Gastrointestinal image stitching based on improved unsupervised algorithm
Image stitching is a traditional but challenging computer vision task. The goal is to stitch together multiple images with overlapping areas into a single, natural-looking, high-resolution image without ghosts or seams. This article aims to increase the field of view of gastroenteroscopy and reduce...
        Saved in:
      
    
          | Published in | PloS one Vol. 19; no. 9; p. e0310214 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Public Library of Science
    
        18.09.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1932-6203 1932-6203  | 
| DOI | 10.1371/journal.pone.0310214 | 
Cover
| Abstract | Image stitching is a traditional but challenging computer vision task. The goal is to stitch together multiple images with overlapping areas into a single, natural-looking, high-resolution image without ghosts or seams. This article aims to increase the field of view of gastroenteroscopy and reduce the missed detection rate. To this end, an improved depth framework based on unsupervised panoramic image stitching of the gastrointestinal tract is proposed. In addition, preprocessing for aberration correction of monocular endoscope images is introduced, and a C2f module is added to the image reconstruction network to improve the network’s ability to extract features. A comprehensive real image data set, GASE-Dataset, is proposed to establish an evaluation benchmark and training learning framework for unsupervised deep gastrointestinal image splicing. Experimental results show that the MSE, RMSE, PSNR, SSIM and RMSE_SW indicators are improved, while the splicing time remains within an acceptable range. Compared with traditional image stitching methods, the performance of this method is enhanced. In addition, improvements are proposed to address the problems of lack of annotated data, insufficient generalization ability and insufficient comprehensive performance in image stitching schemes based on supervised learning. These improvements provide valuable aids in gastrointestinal examination. | 
    
|---|---|
| AbstractList | Image stitching is a traditional but challenging computer vision task. The goal is to stitch together multiple images with overlapping areas into a single, natural-looking, high-resolution image without ghosts or seams. This article aims to increase the field of view of gastroenteroscopy and reduce the missed detection rate. To this end, an improved depth framework based on unsupervised panoramic image stitching of the gastrointestinal tract is proposed. In addition, preprocessing for aberration correction of monocular endoscope images is introduced, and a C2f module is added to the image reconstruction network to improve the network’s ability to extract features. A comprehensive real image data set, GASE-Dataset, is proposed to establish an evaluation benchmark and training learning framework for unsupervised deep gastrointestinal image splicing. Experimental results show that the MSE, RMSE, PSNR, SSIM and RMSE_SW indicators are improved, while the splicing time remains within an acceptable range. Compared with traditional image stitching methods, the performance of this method is enhanced. In addition, improvements are proposed to address the problems of lack of annotated data, insufficient generalization ability and insufficient comprehensive performance in image stitching schemes based on supervised learning. These improvements provide valuable aids in gastrointestinal examination. Image stitching is a traditional but challenging computer vision task. The goal is to stitch together multiple images with overlapping areas into a single, natural-looking, high-resolution image without ghosts or seams. This article aims to increase the field of view of gastroenteroscopy and reduce the missed detection rate. To this end, an improved depth framework based on unsupervised panoramic image stitching of the gastrointestinal tract is proposed. In addition, preprocessing for aberration correction of monocular endoscope images is introduced, and a C2f module is added to the image reconstruction network to improve the network's ability to extract features. A comprehensive real image data set, GASE-Dataset, is proposed to establish an evaluation benchmark and training learning framework for unsupervised deep gastrointestinal image splicing. Experimental results show that the MSE, RMSE, PSNR, SSIM and RMSE_SW indicators are improved, while the splicing time remains within an acceptable range. Compared with traditional image stitching methods, the performance of this method is enhanced. In addition, improvements are proposed to address the problems of lack of annotated data, insufficient generalization ability and insufficient comprehensive performance in image stitching schemes based on supervised learning. These improvements provide valuable aids in gastrointestinal examination.Image stitching is a traditional but challenging computer vision task. The goal is to stitch together multiple images with overlapping areas into a single, natural-looking, high-resolution image without ghosts or seams. This article aims to increase the field of view of gastroenteroscopy and reduce the missed detection rate. To this end, an improved depth framework based on unsupervised panoramic image stitching of the gastrointestinal tract is proposed. In addition, preprocessing for aberration correction of monocular endoscope images is introduced, and a C2f module is added to the image reconstruction network to improve the network's ability to extract features. A comprehensive real image data set, GASE-Dataset, is proposed to establish an evaluation benchmark and training learning framework for unsupervised deep gastrointestinal image splicing. Experimental results show that the MSE, RMSE, PSNR, SSIM and RMSE_SW indicators are improved, while the splicing time remains within an acceptable range. Compared with traditional image stitching methods, the performance of this method is enhanced. In addition, improvements are proposed to address the problems of lack of annotated data, insufficient generalization ability and insufficient comprehensive performance in image stitching schemes based on supervised learning. These improvements provide valuable aids in gastrointestinal examination.  | 
    
| Audience | Academic | 
    
| Author | Wu, Jinghua Zhang, Chenhao Yan, Rui Liu, Ran Tang, Rui Jiang, Yu Su, Houcheng  | 
    
| AuthorAffiliation | 2 College of Information Engineering, University of Macau, Macao, China 1 College of Information Engineering, Sichuan Agricultural University, Ya’an, China University of Science and Technology of China, CHINA  | 
    
| AuthorAffiliation_xml | – name: 2 College of Information Engineering, University of Macau, Macao, China – name: 1 College of Information Engineering, Sichuan Agricultural University, Ya’an, China – name: University of Science and Technology of China, CHINA  | 
    
| Author_xml | – sequence: 1 givenname: Rui surname: Yan fullname: Yan, Rui – sequence: 2 givenname: Yu surname: Jiang fullname: Jiang, Yu – sequence: 3 givenname: Chenhao surname: Zhang fullname: Zhang, Chenhao – sequence: 4 givenname: Rui surname: Tang fullname: Tang, Rui – sequence: 5 givenname: Ran surname: Liu fullname: Liu, Ran – sequence: 6 givenname: Jinghua orcidid: 0000-0001-7248-2019 surname: Wu fullname: Wu, Jinghua – sequence: 7 givenname: Houcheng surname: Su fullname: Su, Houcheng  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39292665$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkktv1DAUhSNURB_wDxCMhIRgMYMdJ06yQlUFZaRKlXhtLcd2EleOndrOQP89N5oUJqiLKgs7vt85N_c4p8mRdVYlyUuMNpgU-MONG73lZjPA8QYRjFKcPUlOcEXSNU0ROTrYHyenIdwglJOS0mfJManSKqU0P0m2lzxE77SNKkQNfivd81at4CWKTtt2VfOg5MpZKAze7WA_2jAOyu_0VOCmdV7Hrn-ePG24CerFvJ4lPz5_-n7xZX11fbm9OL9ai7ygcV2gusryrCZFXcsmJZTXBcmFJLKmspIllZKnOBWNJFmlRJmpPFcyraQoapRmipwlr_e-g3GBzSkEBgFQmAjnGIh8T4x24He_uDFs8DCWv2MYsSm8exmbwmNzeKD7ODuPda-kUDZ6_k_ruGbLitUda92OYZyBA63A4d3s4N3tCImyXgehjOFWuXH_kQXBZTU1e_Mf-vAoM9Vyo5i2jYPGYjJl5yWqoHFBCVCbByh4pOq1gBEbDecLwfuFAJiofseWjyGw7bevj2evfy7Ztwdsp7iJXXBmjNrZsARfHUb9N-P7HxOAbA8I70LwqnncFf4B9Zj31g | 
    
