | ssj0011501 |
Score | 2.4577441 |
Snippet | Networks of functional connectivity are highly consistent across participants, suggesting that functional connectivity is for a large part predetermined.... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 396 |
SubjectTerms | Adolescent Adult Aging - psychology Biological and medical sciences Brain Mapping Child development Female fMRI Frontal Lobe - physiology functional connectivity Fundamental and applied biological sciences. Psychology Human Humans Image Processing, Computer-Assisted Investigative techniques, diagnostic techniques (general aspects) Learning - physiology Learning. Memory Magnetic Resonance Imaging Male Medical sciences Memory Memory, Short-Term - physiology Nerve Net - physiology Nervous system Neural Pathways - physiology Neuronal Plasticity - physiology Parietal Lobe - physiology Pilot Projects plasticity practice Practice, Psychological Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Psychomotor Performance - physiology Radiodiagnosis. Nmr imagery. Nmr spectrometry Rest - physiology resting state Young Adult |
Title | Functional brain connectivity at rest changes after working memory training |
URI | https://api.istex.fr/ark:/67375/WNG-WPQTNBQX-Z/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.21444 https://www.ncbi.nlm.nih.gov/pubmed/22076823 https://www.proquest.com/docview/1266373649 https://www.proquest.com/docview/1273257657 https://pubmed.ncbi.nlm.nih.gov/PMC6870317 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5Nm4R4gbHxI9uYDEITL-ka_0ga8bQBpQKtYmjTKoRk2a6todFsWluN8dfjs5OMwpAQb4lyieLL2f7OvnwfwIugRs6sTcd-uky5oCotncJTLizlrtDjUG0xzAfH_P1IjJbgVfMvTOSHaBfcsGeE8Ro7uNLT3RvS0FM96SDfF3KBZixH3vw3n1rqKAQ6Idnyr5KWfgRuWIW6dLe9c2EuWkG3fsfaSDX17nFR1-I24Pln_eSvuDZMTP378KVpUqxHOevMZ7pjfvzG9vifbV6FezVgJXsxwh7Akq3WYH2v8sn65JrskFBCGtbm1-DOQb1Tvw4f-n7CjOuMRKMMBTFYUmOiWAVRM4KiICT-dzwlQaqcXMWVezLB8t9r0shXPITj_tuj14O0Fm5IjfBwMmWupykXPnVxWW5y4yEEz9RYda1ymdDCegxZZqX2uZnTiBEKg8hCMJ__OW0YewTL1XllnwBRuXW8VJaXXc2pLRQdM0atKZUxPcWKBF42n1CamtUc3-6bjHzMVHqfyeCzBJ63pheRyuM2o50QB62FujzD2rdCyJPhO3ny8fBouH84kp8T2F4IlPYGmvcYksYlsNVEjqzHhanMPB5ihY_WMoFn7WXfo3GbRlX2fI42BcM0UPjGPY6BdvNwijunlCVQLIRga4Bs4YtXqq-ngTU876FUATosRNjfXSAH-wfhYOPfTTfhLg06IVjnswXLs8u5ferR2kxvh275E9aeOzY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTQJeYGz8CIxhEJp4Sdf4R9JIvGwTpbC1YqjTqknIsl1HQ6MZWlvB-Ovx2UlGYUiIt1a5VPH1bH93vnwfwEuvRs6sjcduu4y5oCrOC4VfubCUF5ke-26LQdo74u9HYrQEr-t3YQI_RFNww5nh12uc4FiQ3r5iDT3VkxYSfvEbsOLP5xASfWzIoxDq-HTLPUycuzW45hVq0-3m1oXdaAUd-x27I9XUOagIyhbXQc8_Oyh_RbZ-a-rehU_1oEJHyllrPtMt8-M3vsf_HfUq3KkwK9kJQXYPlmy5Bus7pcvXJ5dki_guUl-eX4Ob_eqwfh32u27PDKVGolGJghjsqjFBr4KoGUFdEBJePZ4Sr1ZOvoXiPZlgB_AlqRUs7sNR981wrxdX2g2xEQ5RxqzoaMqFy16KJDWpcSiCJ2qs2lYVidDCOhiZJ7l26VmhESZkBsGFYC4FLLRh7AEsl-elfQREpbbgubI8b2tObabomDFqTa6M6SiWRfCq_g-lqYjN8em-yEDJTKXzmfQ-i-BFY_o1sHlcZ7TlA6GxUBdn2P6WCXk8eCuPPxwOB7uHI3kSweZCpDQ30LTDkDcugo06dGS1NExl4iARy1jK8wieN5fdpMaTGlXa8znaZAwzQeEG9zBE2tWPUzw8pSyCbCEGGwMkDF-8Un4-9cThaQfVCtBhPsT-7gLZ2-37D4__3fQZ3OoN-wfy4N1g_wncpl42BNt-NmB5djG3Tx14m-lNP0d_AmjfP1Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwED6NTZr4wsvGS2AMg9DEl3SNX5JGfNqAUhirNrRp1YRk2Y6jodFsWlvB-PX47CSjMCTEt1a5VPH17HvOvjwPwAuvRs6sjQuXLmMuqIrzUuFXLizlZaYL320xTAeH_MNIjBbgVfMuTOCHaDfccGb49Ron-HlRbl6Rhp7ocQf5vvgNWOKpS5OIiD613FGIdHy15Z4lzt0S3NAKdelme-tcMlpCv37H5kg1cf4pg7DFdcjzzwbKX4Gtz0z92_C5GVNoSDntzKa6Y378Rvf4n4O-A7dqxEq2QojdhQVbrcDqVuWq9fEl2SC-h9Rvzq_A8m59VL8KO32XMcNGI9GoQ0EM9tSYoFZB1JSgKggJLx5PiNcqJ9_C1j0ZY__vJWn0K-7BYf_twetBXCs3xEY4PBmzsqcpF652KZPUpMZhCJ6oQnWtKhOhhXUgMk9y7YqzUiNIyAxCC8FcAVhqw9h9WKzOKvsQiEptyXNled7VnNpM0YIxak2ujOkplkXwsvkLpalpzfHpvspAyEyl85n0PovgeWt6Hrg8rjPa8HHQWqiLU2x-y4Q8Gr6TR3v7B8Pt_ZE8jmB9LlDaG2jaY8gaF8FaEzmyXhgmMnGAiGUs5XkEz9rLbkrjOY2q7NkMbTKGdaBwg3sQAu3qxykenVIWQTYXgq0B0oXPX6m-nHja8LSHWgXoMB9hf3eBHGzv-g-P_t30KSzvvenLj--HO4_hJvWaIdjzswaL04uZfeKQ21Sv-xn6E4CTPgM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+brain+connectivity+at+rest+changes+after+working+memory+training&rft.jtitle=Human+brain+mapping&rft.au=Jolles%2C+Dietsje+D.&rft.au=van+Buchem%2C+Mark+A.&rft.au=Crone%2C+Eveline+A.&rft.au=Rombouts%2C+Serge+A.R.B.&rft.date=2013-02-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=34&rft.issue=2&rft.spage=396&rft.epage=406&rft_id=info:doi/10.1002%2Fhbm.21444&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_21444 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |