Functional brain connectivity at rest changes after working memory training

Networks of functional connectivity are highly consistent across participants, suggesting that functional connectivity is for a large part predetermined. However, several studies have shown that functional connectivity may change depending on instructions or previous experience. In the present study...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 34; no. 2; pp. 396 - 406
Main Authors Jolles, Dietsje D., van Buchem, Mark A., Crone, Eveline A., Rombouts, Serge A.R.B.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.02.2013
Wiley-Liss
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.21444

Cover

Abstract Networks of functional connectivity are highly consistent across participants, suggesting that functional connectivity is for a large part predetermined. However, several studies have shown that functional connectivity may change depending on instructions or previous experience. In the present study, we investigated whether 6 weeks of practice with a working memory task changes functional connectivity during a resting period preceding the task. We focused on two task‐relevant networks, the frontoparietal network and the default network, using seed regions in the right middle frontal gyrus (MFG) and the medial prefrontal cortex (PFC), respectively. After practice, young adults showed increased functional connectivity between the right MFG and other regions of the frontoparietal network, including bilateral superior frontal gyrus, paracingulate gyrus, and anterior cingulate cortex. In addition, they showed reduced functional connectivity between the medial PFC and right posterior middle temporal gyrus. Moreover, a regression with performance changes revealed a positive relation between performance increases and changes of frontoparietal connectivity, and a negative relation between performance increases and changes of default network connectivity. Next, to study whether experience‐dependent effects would be different during development, we also examined practice effects in a pilot sample of 12‐year‐old children. No practice effects were found in this group, suggesting that practice‐related changes of functional connectivity are age‐dependent. Nevertheless, future studies with larger samples are necessary to confirm this hypothesis. Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc.
AbstractList Networks of functional connectivity are highly consistent across participants, suggesting that functional connectivity is for a large part predetermined. However, several studies have shown that functional connectivity may change depending on instructions or previous experience. In the present study, we investigated whether 6 weeks of practice with a working memory task changes functional connectivity during a resting period preceding the task. We focused on two task‐relevant networks, the frontoparietal network and the default network, using seed regions in the right middle frontal gyrus (MFG) and the medial prefrontal cortex (PFC), respectively. After practice, young adults showed increased functional connectivity between the right MFG and other regions of the frontoparietal network, including bilateral superior frontal gyrus, paracingulate gyrus, and anterior cingulate cortex. In addition, they showed reduced functional connectivity between the medial PFC and right posterior middle temporal gyrus. Moreover, a regression with performance changes revealed a positive relation between performance increases and changes of frontoparietal connectivity, and a negative relation between performance increases and changes of default network connectivity. Next, to study whether experience‐dependent effects would be different during development, we also examined practice effects in a pilot sample of 12‐year‐old children. No practice effects were found in this group, suggesting that practice‐related changes of functional connectivity are age‐dependent. Nevertheless, future studies with larger samples are necessary to confirm this hypothesis. Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc.
Networks of functional connectivity are highly consistent across participants, suggesting that functional connectivity is for a large part predetermined. However, several studies have shown that functional connectivity may change depending on instructions or previous experience. In the present study, we investigated whether 6 weeks of practice with a working memory task changes functional connectivity during a resting period preceding the task. We focused on two task-relevant networks, the frontoparietal network and the default network, using seed regions in the right middle frontal gyrus (MFG) and the medial prefrontal cortex (PFC), respectively. After practice, young adults showed increased functional connectivity between the right MFG and other regions of the frontoparietal network, including bilateral superior frontal gyrus, paracingulate gyrus, and anterior cingulate cortex. In addition, they showed reduced functional connectivity between the medial PFC and right posterior middle temporal gyrus. Moreover, a regression with performance changes revealed a positive relation between performance increases and changes of frontoparietal connectivity, and a negative relation between performance increases and changes of default network connectivity. Next, to study whether experience-dependent effects would be different during development, we also examined practice effects in a pilot sample of 12-year-old children. No practice effects were found in this group, suggesting that practice-related changes of functional connectivity are age-dependent. Nevertheless, future studies with larger samples are necessary to confirm this hypothesis.Networks of functional connectivity are highly consistent across participants, suggesting that functional connectivity is for a large part predetermined. However, several studies have shown that functional connectivity may change depending on instructions or previous experience. In the present study, we investigated whether 6 weeks of practice with a working memory task changes functional connectivity during a resting period preceding the task. We focused on two task-relevant networks, the frontoparietal network and the default network, using seed regions in the right middle frontal gyrus (MFG) and the medial prefrontal cortex (PFC), respectively. After practice, young adults showed increased functional connectivity between the right MFG and other regions of the frontoparietal network, including bilateral superior frontal gyrus, paracingulate gyrus, and anterior cingulate cortex. In addition, they showed reduced functional connectivity between the medial PFC and right posterior middle temporal gyrus. Moreover, a regression with performance changes revealed a positive relation between performance increases and changes of frontoparietal connectivity, and a negative relation between performance increases and changes of default network connectivity. Next, to study whether experience-dependent effects would be different during development, we also examined practice effects in a pilot sample of 12-year-old children. No practice effects were found in this group, suggesting that practice-related changes of functional connectivity are age-dependent. Nevertheless, future studies with larger samples are necessary to confirm this hypothesis.
Networks of functional connectivity are highly consistent across participants, suggesting that functional connectivity is for a large part predetermined. However, several studies have shown that functional connectivity may change depending on instructions or previous experience. In the present study, we investigated whether 6 weeks of practice with a working memory task changes functional connectivity during a resting period preceding the task. We focused on two task-relevant networks, the frontoparietal network and the default network, using seed regions in the right middle frontal gyrus (MFG) and the medial prefrontal cortex (PFC), respectively. After practice, young adults showed increased functional connectivity between the right MFG and other regions of the frontoparietal network, including bilateral superior frontal gyrus, paracingulate gyrus, and anterior cingulate cortex. In addition, they showed reduced functional connectivity between the medial PFC and right posterior middle temporal gyrus. Moreover, a regression with performance changes revealed a positive relation between performance increases and changes of frontoparietal connectivity, and a negative relation between performance increases and changes of default network connectivity. Next, to study whether experience-dependent effects would be different during development, we also examined practice effects in a pilot sample of 12-year-old children. No practice effects were found in this group, suggesting that practice-related changes of functional connectivity are age-dependent. Nevertheless, future studies with larger samples are necessary to confirm this hypothesis. Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
Networks of functional connectivity are highly consistent across participants, suggesting that functional connectivity is for a large part predetermined. However, several studies have shown that functional connectivity may change depending on instructions or previous experience. In the present study, we investigated whether 6 weeks of practice with a working memory task changes functional connectivity during a resting period preceding the task. We focused on two task-relevant networks, the frontoparietal network and the default network, using seed regions in the right middle frontal gyrus (MFG) and the medial prefrontal cortex (PFC), respectively. After practice, young adults showed increased functional connectivity between the right MFG and other regions of the frontoparietal network, including bilateral superior frontal gyrus, paracingulate gyrus, and anterior cingulate cortex. In addition, they showed reduced functional connectivity between the medial PFC and right posterior middle temporal gyrus. Moreover, a regression with performance changes revealed a positive relation between performance increases and changes of frontoparietal connectivity, and a negative relation between performance increases and changes of default network connectivity. Next, to study whether experience-dependent effects would be different during development, we also examined practice effects in a pilot sample of 12-year-old children. No practice effects were found in this group, suggesting that practice-related changes of functional connectivity are age-dependent. Nevertheless, future studies with larger samples are necessary to confirm this hypothesis.
Author Jolles, Dietsje D.
Crone, Eveline A.
van Buchem, Mark A.
Rombouts, Serge A.R.B.
AuthorAffiliation 1 Leiden Institute for Brain and Cognition (LIBC), Leiden University, P.O. Box 9600, 2300 RC Leiden, The Netherlands
2 Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands
3 Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
AuthorAffiliation_xml – name: 3 Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
– name: 2 Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands
– name: 1 Leiden Institute for Brain and Cognition (LIBC), Leiden University, P.O. Box 9600, 2300 RC Leiden, The Netherlands
Author_xml – sequence: 1
  givenname: Dietsje D.
  surname: Jolles
  fullname: Jolles, Dietsje D.
  email: d.d.jolles@lumc.nl
  organization: Leiden Institute for Brain and Cognition (LIBC), Leiden University, P.O. Box 9600, 2300 RC Leiden, The Netherlands
– sequence: 2
  givenname: Mark A.
  surname: van Buchem
  fullname: van Buchem, Mark A.
  organization: Leiden Institute for Brain and Cognition (LIBC), Leiden University, P.O. Box 9600, 2300 RC Leiden, The Netherlands
– sequence: 3
  givenname: Eveline A.
  surname: Crone
  fullname: Crone, Eveline A.
  organization: Leiden Institute for Brain and Cognition (LIBC), Leiden University, P.O. Box 9600, 2300 RC Leiden, The Netherlands
– sequence: 4
  givenname: Serge A.R.B.
  surname: Rombouts
  fullname: Rombouts, Serge A.R.B.
  organization: Leiden Institute for Brain and Cognition (LIBC), Leiden University, P.O. Box 9600, 2300 RC Leiden, The Netherlands
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26838595$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22076823$$D View this record in MEDLINE/PubMed
BookMark eNp1kctO3DAYha0KVG5d8AKVpQqpLAK-xHayQQLETaW0SCAQG8sxzowhsamdAPP2OJ0ZWlC78u07R8f_WQELzjsDwDpGWxghsj2u2i2C8zz_AJYxKkWGcEkXhj1nWZkLvARWYrxDCGOG8EewRAgSvCB0GXw77J3urHeqgVVQ1kHtnTPp6tF2E6g6GEzsoB4rNzIRqrozAT75cG_dCLam9WECu0GXzmtgsVZNNJ9m6yq4PDy42D_OTn8cnezvnmaaCZFntC4qkjNckBpzzTVJwbG6VcioGrOKGcZ5icuqZLxOIOFCE5IjRklSVJrSVbAz9X3oq9bcauNSgkY-BNuqMJFeWfn2xdmxHPlHyQuBKBbJ4OvMIPhfffqfbG3UpmmUM76PEhNBCROcDeiXd-id70Oa1kBxTgXleZmoz38neo0yn3MCNmaAilo1dVBO2_iH4wUtWMkStz3ldPAxBlNLbTs19DMMuZEYyaFxmRqXvxtPis13irnpv9iZ-5NtzOT_oDze-z5XZFOFjZ15flWocC-5oILJq7MjefXz_OJs7_xa3tAXIXDIyw
CitedBy_id crossref_primary_10_3389_fpsyg_2015_00687
crossref_primary_10_1016_j_bbr_2015_10_008
crossref_primary_10_1016_j_neuroscience_2022_10_024
crossref_primary_10_1093_cercor_bhz117
crossref_primary_10_1007_s12144_022_02989_0
crossref_primary_10_3389_fnins_2021_694010
crossref_primary_10_3389_fnhum_2019_00246
crossref_primary_10_3389_fnbeh_2014_00221
crossref_primary_10_1002_hbm_70111
crossref_primary_10_1016_j_tics_2014_06_007
crossref_primary_10_3389_fnhum_2020_497245
crossref_primary_10_1016_j_ijpsycho_2012_09_007
crossref_primary_10_1016_j_neubiorev_2018_03_019
crossref_primary_10_1093_cercor_bhad153
crossref_primary_10_3389_fnbeh_2019_00247
crossref_primary_10_1016_j_bbr_2018_12_008
crossref_primary_10_1002_hbm_22670
crossref_primary_10_1016_j_cobeha_2016_05_003
crossref_primary_10_1177_17470218211002509
crossref_primary_10_1097_WNR_0000000000000761
crossref_primary_10_1016_j_neuroimage_2015_09_010
crossref_primary_10_1016_j_neuroimage_2020_116887
crossref_primary_10_1016_j_neubiorev_2016_05_018
crossref_primary_10_1016_j_neubiorev_2020_07_027
crossref_primary_10_1093_cercor_bhae401
crossref_primary_10_1523_JNEUROSCI_1973_15_2016
crossref_primary_10_1111_desc_12756
crossref_primary_10_1016_j_nicl_2020_102488
crossref_primary_10_1016_j_schres_2014_10_015
crossref_primary_10_1007_s11065_014_9252_y
crossref_primary_10_1162_jocn_a_01260
crossref_primary_10_1371_journal_pone_0170660
crossref_primary_10_3389_fnagi_2017_00033
crossref_primary_10_1155_2016_8240894
crossref_primary_10_1016_j_neuropsychologia_2015_05_029
crossref_primary_10_1177_2514183X20974231
crossref_primary_10_1016_j_cortex_2016_08_004
crossref_primary_10_1002_hbm_22615
crossref_primary_10_1016_j_dcn_2020_100753
crossref_primary_10_1016_j_bpsc_2024_04_017
crossref_primary_10_1002_hbm_25164
crossref_primary_10_1016_j_tine_2018_11_003
crossref_primary_10_1016_j_neuroimage_2023_120300
crossref_primary_10_1371_journal_pone_0105780
crossref_primary_10_1016_j_jocrd_2020_100617
crossref_primary_10_1371_journal_pone_0139930
crossref_primary_10_1371_journal_pone_0188329
crossref_primary_10_1038_s43587_022_00237_5
crossref_primary_10_1016_j_neurobiolaging_2017_01_020
crossref_primary_10_1016_j_nicl_2024_103696
crossref_primary_10_1016_j_neuroimage_2014_07_067
crossref_primary_10_1093_scan_nsad019
crossref_primary_10_1016_j_psyneuen_2022_105896
crossref_primary_10_47820_jht_v2i2_37
crossref_primary_10_1017_S0033291717001982
crossref_primary_10_1073_pnas_1817278116
crossref_primary_10_1016_j_cortex_2013_01_008
crossref_primary_10_1038_nrn3313
crossref_primary_10_1016_j_pbb_2020_172969
crossref_primary_10_1007_s41465_019_00150_7
crossref_primary_10_1371_journal_pone_0060312
crossref_primary_10_3389_fnhum_2020_00229
crossref_primary_10_1016_j_dcn_2019_100678
crossref_primary_10_1016_j_nicl_2021_102593
crossref_primary_10_1162_jocn_a_01127
crossref_primary_10_1371_journal_pcbi_1009634
crossref_primary_10_1016_j_brainresbull_2015_12_001
crossref_primary_10_1016_j_dcn_2019_100719
crossref_primary_10_1016_j_nicl_2018_01_030
crossref_primary_10_1007_s11682_020_00269_8
crossref_primary_10_1080_02640414_2021_1891722
crossref_primary_10_1038_nrn_2016_43
crossref_primary_10_1007_s10899_024_10354_y
crossref_primary_10_3233_JAD_161099
crossref_primary_10_3389_fnhum_2014_00827
crossref_primary_10_1016_j_neuroimage_2020_116688
crossref_primary_10_1093_braincomms_fcaa115
crossref_primary_10_1007_s11682_019_00080_0
crossref_primary_10_3389_fpsyt_2020_512761
crossref_primary_10_1016_j_neuropharm_2015_05_036
crossref_primary_10_1038_s41467_021_27695_6
crossref_primary_10_1089_neur_2022_0074
crossref_primary_10_1371_journal_pone_0220790
crossref_primary_10_1016_j_pscychresns_2016_09_004
crossref_primary_10_1093_cercor_bhae445
crossref_primary_10_1002_brb3_687
crossref_primary_10_1016_j_neuroscience_2014_12_071
crossref_primary_10_3389_fnagi_2015_00134
crossref_primary_10_3389_fnhum_2021_698367
crossref_primary_10_1038_s42003_024_06969_x
crossref_primary_10_1152_physrev_00033_2019
crossref_primary_10_1016_j_jadr_2024_100719
crossref_primary_10_3233_NRE_210264
crossref_primary_10_3389_fnsys_2015_00044
crossref_primary_10_1016_j_neuroimage_2014_11_037
crossref_primary_10_1080_09602011_2021_1987277
crossref_primary_10_1089_brain_2015_0389
crossref_primary_10_3389_fnhum_2019_00107
crossref_primary_10_1109_TNSRE_2014_2332353
crossref_primary_10_1016_j_dcn_2015_07_007
crossref_primary_10_3389_fnagi_2019_00216
crossref_primary_10_3389_fnhum_2017_00364
crossref_primary_10_1016_j_chaos_2024_114568
crossref_primary_10_1093_cercor_bhad527
crossref_primary_10_3724_SP_J_1042_2022_00255
crossref_primary_10_1016_j_intell_2021_101541
crossref_primary_10_1016_j_neuroimage_2021_118181
crossref_primary_10_1016_j_neuroimage_2024_120761
crossref_primary_10_1016_j_ijpsycho_2021_10_004
crossref_primary_10_1016_j_neuroimage_2016_01_007
crossref_primary_10_1016_j_neuroimage_2015_04_017
crossref_primary_10_1038_srep07622
crossref_primary_10_1089_brain_2011_0060
crossref_primary_10_3389_fpsyg_2020_570030
crossref_primary_10_1007_s11682_014_9306_z
crossref_primary_10_1016_j_nicl_2020_102279
crossref_primary_10_3390_brainsci12020287
crossref_primary_10_1111_psyp_12010
crossref_primary_10_7554_eLife_55081
crossref_primary_10_1016_j_neuropsychologia_2018_12_001
crossref_primary_10_1038_s41598_021_02492_9
crossref_primary_10_1038_srep35481
crossref_primary_10_3389_fnins_2020_00182
crossref_primary_10_3389_fnbeh_2015_00244
crossref_primary_10_1016_j_heliyon_2017_e00373
crossref_primary_10_1109_ACCESS_2021_3074220
crossref_primary_10_1002_hbm_22644
crossref_primary_10_1515_revneuro_2016_0007
crossref_primary_10_1523_JNEUROSCI_4141_12_2013
crossref_primary_10_3389_fped_2019_00494
crossref_primary_10_1016_j_dr_2021_100964
crossref_primary_10_1016_j_neuropsychologia_2014_04_020
Cites_doi 10.1073/pnas.0911855107
10.1073/pnas.0800376105
10.1038/35086012
10.1073/pnas.0510088103
10.1073/pnas.0504136102
10.1073/pnas.0401227101
10.1016/j.cub.2009.04.028
10.1016/j.mri.2010.03.021
10.1073/pnas.162486399
10.1093/cercor/12.1.17
10.1523/JNEUROSCI.1579-09.2009
10.1073/pnas.0705843104
10.1016/j.dcn.2010.07.003
10.1016/j.neuroimage.2006.11.054
10.1126/science.1194144
10.3389/fnhum.2010.00218
10.1196/annals.1440.011
10.1126/science. 1134405
10.1002/hbm.20616
10.1002/hbm.20531
10.1073/pnas.98.2.676
10.1159/000278340
10.1016/j.neuroimage.2010.04.009
10.1093/acprof:oso/9780192630711.003.0014
10.1038/35094565
10.1093/cercor/bhj007
10.1162/jocn.2006.18.7.1045
10.1002/hbm.10062
10.1002/hbm.10022
10.1073/pnas.0601417103
10.1006/brcg.1999.1096
10.1016/j.tics.2010.01.008
10.1016/j.neuropsychologia.2006.05.010
10.1126/science.1736359
10.1016/j.neuropsychologia.2006.06.017
10.1016/S1364-6613(03)00197-9
10.1006/nimg.2001.0936
10.1093/cercor/bhi005
10.1016/j.neuroimage.2004.07.051
10.7551/mitpress/4230.003.0005
10.1016/S1361-8415(01)00036-6
10.1016/j.neuropsychologia.2006.01.010
10.1016/j.neuroimage.2007.08.008
10.1038/nn987
10.1016/j.tics.2007.05.005
10.1038/35081509
10.1016/j.mri.2006.09.032
10.1016/S0896-6273(01)00583-9
10.1162/089892902317205276
10.1016/j.neuron.2010.08.017
10.1126/science.1099745
10.1016/j.neuroimage.2010.04.028
10.1038/nrn2201
10.1073/pnas.0135058100
10.1523/JNEUROSCI.3408-06.2006
10.1037/0894-4105.19.1.88
10.1371/journal.pcbi.1000381
10.1093/cercor/bhn117
10.1016/j.neuron.2010.08.035
10.1038/nrn1201
10.1126/science.283.5408.1657
10.1371/journal.pone.0006626
10.1523/JNEUROSCI.5587-06.2007
10.1093/brain/121.6.1013
10.1038/nn1165
10.1523/JNEUROSCI.6266-09.2010
10.1006/nimg.2002.1132
10.1093/cercor/bhq104
10.1016/j.brainres.2010.07.055
10.1093/cercor/bhl014
10.1073/pnas.0902455106
10.1016/j.tics.2006.05.003
10.1371/journal.pbio.1000157
10.1073/pnas.0905267106
10.1006/nimg.2001.0931
10.1093/acprof:oso/9780195134971.003.0029
10.1006/nimg.2000.0654
10.1126/science.1155466
ContentType Journal Article
Copyright Copyright © 2011 Wiley Periodicals, Inc.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2011 Wiley Periodicals, Inc.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.21444
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

Technology Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Training and Functional Connectivity
EISSN 1097-0193
EndPage 406
ExternalDocumentID PMC6870317
2857020961
22076823
26838595
10_1002_hbm_21444
HBM21444
ark_67375_WNG_WPQTNBQX_Z
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: S.A.R.B.R. and E.A.C are supported by grants from the Netherlands Organization for Scientific Research (NWO, VIDI)
  funderid: 91786368; 45207011
– fundername: Gratama stichting and Leids Universiteits Fonds (granted to E.A.C.)
– fundername: S.A.R.B.R. and E.A.C are supported by grants from the Netherlands Organization for Scientific Research (NWO, VIDI)
  grantid: 91786368; 45207011
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
AEFGJ
AEIMD
AENEX
AFBPY
AFGKR
AFKRA
AFPKN
AFRAH
AFZJQ
AGQPQ
AGXDD
AHMBA
AIDQK
AIDYY
AIQQE
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PQQKQ
PUEGO
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
33P
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALIPV
C45
RWD
RWI
WRC
WUP
AAYXX
CITATION
ACXME
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5774-3f8b245182f16c6c24441ada0eaf15b5e566919b956fb24267c224053282fbc33
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 14:12:33 EDT 2025
Thu Sep 25 08:52:27 EDT 2025
Sat Jul 26 02:16:25 EDT 2025
Thu Apr 03 07:03:49 EDT 2025
Wed May 29 03:57:13 EDT 2024
Thu Apr 24 23:00:06 EDT 2025
Tue Jul 01 04:25:59 EDT 2025
Wed Jan 22 16:36:34 EST 2025
Sun Sep 21 06:18:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Nervous system diseases
development
practice
Radiodiagnosis
Central nervous system
Nuclear magnetic resonance imaging
Encephalon
fMRI
Rest
resting state
functional connectivity
Plasticity
Working memory
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright © 2011 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5774-3f8b245182f16c6c24441ada0eaf15b5e566919b956fb24267c224053282fbc33
Notes ark:/67375/WNG-WPQTNBQX-Z
ArticleID:HBM21444
S.A.R.B.R. and E.A.C are supported by grants from the Netherlands Organization for Scientific Research (NWO, VIDI) - No. 91786368; No. 45207011
Gratama stichting and Leids Universiteits Fonds (granted to E.A.C.)
istex:4F5DC65BEB7ABC2CC355960CA5E6465615CE2F03
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6870317
PMID 22076823
PQID 1266373649
PQPubID 996345
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6870317
proquest_miscellaneous_1273257657
proquest_journals_1266373649
pubmed_primary_22076823
pascalfrancis_primary_26838595
crossref_citationtrail_10_1002_hbm_21444
crossref_primary_10_1002_hbm_21444
wiley_primary_10_1002_hbm_21444_HBM21444
istex_primary_ark_67375_WNG_WPQTNBQX_Z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2013
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: February 2013
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2013
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
John Wiley & Sons, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
– name: John Wiley & Sons, Inc
References Finn AS, Sheridan MA, Kam CL, Hinshaw S, D'Esposito M ( 2010): Longitudinal evidence for functional specialization of the neural circuit supporting working memory in the human brain. J Neurosci 30: 11062-11067.
Kording KP, Wolpert DM ( 2006): Bayesian decision theory in sensorimotor control. Trends Cogn Sci 10: 319-326.
Bavelier D, Green CS, Dye MW ( 2010): Children, wired: For better and for worse. Neuron 67: 692-701.
Uddin LQ, Kelly AM, Biswal BB, Xavier CF, Milham MP ( 2009): Functional connectivity of default mode network components: Correlation, anticorrelation, and causality. Hum Brain Mapp 30: 625-637.
Wechsler D ( 1997): Wechsler Adult Intelligence Scale-Third Edition. Administration and Scoring Manual. San Antonio, TX: The Psychological Corporation.
Achenbach TM ( 1991): Manual for the Child Behavior Checklist/4-18 and 1991 Profile. Burlington, VT: University of Vermont, Department of Psychiatry.
Baddeley A ( 1992): Working memory. Science 255: 556-559.
Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC ( 2002): Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp 15: 247-262.
Mesulam MM ( 1998): From sensation to cognition. Brain 121: 1013-1052.
Crone EA, Wendelken C, Donohue S, van Leijenhorst L, Bunge SA ( 2006): Neurocognitive development of the ability to manipulate information in working memory. Proc Natl Acad Sci U S A 103: 9315-9320.
Johnson MH ( 2001): Functional brain development in humans. Nat Rev Neurosci 2: 475-483.
Littow H, Elseoud AA, Haapea M, Isohanni M, Moilanen I, Mankinen K, Nikkinen J, Rahko J, Rantala H, Remes J, Starck T, Tervonen O, Veijola J, Beckmann C, Kiviniemi VJ( 2010): Age-related differences in functional nodes of the brain cortex-A high model order group ICA study. Front Syst Neurosci 4.
Smith SM ( 2002): Fast robust automated brain extraction. Hum Brain Mapp 17: 143-155.
Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR Jr, Barch DM, Petersen SE, Schlaggar BL ( 2010): Prediction of individual brain maturity using fMRI. Science 329: 1358-1361.
Salinas E, Sejnowski TJ ( 2001): Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2: 539-550.
Yuan W, Altaye M, Ret JR, Schmithorst VJ, Byars AW, Plante E, Holland SK ( 2009): Quantification of head motion in children during various fMRI language tasks. Hum Brain Mapp 30: 1481-1489.
Huizinga M, Dolan CV, van der Molen MW ( 2006): Age-related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia 44: 2017-2036.
Raichle ME ( 2006): The brain's dark energy. Science 314: 1249-1250.
Kelly AM, Garavan H ( 2005): Human functional neuroimaging of brain changes associated with practice. Cereb Cortex 15: 1089-1102.
Cole DM, Smith SM, Beckmann CF ( 2010): Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci 4: 8.
Bar M ( 2007): The proactive brain: Using analogies and associations to generate predictions. Trends Cogn Sci 11: 280-289.
Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF ( 2006): Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103: 13848-13853.
Jenkinson M, Bannister P, Brady M, Smith S ( 2002): Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17: 825-841.
Williams BR, Hultsch DF, Strauss EH, Hunter MA, Tannock R ( 2005): Inconsistency in reaction time across the life span. Neuropsychology 19: 88-96.
Johnson MH ( 2011): Interactive specialization: A domain-general framework for human functional brain development? Dev Cogn Neurosci 1: 7-21.
Jolles DD, van Buchem MA, Crone EA, Rombouts SA ( 2011): A comprehensive study of whole-brain functional connectivity in children and young adults. Cereb Cortex 21: 385-391.
Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD ( 2007): Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27: 2349-2356.
Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME ( 2005): The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102: 9673-9678.
Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP ( 2008): Competition between functional brain networks mediates behavioral variability. Neuroimage 39: 527-537.
Supekar K, Uddin LQ, Prater K, Amin H, Greicius MD, Menon V ( 2010): Development of functional and structural connectivity within the default mode network in young children. Neuroimage 52: 290-301.
Barnes A, Bullmore ET, Suckling J ( 2009): Endogenous human brain dynamics recover slowly following cognitive effort. PLoS One 4: e6626.