| Cites_doi | 10.3389/fnbot.2022.840594 10.1109/TMM.2017.2777461 10.1109/CVPR46437.2021.01201 10.1016/j.jvcir.2020.102950 10.1109/TCSVT.2019.2897984 10.1109/CVPR46437.2021.00628 10.1016/j.gie.2008.10.009 10.1007/11744023_32 10.1111/j.1572-0241.2002.07128.x 10.1109/TIP.2021.3092828 10.1109/ACCESS.2022.3150862 10.3389/fbioe.2021.696251 10.1109/TIP.2020.2964523 10.1109/CVPR52688.2022.00565 10.1145/3581783.3612298 10.1109/TIP.2021.3061283 10.1007/978-3-319-46475-6_43 10.1109/CVPR.2016.90 10.1007/978-3-319-24574-4_28 10.1109/CVPR.2013.303 10.1109/TPAMI.1986.4767851 10.1016/S0734-189X(88)80033-1 10.1023/B:VISI.0000029664.99615.94 10.1109/CVPR.2005.177 10.1016/j.clinup.2009.03.001 10.1109/ICCV51070.2023.00680 10.1016/j.gie.2010.12.027 10.1038/s41395-018-0268-4 10.1117/12.839027  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright: © 2024 Yan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2024 Public Library of Science 2024 Yan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Yan et al 2024 Yan et al 2024 Yan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: Copyright: © 2024 Yan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2024 Public Library of Science – notice: 2024 Yan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Yan et al 2024 Yan et al – notice: 2024 Yan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1371/journal.pone.0310214 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale - Opposing Viewpoints in Context Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database (Proquest) Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Agricultural Science Database  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) | 
    
| DocumentTitleAlternate | Gastrointestinal image stitching based on improved unsupervised algorithm | 
    
| EISSN | 1932-6203 | 
    
| ExternalDocumentID | 3106665151 10.1371/journal.pone.0310214 PMC11410269 A809114763 39292665 10_1371_journal_pone_0310214  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | China | 
    
| GeographicLocations_xml | – name: China | 
    
| GrantInformation_xml | – fundername: ; grantid: S202310626005  | 
    
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c576t-70b9454b37bbdf236ab735cd3db6d9d86dda212cfd349ec84e55ed29dc7b024e3 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1932-6203 | 
    
| IngestDate | Fri Dec 20 00:34:35 EST 2024 Sun Oct 26 03:54:12 EDT 2025 Tue Sep 30 17:07:45 EDT 2025 Thu Oct 02 08:05:06 EDT 2025 Tue Oct 07 07:52:24 EDT 2025 Mon Oct 20 22:50:05 EDT 2025 Mon Oct 20 16:59:00 EDT 2025 Thu Oct 16 15:52:04 EDT 2025 Thu Oct 16 15:51:53 EDT 2025 Thu Jul 17 05:59:49 EDT 2025 Wed Feb 19 02:10:14 EST 2025 Wed Oct 01 03:59:37 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 9 | 
    
| Language | English | 
    
| License | Copyright: © 2024 Yan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c576t-70b9454b37bbdf236ab735cd3db6d9d86dda212cfd349ec84e55ed29dc7b024e3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist.  | 
    
| ORCID | 0000-0001-7248-2019 | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0310214 | 
    
| PMID | 39292665 | 
    
| PQID | 3106665151 | 
    
| PQPubID | 1436336 | 
    
| PageCount | e0310214 | 
    
| ParticipantIDs | plos_journals_3106665151 unpaywall_primary_10_1371_journal_pone_0310214 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11410269 proquest_miscellaneous_3106731894 proquest_journals_3106665151 gale_infotracmisc_A809114763 gale_infotracacademiconefile_A809114763 gale_incontextgauss_ISR_A809114763 gale_incontextgauss_IOV_A809114763 gale_healthsolutions_A809114763 pubmed_primary_39292665 crossref_primary_10_1371_journal_pone_0310214  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-09-18 | 
    
| PublicationDateYYYYMMDD | 2024-09-18 | 
    
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-18 day: 18  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA  | 
    
