A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets

A smartphone-based colorimetric reader (SBCR) was developed using a Samsung Galaxy SIII mini, a gadget (iPAD mini, iPAD4 or iPhone 5s), integrated with a custom-made dark hood and base holder assembly. The smartphone equipped with a back camera (5 megapixels resolution) was used for colorimetric ima...

Full description

Saved in:
Bibliographic Details
Published inBiosensors & bioelectronics Vol. 67; pp. 248 - 255
Main Authors Vashist, Sandeep Kumar, van Oordt, Thomas, Schneider, E. Marion, Zengerle, Roland, von Stetten, Felix, Luong, John H.T.
Format Journal Article
LanguageEnglish
Published England 15.05.2015
Subjects
Online AccessGet full text
ISSN0956-5663
1873-4235
1873-4235
DOI10.1016/j.bios.2014.08.027

Cover

More Information
Summary:A smartphone-based colorimetric reader (SBCR) was developed using a Samsung Galaxy SIII mini, a gadget (iPAD mini, iPAD4 or iPhone 5s), integrated with a custom-made dark hood and base holder assembly. The smartphone equipped with a back camera (5 megapixels resolution) was used for colorimetric imaging via the hood and base-holder assembly. A 96- or 24-well microtiter plate (MTP) was positioned on the gadget's screensaver that provides white light-based bottom illumination only in the specific regions corresponding to the bottom of MTP's wells. The pixel intensity of the captured images was determined by an image processing algorithm. The developed SBCR was evaluated and compared with a commercial MTP reader (MTPR) for three model assays: our recently developed human C-reactive protein sandwich enzyme-linked immunosorbent assay (ELISA), horseradish peroxidase direct ELISA, and bicinchoninic acid protein estimation assay. SBCR had the same precision, dynamic range, detection limit and sensitivity as MTPR for all three assays. With advanced microfabrication and data processing, SBCR will become more compact, lighter, inexpensive and enriched with more features. Therefore, SBCR with a remarkable computing power could be an ideal point-of-care (POC) colorimetric detection device for the next-generation of cost-effective POC diagnostics, immunoassays and diversified bioanalytical applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0956-5663
1873-4235
1873-4235
DOI:10.1016/j.bios.2014.08.027