Curtis CE, D'Esposito M ( 2003): Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci 7: 415-423.
Sakai K, Passingham RE ( 2003): Prefrontal interactions reflect future task operations. Nat Neurosci 6: 75-81.
Jolles DD, Grol MJ, van Buchem MA, Rombouts SA, Crone EA ( 2010): Practice effects in the brain: Changes in cerebral activation after working memory practice depend on task demands. Neuroimage 52: 658-668.
Kelly AMC, Di Martino A, Uddin LQ, Shehzad Z, Gee DG, Reiss PT, Margulies DS, Castellanos FX, Milham MP ( 2009): Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cereb Cortex 19: 640-657.
Albert NB, Robertson EM, Miall RC ( 2009): The resting human brain and motor learning. Curr Biol 19: 1023-1027.
Smith EE, Jonides J ( 1999): Neuroscience-Storage and executive processes in the frontal lobes. Science 283: 1657-1661.
Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT ( 2006): Brain connectivity related to working memory performance. J Neurosci 26: 13338-13343.
Wagner AD, Maril A, Bjork RA, Schacter DL ( 2001): Prefrontal contributions to executive control: fMRI evidence for functional distinctions within lateral prefrontal cortex. Neuroimage 14: 1337-1347.
Hampson M, Driesen N, Roth JK, Gore JC, Constable RT ( 2010): Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance. Magn Reson Imaging 28: 1051-1057.
Fox MD, Raichle ME ( 2007): Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8: 700-711.
Fair DA, Cohen AL, Dosenbach NUF, Church JA, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL ( 2008): The maturing architecture of the brain's default network. Proc Natl Acad Sci U S A 105: 4028-4032.
Sowell ER, Thompson PM, Rex D, Kornsand D, Tessner KD, Jernigan TL, Toga AW ( 2002): Mapping sulcal pattern asymmetry and local cortical surface gray matter distribution in vivo: Maturation in perisylvian cortices. Cerebral Cortex 12: 17-26.
Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kötter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SA, Rypma B, Schlaggar BL, Schmidt S, Seidler RD, J Siegle G, Sorg C, Teng GJ, Veijola J, Villringer A, Walter M, Wang L, Weng XC, Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang YF, Zhang HY, Castellanos FX, Milham MP (2010): Toward discovery science of human brain function. Proc Natl Acad Sci U S A 107: 4734-4739.
Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL ( 2001): A default mode of brain function. Proc Natl Acad Sci U S A 98: 676-682.
Engel AK, Fries P, Singer W ( 2001): Dynamic predictions: Oscillations and synchrony in top-down processing. Nat Rev Neurosci 2: 704-716.
Asato MR, Sweeney JA, Luna B ( 2006): Cognitive processes in the development of TOL performance. Neuropsychologia 44: 2259-2269.
Ma L, Wang B, Chen X, Xiong J ( 2007): Detecting functional connectivity in the resting brain: A comparison between ICA and CCA. Magn Reson Imaging 25: 47-56.
Raichle ME ( 2010): Two views of brain function. Trends Cogn Sci 14: 180-190.
Kwon H, Reiss AL, Menon V ( 2002): Neural basis of protracted developmental changes in visuo-spatial working memory. Proc Natl Acad Sci U S A 99: 13336-13341.
Olesen PJ, Westerberg H, Klingberg T ( 2004): Increased prefrontal and parietal activity after training of working memory. Nat Neurosci 7: 75-79.
Baddeley A ( 2003): Working memory: Looking back and looking forward. Nat Rev Neurosci 4: 829-839.
Fransson P ( 2006): How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 44: 2836-2845.
Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF ( 2009): Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci U S A 106: 13040-13045.
Wechsler D ( 1991): Wechsler Intelligence Scale for Children-Third Edition. Manual. San Antonio, TX: The Psychological Corporation.
Klingberg T, Forssberg H, Westerberg H ( 2002): Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood. J Cogn Neurosci 14: 1-10.
Pascual-Leone J ( 1995): Learning and development as dialectical factors in cognitive growth. Hum Dev 38: 338-348.
Dahlin E, Neely AS, Larsson A, Backman L, Nyberg L ( 2008): Transfer of learning after updating training mediated by the striatum. Science 320: 1510-1512.
Lewis CM, Baldassarre A, Committeri G, Romani GL, Corbetta M ( 2009): Learning sculpts the spontaneous activity of the resting human brain. Proc Natl Acad Sci U S A 106: 17558-17563.
Woolrich MW, Ripley BD, Brady M, Smith SM ( 2001): Temporal autocorrelati
2007; 104
2002; 17
2002; 14
2002; 15
2010; 14
2010; 107
1995; 38
2002; 12
2004; 7
2004; 23
2008; 39
2002; 99
1999; 283
2008; 105
1999; 41
2007; 35
2010; 67
2008; 1124
2001
2000; 12
2005; 102
2010; 28
2003; 6
2003; 7
2006; 26
2007; 8
2003; 4
2011; 21
2009; 19
1998; 121
2010; 2
2010; 4
2001; 14
2010; 30
2007; 25
2001; 98
2007; 27
2007; 17
2004; 101
2010; 329
2011; 1
2006; 10
2006; 16
2002; 33
1997
2006; 18
1992
1991
2002
2006; 314
2008; 320
2007; 11
2010; 1354
2004; 304
2009; 29
2009; 30
2005; 19
2001; 5
2006; 44
1992; 255
2009; 7
2001; 2
2009; 5
2009; 4
2005; 15
2003; 100
2010; 52
2006; 103
2009; 106
e_1_2_8_28_1
Voss MW (e_1_2_8_79_1) 2010; 2
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Hitch GJ (e_1_2_8_37_1) 2002
e_1_2_8_3_1
Wechsler D (e_1_2_8_82_1) 1997
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
Cole DM (e_1_2_8_17_1) 2010; 4
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
Littow H (e_1_2_8_52_1) 2010; 4
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
Wechsler D (e_1_2_8_81_1) 1991
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
Achenbach TM (e_1_2_8_2_1) 1991
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – reference: Engel AK, Fries P, Singer W ( 2001): Dynamic predictions: Oscillations and synchrony in top-down processing. Nat Rev Neurosci 2: 704-716.
– reference: Greicius MD, Krasnow B, Reiss AL, Menon V ( 2003): Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100: 253-258.
– reference: Bunge SA, Dudukovic NM, Thomason ME, Vaidya CJ, Gabrieli JD ( 2002): Immature frontal lobe contributions to cognitive control in children: Evidence from fMRI. Neuron 33: 301-311.
– reference: Velanova K, Wheeler ME, Luna B ( 2009): The maturation of task set-related activation supports late developmental improvements in inhibitory control. J Neurosci 29: 12558-12567.
– reference: Williams BR, Hultsch DF, Strauss EH, Hunter MA, Tannock R ( 2005): Inconsistency in reaction time across the life span. Neuropsychology 19: 88-96.
– reference: Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kötter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SA, Rypma B, Schlaggar BL, Schmidt S, Seidler RD, J Siegle G, Sorg C, Teng GJ, Veijola J, Villringer A, Walter M, Wang L, Weng XC, Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang YF, Zhang HY, Castellanos FX, Milham MP (2010): Toward discovery science of human brain function. Proc Natl Acad Sci U S A 107: 4734-4739.
– reference: Uddin LQ, Kelly AM, Biswal BB, Xavier CF, Milham MP ( 2009): Functional connectivity of default mode network components: Correlation, anticorrelation, and causality. Hum Brain Mapp 30: 625-637.
– reference: Brahmbhatt SB, White DA, Barch DM ( 2010): Developmental differences in sustained and transient activity underlying working memory. Brain Res 1354: 140-151.
– reference: Supekar K, Musen M, Menon V ( 2009): Development of large-scale functional brain networks in children. PLoS Biol 7.
– reference: Johnson MH ( 2011): Interactive specialization: A domain-general framework for human functional brain development? Dev Cogn Neurosci 1: 7-21.
– reference: Lewis CM, Baldassarre A, Committeri G, Romani GL, Corbetta M ( 2009): Learning sculpts the spontaneous activity of the resting human brain. Proc Natl Acad Sci U S A 106: 17558-17563.
– reference: Baddeley A ( 1992): Working memory. Science 255: 556-559.
– reference: Albert NB, Robertson EM, Miall RC ( 2009): The resting human brain and motor learning. Curr Biol 19: 1023-1027.
– reference: Fransson P ( 2006): How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 44: 2836-2845.
– reference: Jolles DD, Grol MJ, van Buchem MA, Rombouts SA, Crone EA ( 2010): Practice effects in the brain: Changes in cerebral activation after working memory practice depend on task demands. Neuroimage 52: 658-668.
– reference: Kelly AMC, Di Martino A, Uddin LQ, Shehzad Z, Gee DG, Reiss PT, Margulies DS, Castellanos FX, Milham MP ( 2009): Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cereb Cortex 19: 640-657.
– reference: Lowe MJ, Dzemidzic M, Lurito JT, Mathews VP, Phillips MD ( 2000): Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. Neuroimage 12: 582-587.
– reference: Smith EE, Jonides J ( 1999): Neuroscience-Storage and executive processes in the frontal lobes. Science 283: 1657-1661.
– reference: Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF ( 2006): Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103: 13848-13853.
– reference: Bavelier D, Green CS, Dye MW ( 2010): Children, wired: For better and for worse. Neuron 67: 692-701.
– reference: Jolles DD, van Buchem MA, Crone EA, Rombouts SA ( 2011): A comprehensive study of whole-brain functional connectivity in children and young adults. Cereb Cortex 21: 385-391.