| PublicationTitle | PloS one | 
    
| PublicationTitleAlternate | PLoS One | 
    
| PublicationYear | 2024 | 
    
| Publisher | Public Library of Science | 
    
| Publisher_xml | – name: Public Library of Science | 
    
| References | K Liao (pone.0310214.ref019) 2019; 30 pone.0310214.ref032 L Nie (pone.0310214.ref014) 2020; 73 K Liao (pone.0310214.ref020) 2020; 29 G Jocher (pone.0310214.ref030) 2021 JK Ruffle (pone.0310214.ref005) 2019; 114 J Illingworth (pone.0310214.ref023) 1988; 44 L Nie (pone.0310214.ref025) 2021; 30 Y Liu (pone.0310214.ref010) 2022; 16 G Postic (pone.0310214.ref002) 2002; 97 pone.0310214.ref012 P Zhang (pone.0310214.ref031) 2022; 10 pone.0310214.ref011 pone.0310214.ref033 pone.0310214.ref013 pone.0310214.ref016 pone.0310214.ref015 MK Hasan (pone.0310214.ref003) 2009; 16 pone.0310214.ref018 H Borgli (pone.0310214.ref035) 2020; 7 pone.0310214.ref017 J Canny (pone.0310214.ref024) 1986 R Hartley (pone.0310214.ref026) 2003 pone.0310214.ref021 DG Lowe (pone.0310214.ref007) 2004; 60 J Li (pone.0310214.ref034) 2017; 20 DA Joseph (pone.0310214.ref001) 2011; 73 pone.0310214.ref009 pone.0310214.ref008 K Liao (pone.0310214.ref022) 2021; 30 FA Farraye (pone.0310214.ref004) 2009; 69 H Su (pone.0310214.ref006) 2021; 9 pone.0310214.ref027 pone.0310214.ref029 pone.0310214.ref028  | 
    
