Precomputed low-frequency lighting in cinematic volume rendering

Cinematic Rendering (CR) employs physical models such as ray tracing and global illumination to simulate real-world light phenomena, producing high-quality images with rich details. In the medical field, CR can significantly aid doctors in accurate diagnosis and preoperative planning. However, docto...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 10; p. e0312339
Main Authors Yuan, Yuliang, Yang, Jinzhu, Sun, Qi, Huang, Yan
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 21.10.2024
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0312339

Cover

More Information
Summary:Cinematic Rendering (CR) employs physical models such as ray tracing and global illumination to simulate real-world light phenomena, producing high-quality images with rich details. In the medical field, CR can significantly aid doctors in accurate diagnosis and preoperative planning. However, doctors require efficient real-time rendering when using CR, which presents a challenge due to the substantial computing resources demanded by CR’s ray tracing and global illumination models. Precomputed lighting can enhance the efficiency of real-time rendering by freezing certain scene variables. Typically, precomputed methods freeze geometry and materials. However, since the physical rendering of medical images relies on volume data rendering of transfer functions, the CR algorithm cannot utilize precomputed methods directly. To improve the rendering efficiency of the CR algorithm, we propose a precomputed low-frequency lighting method. By simulating the lighting pattern of shadowless surgical lamps, we adopt a spherical distribution of multiple light sources, with each source capable of illuminating the entire volume of data. Under the influence of these large-area multi-light sources, the precomputed lighting adheres to physical principles, resulting in shadow-free and uniformly distributed illumination. We integrated this precomputed method into the ray-casting algorithm, creating an accelerated CR algorithm that achieves more than twice the rendering efficiency of traditional CR rendering.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0312339