– reference: Littow H, Elseoud AA, Haapea M, Isohanni M, Moilanen I, Mankinen K, Nikkinen J, Rahko J, Rantala H, Remes J, Starck T, Tervonen O, Veijola J, Beckmann C, Kiviniemi VJ( 2010): Age-related differences in functional nodes of the brain cortex-A high model order group ICA study. Front Syst Neurosci 4.
– reference: Buzsaki G, Draguhn A ( 2004): Neuronal oscillations in cortical networks. Science 304: 1926-1929.
– reference: Bar M ( 2007): The proactive brain: Using analogies and associations to generate predictions. Trends Cogn Sci 11: 280-289.
– reference: Sayala S, Sala JB, Courtney SM ( 2006): Increased neural efficiency with repeated performance of a working memory task is information-type dependent. Cereb Cortex 16: 609-617.
– reference: Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD ( 2007): Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27: 2349-2356.
– reference: Johnson MH ( 2001): Functional brain development in humans. Nat Rev Neurosci 2: 475-483.
– reference: Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De LM, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM ( 2004): Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23: S208-S219.
– reference: Raichle ME ( 2006): The brain's dark energy. Science 314: 1249-1250.
– reference: Thirion B, Pinel P, Meriaux S, Roche A, Dehaene S, Poline JB ( 2007): Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses. Neuroimage 35: 105-120.
– reference: Mesulam MM ( 1998): From sensation to cognition. Brain 121: 1013-1052.
– reference: Power JD, Fair DA, Schlaggar BL, Petersen SE ( 2010): The development of human functional brain networks. Neuron 67: 735-748.
– reference: Ma L, Wang B, Chen X, Xiong J ( 2007): Detecting functional connectivity in the resting brain: A comparison between ICA and CCA. Magn Reson Imaging 25: 47-56.
– reference: Baddeley A ( 2003): Working memory: Looking back and looking forward. Nat Rev Neurosci 4: 829-839.
– reference: Fair DA, Cohen AL, Power JD, Dosenbach NUF, Church JA, Miezin FM, Schlaggar BL, Petersen SE ( 2009): Functional brain networks develop from a "local to distributed" organization. PLoS Comput Biol 5.
– reference: Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT ( 2006): Brain connectivity related to working memory performance. J Neurosci 26: 13338-13343.
– reference: Voss MW, Prakash RS, Erickson KI, Basak C, Chaddock L, Kim JS, Alves H, Heo S, Szabo AN, White SM, Wójcicki TR, Mailey EL, Gothe N, Olson EA, McAuley E, Kramer AF ( 2010): Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front Aging Neurosci 2.
– reference: Finn AS, Sheridan MA, Kam CL, Hinshaw S, D'Esposito M ( 2010): Longitudinal evidence for functional specialization of the neural circuit supporting working memory in the human brain. J Neurosci 30: 11062-11067.
– reference: Sowell ER, Thompson PM, Rex D, Kornsand D, Tessner KD, Jernigan TL, Toga AW ( 2002): Mapping sulcal pattern asymmetry and local cortical surface gray matter distribution in vivo: Maturation in perisylvian cortices. Cerebral Cortex 12: 17-26.
– reference: D'Esposito M, Postle BR, Ballard D, Lease J ( 1999): Maintenance versus manipulation of information held in working memory: An event-related fMRI study. Brain Cogn 41: 66-86.
– reference: Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC ( 2002): Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp 15: 247-262.
– reference: Salinas E, Sejnowski TJ ( 2001): Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2: 539-550.
– reference: Crone EA, Wendelken C, Donohue S, van Leijenhorst L, Bunge SA ( 2006): Neurocognitive development of the ability to manipulate information in working memory. Proc Natl Acad Sci U S A 103: 9315-9320.
– reference: Jenkinson M, Bannister P, Brady M, Smith S ( 2002): Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17: 825-841.
– reference: Fair DA, Dosenbach NUF, Church JA, Cohen AL, Brahmbhatt S, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL ( 2007): Development of distinct control networks through segregation and integration. Proc Natl Acad Sci U S A 104: 13507-13512.
– reference: Dahlin E, Neely AS, Larsson A, Backman L, Nyberg L ( 2008): Transfer of learning after updating training mediated by the striatum. Science 320: 1510-1512.
– reference: Olesen PJ, Macoveanu J, Tegner J, Klingberg T ( 2007): Brain activity related to working memory and distraction in children and adults. Cereb Cortex 17: 1047-1054.
– reference: Yuan W, Altaye M, Ret JR, Schmithorst VJ, Byars AW, Plante E, Holland SK ( 2009): Quantification of head motion in children during various fMRI language tasks. Hum Brain Mapp 30: 1481-1489.
– reference: Fox MD, Raichle ME ( 2007): Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8: 700-711.
– reference: Kelly AM, Garavan H ( 2005): Human functional neuroimaging of brain changes associated with practice. Cereb Cortex 15: 1089-1102.
– reference: Jenkinson M, Smith S ( 2001): A global optimisation method for robust affine registration of brain images. Med Image Anal 5: 143-156.
– reference: Raichle ME ( 2010): Two views of brain function. Trends Cogn Sci 14: 180-190.
– reference: Scherf KS, Sweeney JA, Luna B ( 2006): Brain basis of developmental change in visuospatial working memory. J Cogn Neurosci 18: 1045-1058.
– reference: Wagner AD, Maril A, Bjork RA, Schacter DL ( 2001): Prefrontal contributions to executive control: fMRI evidence for functional distinctions within lateral prefrontal cortex. Neuroimage 14: 1337-1347.
– reference: Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR Jr, Barch DM, Petersen SE, Schlaggar BL ( 2010): Prediction of individual brain maturity using fMRI. Science 329: 1358-1361.
– reference: Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME ( 2005): The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102: 9673-9678.
– reference: Pascual-Leone J ( 1995): Learning and development as dialectical factors in cognitive growth. Hum Dev 38: 338-348.
– reference: Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP ( 2008): Competition between functional brain networks mediates behavioral variability. Neuroimage 39: 527-537.
– reference: Hampson M, Driesen N, Roth JK, Gore JC, Constable RT ( 2010): Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance. Magn Reson Imaging 28: 1051-1057.
– reference: Olesen PJ, Westerberg H, Klingberg T ( 2004): Increased prefrontal and parietal activity after training of working memory. Nat Neurosci 7: 75-79.
– reference: Supekar K, Uddin LQ, Prater K, Amin H, Greicius MD, Menon V ( 2010): Development of functional and structural connectivity within the default mode network in young children. Neuroimage 52: 290-301.
– reference: Barnes A, Bullmore ET, Suckling J ( 2009): Endogenous human brain dynamics recover slowly following cognitive effort. PLoS One 4: e6626.
– reference: Benjamin C, Lieberman DA, Chang M, Ofen N, Whitfield-Gabrieli S, Gabrieli JD, Gaab N ( 2010): The influence of rest period instructions on the default mode network. Front Hum Neurosci 4: 218.
– reference: Curtis CE, D'Esposito M ( 2003): Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci 7: 415-423.
– reference: Achenbach TM ( 1991): Manual for the Child Behavior Checklist/4-18 and 1991 Profile. Burlington, VT: University of Vermont, Department of Psychiatry.
– reference: Wechsler D ( 1997): Wechsler Adult Intelligence Scale-Third Edition. Administration and Scoring Manual. San Antonio, TX: The Psychological Corporation.
– reference: Kwon H, Reiss AL, Menon V ( 2002): Neural basis of protracted developmental changes in visuo-spatial working memory. Proc Natl Acad Sci U S A 99: 13336-13341.
– reference: Huizinga M, Dolan CV, van der Molen MW ( 2006): Age-related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia 44: 2017-2036.
– reference: Klingberg T, Forssberg H, Westerberg H ( 2002): Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood. J Cogn Neurosci 14: 1-10.
– reference: Wechsler D ( 1991): Wechsler Intelligence Scale for Children-Third Edition. Manual. San Antonio, TX: The Psychological Corporation.
– reference: Sakai K, Passingham RE ( 2003): Prefrontal interactions reflect future task operations. Nat Neurosci 6: 75-81.
– reference: Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF ( 2009): Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci U S A 106: 13040-13045.
– reference: Woolrich MW, Ripley BD, Brady M, Smith SM ( 2001): Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage 14: 1370-1386.
– reference: Fair DA, Cohen AL, Dosenbach NUF, Church JA, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL ( 2008): The maturing architecture of the brain's default network. Proc Natl Acad Sci U S A 105: 4028-4032.
– reference: Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL ( 2001): A default mode of brain function. Proc Natl Acad Sci U S A 98: 676-682.
– reference: Kording KP, Wolpert DM ( 2006): Bayesian decision theory in sensorimotor control. Trends Cogn Sci 10: 319-326.
– reference: Asato MR, Sweeney JA, Luna B ( 2006): Cognitive processes in the development of TOL performance. Neuropsychologia 44: 2259-2269.
– reference: Cole DM, Smith SM, Beckmann CF ( 2010): Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci 4: 8.
– reference: Qin Y, Carter CS, Silk EM, Stenger VA, Fissell K, Goode A, Anderson JR ( 2004): The change of the brain activation patterns as children learn algebra equation solving. Proc Natl Acad Sci U S A 101: 5686-5691.
– reference: Buckner RL, Andrews-Hanna JR, Schacter DL ( 2008): The Brain's Default Network: Anatomy, Function, and Relevance to Disease. Ann N Y Acad Sci 1124: 1-38.