| References_xml | – volume: 16 start-page: 840594 year: 2022 ident: pone.0310214.ref010 article-title: Improved feature point pair purification algorithm based on SIFT during endoscope image stitching publication-title: Frontiers in Neurorobotics doi: 10.3389/fnbot.2022.840594 – volume: 20 start-page: 1672 issue: 7 year: 2017 ident: pone.0310214.ref034 article-title: Parallax-tolerant image stitching based on robust elastic warping publication-title: IEEE Transactions on multimedia doi: 10.1109/TMM.2017.2777461 – ident: pone.0310214.ref033 doi: 10.1109/CVPR46437.2021.01201 – volume: 73 start-page: 102950 year: 2020 ident: pone.0310214.ref014 article-title: A view-free image stitching network based on global homography publication-title: Journal of Visual Communication and Image Representation doi: 10.1016/j.jvcir.2020.102950 – volume: 30 start-page: 725 issue: 3 year: 2019 ident: pone.0310214.ref019 article-title: DR-GAN: Automatic radial distortion recpngication using conditional GAN in real-time publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2019.2897984 – ident: pone.0310214.ref021 doi: 10.1109/CVPR46437.2021.00628 – volume: 69 start-page: 393 issue: 3 year: 2009 ident: pone.0310214.ref004 article-title: Update on CT colonography publication-title: Gastrointestinal endoscopy doi: 10.1016/j.gie.2008.10.009 – ident: pone.0310214.ref011 doi: 10.1007/11744023_32 – ident: pone.0310214.ref032 – volume: 97 start-page: 3182 issue: 12 year: 2002 ident: pone.0310214.ref002 article-title: Colonoscopic miss rates determined by direct comparison of colonoscopy with colon resection specimens publication-title: Official journal of the American College of Gastroenterology| ACG doi: 10.1111/j.1572-0241.2002.07128.x – volume: 30 start-page: 6184 year: 2021 ident: pone.0310214.ref025 article-title: Unsupervised deep image stitching: Reconstructing stitched features to images publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2021.3092828 – volume-title: Multiple view geometry in computer vision year: 2003 ident: pone.0310214.ref026 – volume: 10 start-page: 31740 year: 2022 ident: pone.0310214.ref031 article-title: Efficient lightweight attention network for face recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3150862 – volume: 9 start-page: 696251 year: 2021 ident: pone.0310214.ref006 article-title: MBFFNet: multi-branch feature fusion network for colonoscopy publication-title: Frontiers in Bioengineering and Biotechnology doi: 10.3389/fbioe.2021.696251 – volume: 29 start-page: 3707 year: 2020 ident: pone.0310214.ref020 article-title: Model-free distortion recpngication framework bridged by distortion distribution map publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2020.2964523 – ident: pone.0310214.ref015 – ident: pone.0310214.ref016 doi: 10.1109/CVPR52688.2022.00565 – ident: pone.0310214.ref018 doi: 10.1145/3581783.3612298 – volume: 30 start-page: 3362 year: 2021 ident: pone.0310214.ref022 article-title: A deep ordinal distortion estimation approach for distortion recpngication publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2021.3061283 – ident: pone.0310214.ref028 doi: 10.1007/978-3-319-46475-6_43 – ident: pone.0310214.ref029 doi: 10.1109/CVPR.2016.90 – ident: pone.0310214.ref027 doi: 10.1007/978-3-319-24574-4_28 – ident: pone.0310214.ref013 doi: 10.1109/CVPR.2013.303 – start-page: 679 issue: 6 year: 1986 ident: pone.0310214.ref024 article-title: A computational approach to edge detection publication-title: IEEE Transactions on pattern analysis and machine intelligence doi: 10.1109/TPAMI.1986.4767851 – volume: 44 start-page: 87 issue: 1 year: 1988 ident: pone.0310214.ref023 article-title: A survey of the Hough transform publication-title: Computer vision, graphics, and image processing doi: 10.1016/S0734-189X(88)80033-1 – volume: 7 start-page: 283 issue: 1 year: 2020 ident: pone.0310214.ref035 article-title: HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy publication-title: Scienpngic Data – volume: 60 start-page: 91 year: 2004 ident: pone.0310214.ref007 article-title: Distinctive image features from scale-invariant keypoints publication-title: International journal of computer vision doi: 10.1023/B:VISI.0000029664.99615.94 – ident: pone.0310214.ref008 doi: 10.1109/CVPR.2005.177 – ident: pone.0310214.ref009 – volume: 16 start-page: 1 issue: 4 year: 2009 ident: pone.0310214.ref003 article-title: Image-enhanced endoscopy publication-title: Clinical Update doi: 10.1016/j.clinup.2009.03.001 – year: 2021 ident: pone.0310214.ref030 article-title: ultralytics/yolov5: v6. 0-YOLOv5n’Nano’models, Roboflow integration, TensorFlow export, OpenCV DNN support publication-title: Zenodo – ident: pone.0310214.ref017 doi: 10.1109/ICCV51070.2023.00680 – volume: 73 start-page: 429 issue: 3 year: 2011 ident: pone.0310214.ref001 article-title: The Colorectal Cancer Control Program: partnering to increase population level screening publication-title: Gastrointestinal endoscopy doi: 10.1016/j.gie.2010.12.027 – volume: 114 start-page: 422 issue: 3 year: 2019 ident: pone.0310214.ref005 article-title: Arpngicial intelligence-assisted gastroenterology—promises and pitfalls publication-title: Official journal of the American College of Gastroenterology| ACG doi: 10.1038/s41395-018-0268-4 – ident: pone.0310214.ref012 doi: 10.1117/12.839027  | 
    
| SSID | ssj0053866 | 
    
| Score | 2.4609556 | 
    
| Snippet | Image stitching is a traditional but challenging computer vision task. The goal is to stitch together multiple images with overlapping areas into a single,... | 
    
| SourceID | plos unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database  | 
    
| StartPage | e0310214 | 
    
| SubjectTerms | Accuracy Algorithms Analysis Biology and Life Sciences Care and treatment Colonoscopy Computer and Information Sciences Computer vision Datasets Deep Learning Diagnosis Diagnostic imaging Endoscopes Endoscopy Endoscopy, Gastrointestinal - methods Evaluation Field of view Gastrointestinal cancer Gastrointestinal system Gastrointestinal tract Gastrointestinal Tract - diagnostic imaging Humans Image enhancement Image processing Image Processing, Computer-Assisted - methods Image reconstruction Image resolution Labeling Machine vision Medical imaging Medical imaging equipment Medical screening Medicine and Health Sciences Physical Sciences Polyps Research and Analysis Methods Stitching Stomach cancer Supervised learning Tumors Unsupervised learning Unsupervised Machine Learning  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb5RAFJ_U7UEvxvrV1apoTNQD28IMDHMwpprW1sNqqjW9kflsm2wBC8T43_seDCixMb1t8h5k-c37Gnjze4S8TCEp8ETj1AAmYIPieChZxsJUS6MYlgSuY_tcpgfH7NNJcrJGlsNZGGyrHGJiF6hNqfEd-TaUIVBpQ_aN3lU_QpwahV9XhxEa0o9WMG87irEbZD1GZqwZWX-_t_xyNMRm8O409QfoKI-2_XotqrKwCyTJjCM2SVA-TM-qVVlfVYP-20p5sy0q-eunXK3-ylP7d8htX2AGu71FbJA1W9wlG96F6-C155l-c48cfpR1c1kiYQT4OV50fgHRJcDuga7DMsAUZ4KyAAG-eoDfbVG3FYYXFMjVKSDUnF3cJ8f7e98-HIR-skKoYX_RhHxHCZYwRblSxsU0lYrTRBtqVGqEyVJjJAConaFMWJ0xmyTWxMJoriCpW_qAzArAbJMEzOhYCeFksuOYoCpzcFPqwNVVxK0UcxIOcOZVT6CRd1_ROGw8ekhyhD_38M_JM8Q874-Bjv6X72ZQ2UQMwuGcvOg0kL2iwPaYU9nWdX74-fs1lL4eTZReeSVXwupp6Y8kwN9BVqyJ5tZEE3xQT8SbaCHDA9X5H2uFKweruVr8fBTjTbHlrbBl2-twiLgCIHnYG9kIIBa1UFklc5JNzG9UQNLwqaQ4P-vIwyNs7I1TWJfFaKnXWphH_3-Qx-RWDKaBrTRRtkVmzWVrn0C91qin3gl_AxYeQdo priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9gAXoLy6UCAgJOCQsImdOD6uEKXlUBCwqJwiv9Ku2CbRJhGCX89M4g2NWqTlFmnGUTwez3yOx58JeZFAUuCxxlsDmIAFSs59yVLmJ1oaxRAS5B3b53FyuGAfTuKTvzzbF7fvKQ_fOIMGVVnYAFksI7y0eieJAXhPyM7i-NP8e79vHPlJNKPucNy_mo6SjwvBk2pV1lfhy8tlktfbopK_fsrV6kIOOrjVH-6uO-pCLD35EbSNCvTvy8SO23TvNrnpsKg3751nl1yzxR2y62Z77b1ylNSv75Kj97Ju1iVyS0BIwEbLcwhEHhYadMWYHmZD45UFCPAvBTy3Rd1WGIlQIFen5XrZnJ3fI4uDd1_fHvruEgZfw1Kk8flMCRYzRblSJo9oIhWnsTbUqMQIkybGSEh_OjeUCatTZuPYmkgYzRXkf0vvk0kB3dsjHjM6UkLkMp7lTFCV5vBSmkNUUCG3UkyJvxmdrOq5NrJuw43DGqU3SYaWypylpuQpDmHWnxgdpmo2TwEEhQwi55Q87zSQ6KLASppT2dZ1dvTx2xZKXz6PlF46pbwEZ9DSnV6Az0ECrZHm_kgTpqseiffQ4TYdqjPoCywhAVaG0HLjhFeLnw1ifClWxxW2bHsdDsFZgEke9D47GBDxL4CweErSkTcPCsgvPpYUy7OOZzzEGuAogXEJBsffamAe_m-DR-RGBM6CdThhuk8mzbq1jwHsNeqJm-R_AAIuU08 priority: 102 providerName: Unpaywall  | 
    
| Title | Gastrointestinal image stitching based on improved unsupervised algorithm | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39292665 https://www.proquest.com/docview/3106665151 https://www.proquest.com/docview/3106731894 https://pubmed.ncbi.nlm.nih.gov/PMC11410269 http://doi.org/10.1371/journal.pone.0310214 http://dx.doi.org/10.1371/journal.pone.0310214  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 19 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db5RAcFOvD_pirF89rScaE_WBywELyz4Ycza9tiaeTfXM-UT2A9pLroAHRPvvnYGFSDxNXwhhZjcwO5_s7AwhrwIwCsxX2DWAcghQEmYLGlI7UEJLii5BUlf7nAcnC_px6S93SNuz1RCw2BraYT-pxWY9_vXj-j0I_Lu6awNz2kHjPEvjMZa6dLGz9S7YKo7NHD7Rbl8BpLvevUSvxQ7ciWcO0_1rlp6xMip7kK-zYps_-nda5e0qzcX1T7Fe_2GzZvfIXeNsWtOGO_bITpzeJ3tGnAvrjak5_fYBOT0WRbnJsHgEyDwOWl2BprEwk6DOtrTQ3GkrSwGAvyHgvkqLKkdVgwCxvsg2q_Ly6iFZzI6-Hp7YpsuCrSDWKG02kZz6VHpMSp24XiAk83ylPS0DzXUYaC3AvqlEe5THKqSx78fa5VoxCQY-9h6RQQo02ycW1cqVnCfCnySUezJMYFIvAbGXDosFHxK7JWeUN8U0onpHjUEQ0pAkQvJHhvxD8hxpHjVHQjtZjKYheDkOBdU4JC9rDKxkkWKqzIWoiiI6_fztBkhfzntIrw1SksHqKWGOJ8DrYIWsHuZBDxPkUfXA-8gh7QcVEXwLxIjgNzowsuWa7eAXHRgnxfS3NM6qBoeB9uVAkscNk3UERAcXvCx_SMIe-3UIWEC8D0lXl3UhcQeTfN0A1mXcceqNFubJ_0nwlNxxgTUwrcYJD8ig3FTxM_DdSjkit9iSwTU8dPA6Ox6R3Q9H87PzUf03ZFSLKzxbzM-m338DOGNJjg | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb5VAEN_U56FejPWrT6tFo1EPvBZ2YdmDMY1a37O1Jto274b7AW2TV8ACafpP-Tc6AwtKbEwvvZHMsIHZmd_8FmZnCXkRQlLggcZTA5iABUrKXcki5oZaGsWQEqRNt8-9cHrAPs-D-RL51e2FwbLKDhMboDa5xm_kG0BDgGlD9vXeFT9dPDUK_652R2i0brGTXJzDkq18O_sA8_vS97c_7r-fuvZUAVcDt65cvqkEC5iiXCmT-jSUitNAG2pUaISJQmMk4LlODWUi0RFLgiAxvjCaK0hoCYVxb5CbjAKWQPzweb_AA-wIQ7s9j3Jvw3rDpMizZIItOH2PDdKfTQKjYpGXlzHcfws1l-uskBfncrH4Kwtu3yG3LX11tlp_WyFLSXaXrFiAKJ3Xtov1m3tk9kmW1VmO7SgARfCmk1PALgdrE5r6TQcTqHHyDAT4YQOu66ysCwQvFMjFEdi_Oj69Tw6uxcIPyCgDm60ShxntKyFSGWymTFAVpTAoTQFIlMcTKcbE7cwZF217jrj5R8dhWdOaJEbzx9b8Y7KONo_bTaZ9dMdbEfAmjwHYjsnzRgN7Y2RYfHMk67KMZ18Pr6D0_dtA6ZVVSnOYPS3thgd4HOy5NdBcG2hChOuBeBU9pHuhMv4TC3Bn5zWXi5_1YhwUC-qyJK9bHQ54LsAkD1sn6w2IlBl4WzAm0cD9egVsST6UZCfHTWtyD8uG_RDmZdJ76pUm5tH_X2SdLE_3v-zGu7O9ncfklg9ugkU7XrRGRtVZnTwBZlipp004OuTHdcf_b1bBeeE | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db5RAEN_UM1FfjPWrp9Wi0agP3BV2YdkHYxrr2bOmGrXm3nA_oG1yBSyQpv-af50zsKDExvSlbyQzbGB25je_hdlZQp6FkBR4oPHUACZggZJyV7KIuaGWRjGkBGnT7XMv3NlnHxbBYoX86vbCYFllh4kNUJtc4zfyKdAQYNqQfb1passiPm_P3hQ_XTxBCv-0dsdptC6ym5ydwvKtfD3fhrl-7vuzd9_e7rj2hAFXA8-uXL6pBAuYolwpk_o0lIrTQBtqVGiEiUJjJGC7Tg1lItERS4IgMb4wmitIbgmFca-Qq5xSgeWEfNEv9gBHwtBu1aPcm1rPmBR5lkywHafvsUEqtAlhVCzz8jy2-2_R5vU6K-TZqVwu_8qIs1vkpqWyzlbre6tkJcluk1ULFqXz0na0fnWHzN_LsjrJsTUFIAredHQMOOZgnUJTy-lgMjVOnoEAP3LAdZ2VdYFAhgK5PAD7V4fHd8n-pVj4HhllYLM14jCjfSVEKoPNlAmqohQGpSmAivJ4IsWYuJ0546Jt1RE3_-s4LHFak8Ro_tiaf0w20OZxu-G0j_R4KwIO5TEA3jF52mhgn4wMPe5A1mUZzz99v4DS1y8DpRdWKc1h9rS0mx_gcbD_1kBzfaAJ0a4H4jX0kO6FyvhPXMCdndecL37Si3FQLK7LkrxudThguwCT3G-drDcg0mfgcMGYRAP36xWwPflQkh0dNm3KPSwh9kOYl0nvqReamAf_f5ENcg0iP_4439t9SG744CVYv-NF62RUndTJIyCJlXrcRKNDflx2-P8GAAh-JA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9gAXoLy6UCAgJOCQsImdOD6uEKXlUBCwqJwiv9Ku2CbRJhGCX89M4g2NWqTlFmnGUTwez3yOx58JeZFAUuCxxlsDmIAFSs59yVLmJ1oaxRAS5B3b53FyuGAfTuKTvzzbF7fvKQ_fOIMGVVnYAFksI7y0eieJAXhPyM7i-NP8e79vHPlJNKPucNy_mo6SjwvBk2pV1lfhy8tlktfbopK_fsrV6kIOOrjVH-6uO-pCLD35EbSNCvTvy8SO23TvNrnpsKg3751nl1yzxR2y62Z77b1ylNSv75Kj97Ju1iVyS0BIwEbLcwhEHhYadMWYHmZD45UFCPAvBTy3Rd1WGIlQIFen5XrZnJ3fI4uDd1_fHvruEgZfw1Kk8flMCRYzRblSJo9oIhWnsTbUqMQIkybGSEh_OjeUCatTZuPYmkgYzRXkf0vvk0kB3dsjHjM6UkLkMp7lTFCV5vBSmkNUUCG3UkyJvxmdrOq5NrJuw43DGqU3SYaWypylpuQpDmHWnxgdpmo2TwEEhQwi55Q87zSQ6KLASppT2dZ1dvTx2xZKXz6PlF46pbwEZ9DSnV6Az0ECrZHm_kgTpqseiffQ4TYdqjPoCywhAVaG0HLjhFeLnw1ifClWxxW2bHsdDsFZgEke9D47GBDxL4CweErSkTcPCsgvPpYUy7OOZzzEGuAogXEJBsffamAe_m-DR-RGBM6CdThhuk8mzbq1jwHsNeqJm-R_AAIuU08 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gastrointestinal+image+stitching+based+on+improved+unsupervised+algorithm&rft.jtitle=PloS+one&rft.au=Yan%2C+Rui&rft.au=Jiang%2C+Yu&rft.au=Zhang%2C+Chenhao&rft.au=Tang%2C+Rui&rft.date=2024-09-18&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=9&rft.spage=e0310214&rft_id=info:doi/10.1371%2Fjournal.pone.0310214&rft.externalDocID=A809114763 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |