Functional genetics reveals the contribution of delta opioid receptor to type 2 diabetes and beta-cell function
Functional genetics has identified drug targets for metabolic disorders. Opioid use impacts metabolic homeostasis, although mechanisms remain elusive. Here, we explore the OPRD1 gene (encoding delta opioid receptor, DOP) to understand its impact on type 2 diabetes. Large-scale sequencing of OPRD1 an...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 6627 - 12 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.08.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-024-51004-6 |
Cover
Summary: | Functional genetics has identified drug targets for metabolic disorders. Opioid use impacts metabolic homeostasis, although mechanisms remain elusive. Here, we explore the
OPRD1
gene (encoding delta opioid receptor, DOP) to understand its impact on type 2 diabetes. Large-scale sequencing of
OPRD1
and in vitro analysis reveal that loss-of-function variants are associated with higher adiposity and lower hyperglycemia risk, whereas gain-of-function variants are associated with lower adiposity and higher type 2 diabetes risk. These findings align with studies of opium addicts.
OPRD1
is expressed in human islets and beta cells, with decreased expression under type 2 diabetes conditions. DOP inhibition by an antagonist enhances insulin secretion from human beta cells and islets. RNA-sequencing identifies pathways regulated by DOP antagonism, including nerve growth factor, circadian clock, and nuclear receptor pathways. Our study highlights DOP as a key player between opioids and metabolic homeostasis, suggesting its potential as a therapeutic target for type 2 diabetes.
Opioid use impacts metabolic homeostasis, although the mechanisms remain elusive. Here, the authors explore the OPRD1 gene (encoding the delta opioid receptor, DOP) to understand its impact on type 2 diabetes and highlight DOP as a key player between opioids and metabolic homeostasis. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PMCID: PMC11300616 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-024-51004-6 |