– reference: Smith SM ( 2002): Fast robust automated brain extraction. Hum Brain Mapp 17: 143-155.
– volume: 15
  start-page: 247
  year: 2002
  end-page: 262
  article-title: Detection of functional connectivity using temporal correlations in MR images
  publication-title: Hum Brain Mapp
– volume: 106
  start-page: 17558
  year: 2009
  end-page: 17563
  article-title: Learning sculpts the spontaneous activity of the resting human brain
  publication-title: Proc Natl Acad Sci U S A
– volume: 283
  start-page: 1657
  year: 1999
  end-page: 1661
  article-title: Neuroscience—Storage and executive processes in the frontal lobes
  publication-title: Science
– volume: 52
  start-page: 290
  year: 2010
  end-page: 301
  article-title: Development of functional and structural connectivity within the default mode network in young children
  publication-title: Neuroimage
– volume: 15
  start-page: 1089
  year: 2005
  end-page: 1102
  article-title: Human functional neuroimaging of brain changes associated with practice
  publication-title: Cereb Cortex
– volume: 38
  start-page: 338
  year: 1995
  end-page: 348
  article-title: Learning and development as dialectical factors in cognitive growth
  publication-title: Hum Dev
– volume: 103
  start-page: 9315
  year: 2006
  end-page: 9320
  article-title: Neurocognitive development of the ability to manipulate information in working memory
  publication-title: Proc Natl Acad Sci U S A
– volume: 30
  start-page: 11062
  year: 2010
  end-page: 11067
  article-title: Longitudinal evidence for functional specialization of the neural circuit supporting working memory in the human brain
  publication-title: J Neurosci
– volume: 104
  start-page: 13507
  year: 2007
  end-page: 13512
  article-title: Development of distinct control networks through segregation and integration
  publication-title: Proc Natl Acad Sci U S A
– volume: 2
  start-page: 539
  year: 2001
  end-page: 550
  article-title: Correlated neuronal activity and the flow of neural information
  publication-title: Nat Rev Neurosci
– volume: 12
  start-page: 582
  year: 2000
  end-page: 587
  article-title: Correlations in low‐frequency BOLD fluctuations reflect cortico‐cortical connections
  publication-title: Neuroimage
– volume: 6
  start-page: 75
  year: 2003
  end-page: 81
  article-title: Prefrontal interactions reflect future task operations
  publication-title: Nat Neurosci
– volume: 304
  start-page: 1926
  year: 2004
  end-page: 1929
  article-title: Neuronal oscillations in cortical networks
  publication-title: Science
– volume: 100
  start-page: 253
  year: 2003
  end-page: 258
  article-title: Functional connectivity in the resting brain: A network analysis of the default mode hypothesis
  publication-title: Proc Natl Acad Sci U S A
– volume: 4
  year: 2010
  article-title: Age‐related differences in functional nodes of the brain cortex—A high model order group ICA study
  publication-title: Front Syst Neurosci
– volume: 19
  start-page: 1023
  year: 2009
  end-page: 1027
  article-title: The resting human brain and motor learning
  publication-title: Curr Biol
– start-page: 466
  year: 2002
  end-page: 503
– volume: 8
  start-page: 700
  year: 2007
  end-page: 711
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nat Rev Neurosci
– volume: 105
  start-page: 4028
  year: 2008
  end-page: 4032
  article-title: The maturing architecture of the brain's default network
  publication-title: Proc Natl Acad Sci U S A
– volume: 28
  start-page: 1051
  year: 2010
  end-page: 1057
  article-title: Functional connectivity between task‐positive and task‐negative brain areas and its relation to working memory performance
  publication-title: Magn Reson Imaging
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
– volume: 329
  start-page: 1358
  year: 2010
  end-page: 1361
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science
– volume: 10
  start-page: 319
  year: 2006
  end-page: 326
  article-title: Bayesian decision theory in sensorimotor control
  publication-title: Trends Cogn Sci
– volume: 44
  start-page: 2017
  year: 2006
  end-page: 2036
  article-title: Age‐related change in executive function: Developmental trends and a latent variable analysis
  publication-title: Neuropsychologia
– volume: 101
  start-page: 5686
  year: 2004
  end-page: 5691
  article-title: The change of the brain activation patterns as children learn algebra equation solving
  publication-title: Proc Natl Acad Sci U S A
– volume: 18
  start-page: 1045
  year: 2006
  end-page: 1058
  article-title: Brain basis of developmental change in visuospatial working memory
  publication-title: J Cogn Neurosci
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc Natl Acad Sci U S A
– volume: 23
  start-page: S208
  year: 2004
  end-page: S219
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
– volume: 67
  start-page: 692
  year: 2010
  end-page: 701
  article-title: Children, wired: For better and for worse
  publication-title: Neuron
– volume: 44
  start-page: 2836
  year: 2006
  end-page: 2845
  article-title: How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations
  publication-title: Neuropsychologia
– volume: 103
  start-page: 13848
  year: 2006
  end-page: 13853
  article-title: Consistent resting‐state networks across healthy subjects
  publication-title: Proc Natl Acad Sci U S A
– volume: 4
  start-page: 218
  year: 2010
  article-title: The influence of rest period instructions on the default mode network
  publication-title: Front Hum Neurosci
– volume: 7
  start-page: 75
  year: 2004
  end-page: 79
  article-title: Increased prefrontal and parietal activity after training of working memory
  publication-title: Nat Neurosci
– volume: 1124
  start-page: 1
  year: 2008
  end-page: 38
  article-title: The Brain's Default Network: Anatomy, Function, and Relevance to Disease
  publication-title: Ann N Y Acad Sci
– year: 1997
– volume: 12
  start-page: 17
  year: 2002
  end-page: 26
  article-title: Mapping sulcal pattern asymmetry and local cortical surface gray matter distribution in vivo: Maturation in perisylvian cortices
  publication-title: Cerebral Cortex
– volume: 39
  start-page: 527
  year: 2008
  end-page: 537
  article-title: Competition between functional brain networks mediates behavioral variability
  publication-title: Neuroimage
– volume: 99
  start-page: 13336
  year: 2002
  end-page: 13341
  article-title: Neural basis of protracted developmental changes in visuo‐spatial working memory
  publication-title: Proc Natl Acad Sci U S A
– volume: 14
  start-page: 1337
  year: 2001
  end-page: 1347
  article-title: Prefrontal contributions to executive control: fMRI evidence for functional distinctions within lateral prefrontal cortex
  publication-title: Neuroimage
– volume: 33
  start-page: 301
  year: 2002
  end-page: 311
  article-title: Immature frontal lobe contributions to cognitive control in children: Evidence from fMRI
  publication-title: Neuron
– volume: 5
  start-page: 143
  year: 2001
  end-page: 156
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med Image Anal
– volume: 255
  start-page: 556
  year: 1992
  end-page: 559
  article-title: Working memory
  publication-title: Science
– volume: 107
  start-page: 4734
  year: 2010
  end-page: 4739
  article-title: Toward discovery science of human brain function
  publication-title: Proc Natl Acad Sci U S A
– volume: 26
  start-page: 13338
  year: 2006
  end-page: 13343
  article-title: Brain connectivity related to working memory performance
  publication-title: J Neurosci
– start-page: 15
  year: 2002
  end-page: 37
– volume: 121
  start-page: 1013
  year: 1998
  end-page: 1052
  article-title: From sensation to cognition
  publication-title: Brain
– volume: 27
  start-page: 2349
  year: 2007
  end-page: 2356
  article-title: Dissociable intrinsic connectivity networks for salience processing and executive control
  publication-title: J Neurosci
– volume: 5
  year: 2009
  article-title: Functional brain networks develop from a “local to distributed” organization
  publication-title: PLoS Comput Biol
– volume: 29
  start-page: 12558
  year: 2009
  end-page: 12567
  article-title: The maturation of task set‐related activation supports late developmental improvements in inhibitory control
  publication-title: J Neurosci
– volume: 4
  start-page: 8
  year: 2010
  article-title: Advances and pitfalls in the analysis and interpretation of resting‐state FMRI data
  publication-title: Front Syst Neurosci
– volume: 16
  start-page: 609
  year: 2006
  end-page: 617
  article-title: Increased neural efficiency with repeated performance of a working memory task is information‐type dependent
  publication-title: Cereb Cortex
– volume: 17
  start-page: 1047
  year: 2007
  end-page: 1054
  article-title: Brain activity related to working memory and distraction in children and adults
  publication-title: Cereb Cortex
– volume: 320
  start-page: 1510
  year: 2008
  end-page: 1512
  article-title: Transfer of learning after updating training mediated by the striatum
  publication-title: Science
– volume: 14
  start-page: 1
  year: 2002
  end-page: 10
  article-title: Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood
  publication-title: J Cogn Neurosci
– volume: 2
  start-page: 704
  year: 2001
  end-page: 716
  article-title: Dynamic predictions: Oscillations and synchrony in top‐down processing
  publication-title: Nat Rev Neurosci
– volume: 44
  start-page: 2259
  year: 2006
  end-page: 2269
  article-title: Cognitive processes in the development of TOL performance
  publication-title: Neuropsychologia
– volume: 19
  start-page: 88
  year: 2005
  end-page: 96
  article-title: Inconsistency in reaction time across the life span
  publication-title: Neuropsychology
– volume: 52
  start-page: 658
  year: 2010
  end-page: 668
  article-title: Practice effects in the brain: Changes in cerebral activation after working memory practice depend on task demands
  publication-title: Neuroimage
– volume: 35
  start-page: 105
  year: 2007
  end-page: 120
  article-title: Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses
  publication-title: Neuroimage
– year: 1992
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  article-title: Fast robust automated brain extraction
  publication-title: Hum Brain Mapp
– volume: 7
  start-page: 415
  year: 2003
  end-page: 423
  article-title: Persistent activity in the prefrontal cortex during working memory
  publication-title: Trends Cogn Sci
– volume: 2
  year: 2010
  article-title: Plasticity of brain networks in a randomized intervention trial of exercise training in older adults
  publication-title: Front Aging Neurosci
– volume: 14
  start-page: 180
  year: 2010
  end-page: 190
  article-title: Two views of brain function
  publication-title: Trends Cogn Sci
– volume: 4
  start-page: 829
  year: 2003
  end-page: 839
  article-title: Working memory: Looking back and looking forward
  publication-title: Nat Rev Neurosci
– volume: 7
  year: 2009
  article-title: Development of large‐scale functional brain networks in children
  publication-title: PLoS Biol
– volume: 19
  start-page: 640
  year: 2009
  end-page: 657
  article-title: Development of anterior cingulate functional connectivity from late childhood to early adulthood
  publication-title: Cereb Cortex
– volume: 30
  start-page: 625
  year: 2009
  end-page: 637
  article-title: Functional connectivity of default mode network components: Correlation, anticorrelation, and causality
  publication-title: Hum Brain Mapp
– volume: 4
  start-page: e6626
  year: 2009
  article-title: Endogenous human brain dynamics recover slowly following cognitive effort
  publication-title: PLoS One
– volume: 21
  start-page: 385
  year: 2011
  end-page: 391
  article-title: A comprehensive study of whole‐brain functional connectivity in children and young adults
  publication-title: Cereb Cortex
– volume: 11
  start-page: 280
  year: 2007
  end-page: 289
  article-title: The proactive brain: Using analogies and associations to generate predictions
  publication-title: Trends Cogn Sci
– volume: 1
  start-page: 7
  year: 2011
  end-page: 21
  article-title: Interactive specialization: A domain‐general framework for human functional brain development?
