基于线性Bregman迭代类的多量测向量ISAR成像算法研究

为实现目标回波数据稀疏时的快速稳健ISAR成像,该文在构建多量测向量ISAR回波模型的基础上,利用压缩感知(CompressiveSensing,CS)中的线性Bregman迭代理论,研究了基于线Bregman迭代类的多量测向量快速ISAR成像算法。该类成像算法共包括4种算法,首先给出此类算法的整体迭代构架、应用条件以及4种方法之间的联系;其次对此类算法的重构性能、收敛性、抗噪性以及正则化参数选择等方面进行全面的比较分析;最后基于实测数据进行ISAR成像,实验结果表明,与传统单量测向量ISAR成像算法相比,该文算法在低信噪比条件下可在更短的成像时间内获得更高的成像质量。...

Full description

Saved in:
Bibliographic Details
Published in雷达学报 Vol. 5; no. 4; pp. 389 - 401
Main Author 陈文峰 李少东 杨军 马晓岩
Format Journal Article
LanguageChinese
Published 空军预警学院武汉 430019 2016
Subjects
Online AccessGet full text
ISSN2095-283X
DOI10.12000/JR16057

Cover

More Information
Summary:为实现目标回波数据稀疏时的快速稳健ISAR成像,该文在构建多量测向量ISAR回波模型的基础上,利用压缩感知(CompressiveSensing,CS)中的线性Bregman迭代理论,研究了基于线Bregman迭代类的多量测向量快速ISAR成像算法。该类成像算法共包括4种算法,首先给出此类算法的整体迭代构架、应用条件以及4种方法之间的联系;其次对此类算法的重构性能、收敛性、抗噪性以及正则化参数选择等方面进行全面的比较分析;最后基于实测数据进行ISAR成像,实验结果表明,与传统单量测向量ISAR成像算法相比,该文算法在低信噪比条件下可在更短的成像时间内获得更高的成像质量。
Bibliography:This study aims to enable steady and speedy acquisition of Inverse Synthetic Aperture Radar (ISAR) images using sparse echo data. To this end, a Multiple Measurement Vectors (MMV) ISAR echo model is studied. This model is then combined with the Compressive Sensing (CS) theory to realize a class of MMV fast ISAR imaging algorithms based on the Linearized Bregman Iteration (LBI). The algorithms involve four methods, and the iterative framework, application conditions, and relationship between the four methods are given. The reconstructed performance of the methods, convergence, anti-noise, and selection of regularization parameters are then compared and analyzed comprehensively. Finally, the experimental results are compared with the traditional Single Measurement Vector (SMV) ISAR imaging algorithm; this comparison shows that the proposed algorithm delivers an improved imaging quality with a low Signal-to-Noise Ratio (SNR).
10-1030/TN
Compressive Sensing (CS); Inverse Synthetic Aperture Radar (ISAR); Multiple Me
ISSN:2095-283X
DOI:10.12000/JR16057