Gastrointestinal image stitching based on improved unsupervised algorithm

Image stitching is a traditional but challenging computer vision task. The goal is to stitch together multiple images with overlapping areas into a single, natural-looking, high-resolution image without ghosts or seams. This article aims to increase the field of view of gastroenteroscopy and reduce...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 9; p. e0310214
Main Authors Yan, Rui, Jiang, Yu, Zhang, Chenhao, Tang, Rui, Liu, Ran, Wu, Jinghua, Su, Houcheng
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 18.09.2024
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0310214

Cover

More Information
Summary:Image stitching is a traditional but challenging computer vision task. The goal is to stitch together multiple images with overlapping areas into a single, natural-looking, high-resolution image without ghosts or seams. This article aims to increase the field of view of gastroenteroscopy and reduce the missed detection rate. To this end, an improved depth framework based on unsupervised panoramic image stitching of the gastrointestinal tract is proposed. In addition, preprocessing for aberration correction of monocular endoscope images is introduced, and a C2f module is added to the image reconstruction network to improve the network’s ability to extract features. A comprehensive real image data set, GASE-Dataset, is proposed to establish an evaluation benchmark and training learning framework for unsupervised deep gastrointestinal image splicing. Experimental results show that the MSE, RMSE, PSNR, SSIM and RMSE_SW indicators are improved, while the splicing time remains within an acceptable range. Compared with traditional image stitching methods, the performance of this method is enhanced. In addition, improvements are proposed to address the problems of lack of annotated data, insufficient generalization ability and insufficient comprehensive performance in image stitching schemes based on supervised learning. These improvements provide valuable aids in gastrointestinal examination.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0310214