  publication-title: Dev Cogn Neurosci
– volume: 98
  start-page: 676
  year: 2001
  end-page: 682
  article-title: A default mode of brain function
  publication-title: Proc Natl Acad Sci U S A
– volume: 314
  start-page: 1249
  year: 2006
  end-page: 1250
  article-title: The brain's dark energy
  publication-title: Science
– year: 1991
– volume: 25
  start-page: 47
  year: 2007
  end-page: 56
  article-title: Detecting functional connectivity in the resting brain: A comparison between ICA and CCA
  publication-title: Magn Reson Imaging
– volume: 67
  start-page: 735
  year: 2010
  end-page: 748
  article-title: The development of human functional brain networks
  publication-title: Neuron
– start-page: 251
  year: 2001
  end-page: 270
– volume: 2
  start-page: 475
  year: 2001
  end-page: 483
  article-title: Functional brain development in humans
  publication-title: Nat Rev Neurosci
– volume: 30
  start-page: 1481
  year: 2009
  end-page: 1489
  article-title: Quantification of head motion in children during various fMRI language tasks
  publication-title: Hum Brain Mapp
– volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc Natl Acad Sci U S A
– volume: 14
  start-page: 1370
  year: 2001
  end-page: 1386
  article-title: Temporal autocorrelation in univariate linear modeling of FMRI data
  publication-title: Neuroimage
– volume: 1354
  start-page: 140
  year: 2010
  end-page: 151
  article-title: Developmental differences in sustained and transient activity underlying working memory
  publication-title: Brain Res
– volume: 41
  start-page: 66
  year: 1999
  end-page: 86
  article-title: Maintenance versus manipulation of information held in working memory: An event‐related fMRI study
  publication-title: Brain Cogn
– ident: e_1_2_8_11_1
  doi: 10.1073/pnas.0911855107
– ident: e_1_2_8_26_1
  doi: 10.1073/pnas.0800376105
– ident: e_1_2_8_65_1
  doi: 10.1038/35086012
– ident: e_1_2_8_18_1
  doi: 10.1073/pnas.0510088103
– ident: e_1_2_8_31_1
  doi: 10.1073/pnas.0504136102
– ident: e_1_2_8_60_1
  doi: 10.1073/pnas.0401227101
– ident: e_1_2_8_3_1
  doi: 10.1016/j.cub.2009.04.028
– ident: e_1_2_8_34_1
  doi: 10.1016/j.mri.2010.03.021
– ident: e_1_2_8_50_1
  doi: 10.1073/pnas.162486399
– ident: e_1_2_8_73_1
  doi: 10.1093/cercor/12.1.17
– ident: e_1_2_8_78_1
  doi: 10.1523/JNEUROSCI.1579-09.2009
– ident: e_1_2_8_28_1
  doi: 10.1073/pnas.0705843104
– ident: e_1_2_8_42_1
  doi: 10.1016/j.dcn.2010.07.003
– volume: 4
  year: 2010
  ident: e_1_2_8_52_1
  article-title: Age‐related differences in functional nodes of the brain cortex—A high model order group ICA study
  publication-title: Front Syst Neurosci
– volume-title: Wechsler Intelligence Scale for Children‐Third Edition
  year: 1991
  ident: e_1_2_8_81_1
– ident: e_1_2_8_76_1
  doi: 10.1016/j.neuroimage.2006.11.054
– ident: e_1_2_8_24_1
  doi: 10.1126/science.1194144
– ident: e_1_2_8_10_1
  doi: 10.3389/fnhum.2010.00218
– ident: e_1_2_8_13_1
  doi: 10.1196/annals.1440.011
– ident: e_1_2_8_61_1
  doi: 10.1126/science. 1134405
– ident: e_1_2_8_86_1
  doi: 10.1002/hbm.20616
– ident: e_1_2_8_77_1
  doi: 10.1002/hbm.20531
– ident: e_1_2_8_63_1
  doi: 10.1073/pnas.98.2.676
– ident: e_1_2_8_58_1
  doi: 10.1159/000278340
– ident: e_1_2_8_75_1
  doi: 10.1016/j.neuroimage.2010.04.009
– ident: e_1_2_8_85_1
  doi: 10.1093/acprof:oso/9780192630711.003.0014
– ident: e_1_2_8_25_1
  doi: 10.1038/35094565
– ident: e_1_2_8_66_1
  doi: 10.1093/cercor/bhj007
– ident: e_1_2_8_67_1
  doi: 10.1162/jocn.2006.18.7.1045
– ident: e_1_2_8_70_1
  doi: 10.1002/hbm.10062
– ident: e_1_2_8_36_1
  doi: 10.1002/hbm.10022
– ident: e_1_2_8_22_1
  doi: 10.1073/pnas.0601417103
– ident: e_1_2_8_20_1
  doi: 10.1006/brcg.1999.1096
– ident: e_1_2_8_62_1
  doi: 10.1016/j.tics.2010.01.008
– ident: e_1_2_8_4_1
  doi: 10.1016/j.neuropsychologia.2006.05.010
– ident: e_1_2_8_5_1
  doi: 10.1126/science.1736359
– ident: e_1_2_8_32_1
  doi: 10.1016/j.neuropsychologia.2006.06.017
– ident: e_1_2_8_19_1
  doi: 10.1016/S1364-6613(03)00197-9
– ident: e_1_2_8_80_1
  doi: 10.1006/nimg.2001.0936
– ident: e_1_2_8_45_1
  doi: 10.1093/cercor/bhi005
– ident: e_1_2_8_72_1
  doi: 10.1016/j.neuroimage.2004.07.051
– start-page: 15
  volume-title: Lifespan Development of Human Memory
  year: 2002
  ident: e_1_2_8_37_1
  doi: 10.7551/mitpress/4230.003.0005
– ident: e_1_2_8_40_1
  doi: 10.1016/S1361-8415(01)00036-6
– ident: e_1_2_8_38_1
  doi: 10.1016/j.neuropsychologia.2006.01.010
– ident: e_1_2_8_46_1
  doi: 10.1016/j.neuroimage.2007.08.008
– ident: e_1_2_8_64_1
  doi: 10.1038/nn987
– ident: e_1_2_8_7_1
  doi: 10.1016/j.tics.2007.05.005
– ident: e_1_2_8_41_1
  doi: 10.1038/35081509
– ident: e_1_2_8_54_1
  doi: 10.1016/j.mri.2006.09.032
– volume-title: Manual for the Child Behavior Checklist/4–18 and 1991 Profile
  year: 1991
  ident: e_1_2_8_2_1
– ident: e_1_2_8_14_1
  doi: 10.1016/S0896-6273(01)00583-9
– ident: e_1_2_8_48_1
  doi: 10.1162/089892902317205276
– ident: e_1_2_8_59_1
  doi: 10.1016/j.neuron.2010.08.017
– ident: e_1_2_8_15_1
  doi: 10.1126/science.1099745
– ident: e_1_2_8_43_1
  doi: 10.1016/j.neuroimage.2010.04.028
– volume-title: Wechsler Adult Intelligence Scale‐Third Edition. Administration and Scoring Manual
  year: 1997
  ident: e_1_2_8_82_1
– ident: e_1_2_8_30_1
  doi: 10.1038/nrn2201
– ident: e_1_2_8_33_1
  doi: 10.1073/pnas.0135058100
– ident: e_1_2_8_35_1
  doi: 10.1523/JNEUROSCI.3408-06.2006
– volume: 4
  start-page: 8
  year: 2010
  ident: e_1_2_8_17_1
  article-title: Advances and pitfalls in the analysis and interpretation of resting‐state FMRI data
  publication-title: Front Syst Neurosci
– ident: e_1_2_8_83_1
  doi: 10.1037/0894-4105.19.1.88
– ident: e_1_2_8_27_1
  doi: 10.1371/journal.pcbi.1000381
– ident: e_1_2_8_47_1
  doi: 10.1093/cercor/bhn117
– ident: e_1_2_8_9_1
  doi: 10.1016/j.neuron.2010.08.035
– ident: e_1_2_8_6_1
  doi: 10.1038/nrn1201
– ident: e_1_2_8_16_1
– volume: 2
  year: 2010
  ident: e_1_2_8_79_1
  article-title: Plasticity of brain networks in a randomized intervention trial of exercise training in older adults
  publication-title: Front Aging Neurosci
– ident: e_1_2_8_69_1
  doi: 10.1126/science.283.5408.1657
– ident: e_1_2_8_8_1
  doi: 10.1371/journal.pone.0006626
– ident: e_1_2_8_68_1
  doi: 10.1523/JNEUROSCI.5587-06.2007
– ident: e_1_2_8_55_1
  doi: 10.1093/brain/121.6.1013
– ident: e_1_2_8_57_1
  doi: 10.1038/nn1165
– ident: e_1_2_8_29_1
  doi: 10.1523/JNEUROSCI.6266-09.2010
– ident: e_1_2_8_39_1
  doi: 10.1006/nimg.2002.1132
– ident: e_1_2_8_44_1
  doi: 10.1093/cercor/bhq104
– ident: e_1_2_8_12_1
  doi: 10.1016/j.brainres.2010.07.055
– ident: e_1_2_8_56_1
  doi: 10.1093/cercor/bhl014
– ident: e_1_2_8_51_1
  doi: 10.1073/pnas.0902455106
– ident: e_1_2_8_49_1
  doi: 10.1016/j.tics.2006.05.003
– ident: e_1_2_8_74_1
  doi: 10.1371/journal.pbio.1000157
– ident: e_1_2_8_71_1
  doi: 10.1073/pnas.0905267106
– ident: e_1_2_8_84_1
  doi: 10.1006/nimg.2001.0931
– ident: e_1_2_8_23_1
  doi: 10.1093/acprof:oso/9780195134971.003.0029
– ident: e_1_2_8_53_1
  doi: 10.1006/nimg.2000.0654
– ident: e_1_2_8_21_1
  doi: 10.1126/science.1155466
SSID ssj0011501
Score 2.4577441
Snippet Networks of functional connectivity are highly consistent across participants, suggesting that functional connectivity is for a large part predetermined....
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 396
SubjectTerms Adolescent
Adult
Aging - psychology
Biological and medical sciences
Brain Mapping
Child
development
Female
fMRI
Frontal Lobe - physiology
functional connectivity
Fundamental and applied biological sciences. Psychology
Human
Humans
Image Processing, Computer-Assisted
Investigative techniques, diagnostic techniques (general aspects)
Learning - physiology
Learning. Memory
Magnetic Resonance Imaging
Male
Medical sciences
Memory
Memory, Short-Term - physiology
Nerve Net - physiology
Nervous system
Neural Pathways - physiology
Neuronal Plasticity - physiology
Parietal Lobe - physiology
Pilot Projects
plasticity
practice
Practice, Psychological
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Psychomotor Performance - physiology
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Rest - physiology
resting state
Young Adult
Title Functional brain connectivity at rest changes after working memory training
URI https://api.istex.fr/ark:/67375/WNG-WPQTNBQX-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.21444
https://www.ncbi.nlm.nih.gov/pubmed/22076823
https://www.proquest.com/docview/1266373649
https://www.proquest.com/docview/1273257657
https://pubmed.ncbi.nlm.nih.gov/PMC6870317
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5Nm4R4gbHxI9uYDEITL-ka_0ga8bQBpQKtYmjTKoRk2a6todFsWluN8dfjs5OMwpAQb4lyieLL2f7OvnwfwIugRs6sTcd-uky5oCotncJTLizlrtDjUG0xzAfH_P1IjJbgVfMvTOSHaBfcsGeE8Ro7uNLT3RvS0FM96SDfF3KBZixH3vw3n1rqKAQ6Idnyr5KWfgRuWIW6dLe9c2EuWkG3fsfaSDX17nFR1-I24Pln_eSvuDZMTP378KVpUqxHOevMZ7pjfvzG9vifbV6FezVgJXsxwh7Akq3WYH2v8sn65JrskFBCGtbm1-DOQb1Tvw4f-n7CjOuMRKMMBTFYUmOiWAVRM4KiICT-dzwlQaqcXMWVezLB8t9r0shXPITj_tuj14O0Fm5IjfBwMmWupykXPnVxWW5y4yEEz9RYda1ymdDCegxZZqX2uZnTiBEKg8hCMJ__OW0YewTL1XllnwBRuXW8VJaXXc2pLRQdM0atKZUxPcWKBF42n1CamtUc3-6bjHzMVHqfyeCzBJ63pheRyuM2o50QB62FujzD2rdCyJPhO3ny8fBouH84kp8T2F4IlPYGmvcYksYlsNVEjqzHhanMPB5ihY_WMoFn7WXfo3GbRlX2fI42BcM0UPjGPY6BdvNwijunlCVQLIRga4Bs4YtXqq-ngTU876FUATosRNjfXSAH-wfhYOPfTTfhLg06IVjnswXLs8u5ferR2kxvh275E9aeOzY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTQJeYGz8CIxhEJp4Sdf4R9JIvGwTpbC1YqjTqknIsl1HQ6MZWlvB-Ovx2UlGYUiIt1a5VPH1bH93vnwfwEuvRs6sjcduu4y5oCrOC4VfubCUF5ke-26LQdo74u9HYrQEr-t3YQI_RFNww5nh12uc4FiQ3r5iDT3VkxYSfvEbsOLP5xASfWzIoxDq-HTLPUycuzW45hVq0-3m1oXdaAUd-x27I9XUOagIyhbXQc8_Oyh_RbZ-a-rehU_1oEJHyllrPtMt8-M3vsf_HfUq3KkwK9kJQXYPlmy5Bus7pcvXJ5dki_guUl-eX4Ob_eqwfh32u27PDKVGolGJghjsqjFBr4KoGUFdEBJePZ4Sr1ZOvoXiPZlgB_AlqRUs7sNR981wrxdX2g2xEQ5RxqzoaMqFy16KJDWpcSiCJ2qs2lYVidDCOhiZJ7l26VmhESZkBsGFYC4FLLRh7AEsl-elfQREpbbgubI8b2tObabomDFqTa6M6SiWRfCq_g-lqYjN8em-yEDJTKXzmfQ-i-BFY_o1sHlcZ7TlA6GxUBdn2P6WCXk8eCuPPxwOB7uHI3kSweZCpDQ30LTDkDcugo06dGS1NExl4iARy1jK8wieN5fdpMaTGlXa8znaZAwzQeEG9zBE2tWPUzw8pSyCbCEGGwMkDF-8Un4-9cThaQfVCtBhPsT-7gLZ2-37D4__3fQZ3OoN-wfy4N1g_wncpl42BNt-NmB5djG3Tx14m-lNP0d_AmjfP1Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwED6NTZr4wsvGS2AMg9DEl3SNX5JGfNqAUhirNrRp1YRk2Y6jodFsWlvB-PX47CSjMCTEt1a5VPH17HvOvjwPwAuvRs6sjQuXLmMuqIrzUuFXLizlZaYL320xTAeH_MNIjBbgVfMuTOCHaDfccGb49Ron-HlRbl6Rhp7ocQf5vvgNWOKpS5OIiD613FGIdHy15Z4lzt0S3NAKdelme-tcMlpCv37H5kg1cf4pg7DFdcjzzwbKX4Gtz0z92_C5GVNoSDntzKa6Y378Rvf4n4O-A7dqxEq2QojdhQVbrcDqVuWq9fEl2SC-h9Rvzq_A8m59VL8KO32XMcNGI9GoQ0EM9tSYoFZB1JSgKggJLx5PiNcqJ9_C1j0ZY__vJWn0K-7BYf_twetBXCs3xEY4PBmzsqcpF652KZPUpMZhCJ6oQnWtKhOhhXUgMk9y7YqzUiNIyAxCC8FcAVhqw9h9WKzOKvsQiEptyXNled7VnNpM0YIxak2ujOkplkXwsvkLpalpzfHpvspAyEyl85n0PovgeWt6Hrg8rjPa8HHQWqiLU2x-y4Q8Gr6TR3v7B8Pt_ZE8jmB9LlDaG2jaY8gaF8FaEzmyXhgmMnGAiGUs5XkEz9rLbkrjOY2q7NkMbTKGdaBwg3sQAu3qxykenVIWQTYXgq0B0oXPX6m-nHja8LSHWgXoMB9hf3eBHGzv-g-P_t30KSzvvenLj--HO4_hJvWaIdjzswaL04uZfeKQ21Sv-xn6E4CTPgM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+brain+connectivity+at+rest+changes+after+working+memory+training&rft.jtitle=Human+brain+mapping&rft.au=Jolles%2C+Dietsje+D.&rft.au=van+Buchem%2C+Mark+A.&rft.au=Crone%2C+Eveline+A.&rft.au=Rombouts%2C+Serge+A.R.B.&rft.date=2013-02-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=34&rft.issue=2&rft.spage=396&rft.epage=406&rft_id=info:doi/10.1002%2Fhbm.21444&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_21444
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon