Recycling diagnostic MRI for empowering brain morphometric research – Critical & practical assessment on learning-based image super-resolution
Preliminary studies have shown the feasibility of deep learning (DL)-based super-resolution (SR) technique for reconstructing thick-slice/gap diagnostic MR images into high-resolution isotropic data, which would be of great significance for brain research field if the vast amount of diagnostic MRI d...
Saved in:
| Published in | NeuroImage (Orlando, Fla.) Vol. 245; p. 118687 |
|---|---|
| Main Authors | , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
15.12.2021
Elsevier Limited Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-8119 1095-9572 1095-9572 |
| DOI | 10.1016/j.neuroimage.2021.118687 |
Cover
| Abstract | Preliminary studies have shown the feasibility of deep learning (DL)-based super-resolution (SR) technique for reconstructing thick-slice/gap diagnostic MR images into high-resolution isotropic data, which would be of great significance for brain research field if the vast amount of diagnostic MRI data could be successively put into brain morphometric study. However, less evidence has addressed the practicability of the strategy, because lack of a large-sample available real data for constructing DL model. In this work, we employed a large cohort (n = 2052) of peculiar data with both low through-plane resolution diagnostic and high-resolution isotropic brain MR images from identical subjects. By leveraging a series of SR approaches, including a proposed novel DL algorithm of Structure Constrained Super Resolution Network (SCSRN), the diagnostic images were transformed to high-resolution isotropic data to meet the criteria of brain research in voxel-based and surface-based morphometric analyses. We comprehensively assessed image quality and the practicability of the reconstructed data in a variety of morphometric analysis scenarios. We further compared the performance of SR approaches to the ground truth high-resolution isotropic data. The results showed (i) DL-based SR algorithms generally improve the quality of diagnostic images and render morphometric analysis more accurate, especially, with the most superior performance of the novel approach of SCSRN. (ii) Accuracies vary across brain structures and methods, and (iii) performance increases were higher for voxel than for surface based approaches. This study supports that DL-based image super-resolution potentially recycle huge amount of routine diagnostic brain MRI deposited in sleeping state, and turning them into useful data for neurometric research. |
|---|---|
| AbstractList | Preliminary studies have shown the feasibility of deep learning (DL)-based super-resolution (SR) technique for reconstructing thick-slice/gap diagnostic MR images into high-resolution isotropic data, which would be of great significance for brain research field if the vast amount of diagnostic MRI data could be successively put into brain morphometric study. However, less evidence has addressed the practicability of the strategy, because lack of a large-sample available real data for constructing DL model. In this work, we employed a large cohort (n = 2052) of peculiar data with both low through-plane resolution diagnostic and high-resolution isotropic brain MR images from identical subjects. By leveraging a series of SR approaches, including a proposed novel DL algorithm of Structure Constrained Super Resolution Network (SCSRN), the diagnostic images were transformed to high-resolution isotropic data to meet the criteria of brain research in voxel-based and surface-based morphometric analyses. We comprehensively assessed image quality and the practicability of the reconstructed data in a variety of morphometric analysis scenarios. We further compared the performance of SR approaches to the ground truth high-resolution isotropic data. The results showed (i) DL-based SR algorithms generally improve the quality of diagnostic images and render morphometric analysis more accurate, especially, with the most superior performance of the novel approach of SCSRN. (ii) Accuracies vary across brain structures and methods, and (iii) performance increases were higher for voxel than for surface based approaches. This study supports that DL-based image super-resolution potentially recycle huge amount of routine diagnostic brain MRI deposited in sleeping state, and turning them into useful data for neurometric research.Preliminary studies have shown the feasibility of deep learning (DL)-based super-resolution (SR) technique for reconstructing thick-slice/gap diagnostic MR images into high-resolution isotropic data, which would be of great significance for brain research field if the vast amount of diagnostic MRI data could be successively put into brain morphometric study. However, less evidence has addressed the practicability of the strategy, because lack of a large-sample available real data for constructing DL model. In this work, we employed a large cohort (n = 2052) of peculiar data with both low through-plane resolution diagnostic and high-resolution isotropic brain MR images from identical subjects. By leveraging a series of SR approaches, including a proposed novel DL algorithm of Structure Constrained Super Resolution Network (SCSRN), the diagnostic images were transformed to high-resolution isotropic data to meet the criteria of brain research in voxel-based and surface-based morphometric analyses. We comprehensively assessed image quality and the practicability of the reconstructed data in a variety of morphometric analysis scenarios. We further compared the performance of SR approaches to the ground truth high-resolution isotropic data. The results showed (i) DL-based SR algorithms generally improve the quality of diagnostic images and render morphometric analysis more accurate, especially, with the most superior performance of the novel approach of SCSRN. (ii) Accuracies vary across brain structures and methods, and (iii) performance increases were higher for voxel than for surface based approaches. This study supports that DL-based image super-resolution potentially recycle huge amount of routine diagnostic brain MRI deposited in sleeping state, and turning them into useful data for neurometric research. Preliminary studies have shown the feasibility of deep learning (DL)-based super-resolution (SR) technique for reconstructing thick-slice/gap diagnostic MR images into high-resolution isotropic data, which would be of great significance for brain research field if the vast amount of diagnostic MRI data could be successively put into brain morphometric study. However, less evidence has addressed the practicability of the strategy, because lack of a large-sample available real data for constructing DL model. In this work, we employed a large cohort (n = 2052) of peculiar data with both low through-plane resolution diagnostic and high-resolution isotropic brain MR images from identical subjects. By leveraging a series of SR approaches, including a proposed novel DL algorithm of Structure Constrained Super Resolution Network (SCSRN), the diagnostic images were transformed to high-resolution isotropic data to meet the criteria of brain research in voxel-based and surface-based morphometric analyses. We comprehensively assessed image quality and the practicability of the reconstructed data in a variety of morphometric analysis scenarios. We further compared the performance of SR approaches to the ground truth high-resolution isotropic data. The results showed (i) DL-based SR algorithms generally improve the quality of diagnostic images and render morphometric analysis more accurate, especially, with the most superior performance of the novel approach of SCSRN. (ii) Accuracies vary across brain structures and methods, and (iii) performance increases were higher for voxel than for surface based approaches. This study supports that DL-based image super-resolution potentially recycle huge amount of routine diagnostic brain MRI deposited in sleeping state, and turning them into useful data for neurometric research. Preliminary studies have shown the feasibility of deep learning (DL)-based super-resolution (SR) technique for reconstructing thick-slice/gap diagnostic MR images into high-resolution isotropic data, which would be of great significance for brain research field if the vast amount of diagnostic MRI data could be successively put into brain morphometric study. However, less evidence has addressed the practicability of the strategy, because lack of a large-sample available real data for constructing DL model. In this work, we employed a large cohort (n = 2052) of peculiar data with both low through-plane resolution diagnostic and high-resolution isotropic brain MR images from identical subjects. By leveraging a series of SR approaches, including a proposed novel DL algorithm of Structure Constrained Super Resolution Network (SCSRN), the diagnostic images were transformed to high-resolution isotropic data to meet the criteria of brain research in voxel-based and surface-based morphometric analyses. We comprehensively assessed image quality and the practicability of the reconstructed data in a variety of morphometric analysis scenarios. We further compared the performance of SR approaches to the ground truth high-resolution isotropic data. The results showed (i) DL-based SR algorithms generally improve the quality of diagnostic images and render morphometric analysis more accurate, especially, with the most superior performance of the novel approach of SCSRN. (ii) Accuracies vary across brain structures and methods, and (iii) performance increases were higher for voxel than for surface based approaches. This study supports that DL-based image super-resolution potentially recycle huge amount of routine diagnostic brain MRI deposited in sleeping state, and turning them into useful data for neurometric research. |
| ArticleNumber | 118687 |
| Author | Shi, Yinghuan Lu, Guangming Hao, Jingru Zhang, Qirui Xie, Xinyu Liu, Gaoping Xu, Qiang Shi, Feng He, Yichu Bernhardt, Boris C. Zhang, Zhiqiang Cao, Zehong Yang, Fang |
| Author_xml | – sequence: 1 givenname: Gaoping surname: Liu fullname: Liu, Gaoping organization: Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, #305 East Zhongshan Rd, Nanjing, Jiangsu 210002, China – sequence: 2 givenname: Zehong surname: Cao fullname: Cao, Zehong organization: Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China – sequence: 3 givenname: Qiang surname: Xu fullname: Xu, Qiang organization: Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, #305 East Zhongshan Rd, Nanjing, Jiangsu 210002, China – sequence: 4 givenname: Qirui surname: Zhang fullname: Zhang, Qirui organization: Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, #305 East Zhongshan Rd, Nanjing, Jiangsu 210002, China – sequence: 5 givenname: Fang surname: Yang fullname: Yang, Fang organization: Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China – sequence: 6 givenname: Xinyu surname: Xie fullname: Xie, Xinyu organization: Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, #305 East Zhongshan Rd, Nanjing, Jiangsu 210002, China – sequence: 7 givenname: Jingru surname: Hao fullname: Hao, Jingru organization: Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, #305 East Zhongshan Rd, Nanjing, Jiangsu 210002, China – sequence: 8 givenname: Yinghuan surname: Shi fullname: Shi, Yinghuan organization: Department of Computer Science and Technology, Nanjing University, Nanjing 210046, China – sequence: 9 givenname: Boris C. surname: Bernhardt fullname: Bernhardt, Boris C. organization: Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada – sequence: 10 givenname: Yichu surname: He fullname: He, Yichu organization: Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China – sequence: 11 givenname: Feng surname: Shi fullname: Shi, Feng email: feng.shi@uii-ai.com organization: Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China – sequence: 12 givenname: Guangming surname: Lu fullname: Lu, Guangming email: cjr.luguangming@vip.163.com organization: Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, #305 East Zhongshan Rd, Nanjing, Jiangsu 210002, China – sequence: 13 givenname: Zhiqiang surname: Zhang fullname: Zhang, Zhiqiang email: zhangzq2001@126.com organization: Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, #305 East Zhongshan Rd, Nanjing, Jiangsu 210002, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34732323$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkt2K1TAQx4usuB_6ChIQxJsem7ZpkxtxPfhxYEVY9DpM08nZHNukJq3LufMRBN_QJzHdriucq5VcZEj-82Nm_nOaHFlnMUkIzVY0o9XL3cri5J3pYYurPMvpilJe8fpBckIzwVLB6vxojlmRckrFcXIawi7LMkFL_ig5Lsq6yOM5SX5eotqrztgtaQ1srQujUeTj5YZo5wn2g7tGP_82HowlvfPDletx9FHlMSB4dUV-__hF1t7ETOjIczJ4UEsMIWAIPdqROEu6qLaRlTYQsCU31ZMwDejTiHLdNBpnHycPNXQBn9zeZ8mXd28_rz-kF5_eb9bnF6liNRvTXFRNpZkuihxFCZQ3AFBoBKaVaFpgoq3rQrSUaw2CxdlkvGS81qxtc96K4izZLNzWwU4OPlbj99KBkTcPzm8l-NhFh1JrVtVNpttG8VKhEBQV5sBLrbCuKUSWWFiTHWB_DV13B6SZnB2TO_nPMTk7JhfHYu6LJXfw7tuEYZS9CQq7Diy6KciciYIJkQsepc8OpDs3eRunJPOKspLTjM-qp7eqqemxvavkr-dR8GoRKO9C8KilMiPMsx-jx919SuYHgP_o9s2SitHa7wa9DMqgVdgaj2qMszf3gbw-gMwLPC_cV9zfD_EHnd8LtA |
| CitedBy_id | crossref_primary_10_1007_s00371_023_02938_3 crossref_primary_10_1002_hbm_26126 crossref_primary_10_1148_ryai_220061 crossref_primary_10_1016_j_ebiom_2023_104541 |
| Cites_doi | 10.1016/S0140-6736(03)14842-8 10.1002/mp.13717 10.1109/TIP.2010.2050625 10.1109/34.232073 10.1037/1082-989X.1.1.30 10.1016/j.neurobiolaging.2006.05.018 10.1523/JNEUROSCI.3550-16.2017 10.1093/cercor/bhaa237 10.1038/mp.2016.60 10.1002/alz.12178 10.1016/j.pnpbp.2011.01.005 10.1016/j.neunet.2020.01.029 10.1002/hbm.23415 10.1073/pnas.1003109107 10.1093/cercor/bhx249 10.1056/NEJMra1004418 10.1016/j.irbm.2020.08.004 10.1016/j.neuroimage.2013.05.054 10.1016/j.patcog.2016.06.008 10.1371/journal.pone.0028817 10.1109/TMI.2015.2437894 10.1006/cbmr.1996.0014 10.1016/j.neuroimage.2009.06.074 10.4249/scholarpedia.2046 10.1016/j.patcog.2016.09.019 10.1002/mrm.27178 10.1109/TPAMI.2015.2439281 10.1073/pnas.0504136102 10.1109/JBHI.2018.2843819 10.1016/S1474-4422(06)70353-2 10.1016/j.neuroimage.2011.09.015 10.1007/s11682-019-00172-x 10.1111/epi.16853 10.1016/j.compbiomed.2020.103755 10.1006/nimg.2000.0582 10.2307/1932409 10.1016/j.compmedimag.2019.101647 10.2174/1573405054038726 10.1016/j.neuroimage.2012.01.021 10.3389/fnins.2012.00171 10.1007/s00330-016-4531-z 10.1006/nimg.2001.0857 10.1111/epi.15612 10.1038/nrn3465 10.1111/epi.12220 10.1111/j.1528-1167.2007.01485.x 10.1111/j.1528-1167.2005.47604.x 10.1016/j.neuroimage.2021.118206 10.1006/nimg.2001.0978 |
| ContentType | Journal Article |
| Copyright | 2021 The Author(s) Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. 2021. The Author(s) |
| Copyright_xml | – notice: 2021 The Author(s) – notice: Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2021. The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 ADTOC UNPAY DOA |
| DOI | 10.1016/j.neuroimage.2021.118687 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Psychology |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| ExternalDocumentID | oai_doaj_org_article_ff567b0fdbc84ce991ece2a84fce771a 10.1016/j.neuroimage.2021.118687 34732323 10_1016_j_neuroimage_2021_118687 S1053811921009605 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SNS ZA5 29N 53G AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF EFLBG EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- SEW WUQ XPP ZMT 0SF ALIPV CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c575t-296b6f5f332e94a18baaa3fea5fc9bda59d7739d18ffa95687084587f5dd28d93 |
| IEDL.DBID | UNPAY |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Tue Oct 14 19:03:56 EDT 2025 Tue Aug 19 18:43:11 EDT 2025 Sat Sep 27 20:25:26 EDT 2025 Tue Oct 07 07:12:32 EDT 2025 Wed Feb 19 02:27:13 EST 2025 Sat Oct 25 05:05:02 EDT 2025 Thu Apr 24 23:08:42 EDT 2025 Fri Feb 23 02:40:24 EST 2024 Tue Oct 14 19:35:51 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Brain MRI Practical assessment Deep-learning Morphometric analysis Image super-resolution |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c575t-296b6f5f332e94a18baaa3fea5fc9bda59d7739d18ffa95687084587f5dd28d93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.neuroimage.2021.118687 |
| PMID | 34732323 |
| PQID | 2615481088 |
| PQPubID | 2031077 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ff567b0fdbc84ce991ece2a84fce771a unpaywall_primary_10_1016_j_neuroimage_2021_118687 proquest_miscellaneous_2593599298 proquest_journals_2615481088 pubmed_primary_34732323 crossref_citationtrail_10_1016_j_neuroimage_2021_118687 crossref_primary_10_1016_j_neuroimage_2021_118687 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118687 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118687 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-15 |
| PublicationDateYYYYMMDD | 2021-12-15 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc Elsevier Limited Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
| References | Ashburner, Friston (bib0002) 2000; 11 Bernasconi, Cendes, Theodore, Gill, Koepp, Hogan, Jackson, Federico, Labate, Vaudano, Blümcke, Ryvlin, Bernasconi (bib0003) 2019; 60 Schmaal, Hibar, Sämann, Hall, Baune, Jahanshad, Cheung, van Erp, Bos, Ikram, Vernooij, Niessen, Tiemeier, Hofman, Wittfeld, Grabe, Janowitz, Bülow, Selonke, Völzke, Grotegerd, Dannlowski, Arolt, Opel, Heindel, Kugel, Hoehn, Czisch, Couvy-Duchesne, Rentería, Strike, Wright, Mills, de Zubicaray, McMahon, Medland, Martin, Gillespie, Goya-Maldonado, Gruber, Krämer, Hatton, Lagopoulos, Hickie, Frodl, Carballedo, Frey, van Velzen, Penninx, van Tol, van der Wee, Davey, Harrison, Mwangi, Cao, Soares, Veer, Walter, Schoepf, Zurowski, Konrad, Schramm, Normann, Schnell, Sacchet, Gotlib, MacQueen, Godlewska, Nickson, McIntosh, Papmeyer, Whalley, Hall, Sussmann, Li, Walter, Aftanas, Brack, Bokhan, Thompson, Veltman (bib0046) 2017; 22 Zhang, Yang, Hu, Zhang, Xu, Dante, Wu, Li, Li, Li, Lu (bib0063) 2017; 27 Evans (bib0018) 2013; 80 Klein, Tourville (bib0031) 2012; 6 Siu, W.C., Hung, K.W., 2012. Review of image interpolation and super-resolution. Zhang, Zhang, Xiang, Shao, Wu, Zhou, Shen, Wang (bib0062) 2017; 63 Pham, Tor-Diez, Meunier, Bednarek, Fablet, Passat, Rousseau (bib0044) 2019; 77 Kim, Lee, Lee (bib0030) 2016 Song, Chowdhury, Yang, Dutta (bib0052) 2020; 125 Blumcke, Thom, Aronica, Armstrong, Bartolomei, Bernasconi, Bernasconi, Bien, Cendes, Coras, Cross, Jacques, Kahane, Mathern, Miyata, Moshe, Oz, Ozkara, Perucca, Sisodiya, Wiebe, Spreafico (bib0004) 2013; 54 Xiao, Cheng, Li, Wang, Zhang, Wei, Zhan, Zhou, Xue, Lu, Shi (bib0059) 2019 Yeganeh, Rostami, Wang (bib0061) 2012 Korteweg, Tintoré, Uitdehaag, Rovira, Frederiksen, Miller, Fernando, Filippi, Agosta, Rocca, Fazekas, Enzinger, Matthews, Parry, Polman, Montalban, Barkhof (bib0033) 2006; 5 Mechelli, Price, Friston, Ashburner (bib0042) 2005; 1 Dong, Loy, He, Tang (bib0015) 2014 Ledig, Theis, Huszár, Caballero, Cunningham, Acosta, Aitken, Tejani, Totz, Wang, Shi (bib0035) 2017 Delannoy, Chi-Hieu, Cazorla, Tor-Diez, Dolle, Meunier, Bednarek, Fablet, Passat, Rousseau (bib0013) 2020; 120 Li, Yang, Liu, Yang, Jeon, Wu, Soc (bib0038) 2019 Zhang, Liao, Xu, Wei, Zhou, Sun, Yang, Mantini, Ji, Lu (bib0065) 2017; 38 Good, Johnsrude, Ashburner, Henson, Friston, Frackowiak (bib0023) 2001; 14 Chen, Shi, Christodoulou, Xie, Zhou, Li (bib0007) 2018 Jog, Carass, Prince (bib0028) 2016 Shi, Cheng, Wang, Yap, Shen (bib0048) 2015; 34 Crespo-Facorro, Roiz-Santianez, Perez-Iglesias, Mata, Manuel Rodriguez-Sanchez, Tordesillas-Gutierrez, Ortiz-Garcia de la Foz, Tabares-Seisdedos, Sanchez, Andreasen, Magnotta, Luis Vazquez-Barquero (bib0011) 2011; 35 Shi, Li, Ying, Wang, Liu, Zhang, Yan (bib0049) 2019; 23 Dong, Loy, Tang (bib0017) 2016 Gennatas, Avants, Wolf, Satterthwaite, Ruparel, Ciric, Hakonarson, Gur, Gur (bib0022) 2017; 37 Jenkinson, Beckmann, Behrens, Woolrich, Smith (bib0027) 2012; 62 Li, Liu, Guo, Wang, Kang, Xu, Xi, Wang, Zhu, Yin (bib0036) 2020; 14 Keller, Roberts (bib0029) 2008; 49 McGraw, Wong (bib0041) 1996; 1 Iglesias, Billot, Balbastre, Tabari, Conklin, Gilberto Gonzalez, Alexander, Golland, Edlow, Fischl (bib0026) 2021; 237 Smith, Chebrolu, Wekstein, Schmitt, Markesbery (bib0051) 2007; 28 Umehara, Ota, Ishimaru, Ohno, Okamoto, Suzuki, Shirai, Ishida (bib0056) 2017 Fischl (bib0019) 2012; 62 Tian, Bilgic, Fan, Ngamsombat, Zaretskaya, Fultz, Ohringer, Chaudhari, Hu, Witzel, Setsompop, Polimeni, Huang (bib0054) 2021; 31 Sowell, Thompson, Welcome, Henkenius, Toga, Peterson (bib0053) 2003; 362 Chen, Xie, Zhou, Shi, Christodoulou, Li (bib0008) 2018 Wang, Yu, Wu, Gu, Liu, Dong, Qiao, Loy (bib0058) 2019 Salat, Lee, Van Der Kouwe, Greve, Fischl, Rosas (bib0045) 2009; 48 Zielinski, Gennatas, Zhou, Seeley (bib0066) 2010; 107 Lore, Akintayo, Sarkar (bib0040) 2017; 61 Schultz (bib0047) 2007; 2 Zhang, Liao, Zuo, Wang, Yuan, Jiao, Chen, Biswal, Lu, Liu (bib0064) 2011; 6 Cox (bib0010) 1996; 29 Alexander-Bloch, Giedd, Bullmore (bib0001) 2013; 14 Huttenlocher, Klanderman, Rucklidge (bib0025) 1993; 15 Briellmann, Wellard, Jackson (bib0005) 2005; 46 Yang, Wright, Huang, Ma (bib0060) 2010; 19 Habes, Pomponio, Shou, Doshi, Mamourian, Erus, Nasrallah, Launer, Rashid, Bilgel, Fan, Toledo, Yaffe, Sotiras, Srinivasan, Espeland, Masters, Maruff, Fripp, Völzk, Johnson, Morris, Albert, Miller, Bryan, Grabe, Resnick, Wolk, Davatzikos (bib0024) 2021; 17 Li, Sixou, Peyrin (bib0037) 2021; 42 Chun, Zhang, Gach, Olberg, Mazur, Green, Kim, Kim, Kim, Mutic, Park (bib0009) 2019; 46 Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (bib0020) 2005; 102 Gao, Li, Dong, Feng (bib0021) 2017 Patil, Bormane (bib0043) 2007 David, Kröll-Seger, Schuch, Wagner, Wellmer, Woermann, Oehl, Van Paesschen, Breyer, Becker, Vatter, Hattingen, Urbach, Weber, Surges, Elger, Huppertz, Rüber (bib0012) 2021; 62 Kochunov, Hong, Dennis, Morey, Tate, Wilde, Logue, Kelly, Donohoe, Favre, Houenou, Ching, Holleran, Andreassen, van Velzen, Schmaal, Villalón-Reina, Bearden, Piras, Spalletta, van den Heuvel, Veltman, Stein, Ryan, Tan, van Erp, Turner, Haddad, Nir, Glahn, Thompson, Jahanshad (bib0032) 2020 Vasa, Seidlitz, Romero-Garcia, Whitaker, Rosenthal, Vertes, Shinn, Alexander-Bloch, Fonagy, Dolan, Jones, Goodyer, consortium, Sporns, Bullmore (bib0057) 2018; 28 Kwan, Schachter, Brodie (bib0034) 2011; 365 Dice (bib0014) 1945; 26 Chaudhari, Fang, Kogan, Wood, Stevens, Gibbons, Lee, Gold, Hargreaves (bib0006) 2018; 80 Dong, Loy, He, Tang (bib0016) 2016; 38 Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib0055) 2002; 15 Lim, Son, Kim, Nah, Lee (bib0039) 2017 Li (10.1016/j.neuroimage.2021.118687_bib0036) 2020; 14 Smith (10.1016/j.neuroimage.2021.118687_bib0051) 2007; 28 Keller (10.1016/j.neuroimage.2021.118687_bib0029) 2008; 49 Zielinski (10.1016/j.neuroimage.2021.118687_bib0066) 2010; 107 Gennatas (10.1016/j.neuroimage.2021.118687_bib0022) 2017; 37 Lore (10.1016/j.neuroimage.2021.118687_bib0040) 2017; 61 Delannoy (10.1016/j.neuroimage.2021.118687_bib0013) 2020; 120 Chen (10.1016/j.neuroimage.2021.118687_bib0007) 2018 Dong (10.1016/j.neuroimage.2021.118687_bib0017) 2016 Korteweg (10.1016/j.neuroimage.2021.118687_bib0033) 2006; 5 Blumcke (10.1016/j.neuroimage.2021.118687_bib0004) 2013; 54 Kwan (10.1016/j.neuroimage.2021.118687_bib0034) 2011; 365 Zhang (10.1016/j.neuroimage.2021.118687_bib0064) 2011; 6 Dong (10.1016/j.neuroimage.2021.118687_bib0016) 2016; 38 Jenkinson (10.1016/j.neuroimage.2021.118687_bib0027) 2012; 62 Lim (10.1016/j.neuroimage.2021.118687_bib0039) 2017 Bernasconi (10.1016/j.neuroimage.2021.118687_bib0003) 2019; 60 Shi (10.1016/j.neuroimage.2021.118687_bib0048) 2015; 34 Shi (10.1016/j.neuroimage.2021.118687_bib0049) 2019; 23 Mechelli (10.1016/j.neuroimage.2021.118687_bib0042) 2005; 1 Schultz (10.1016/j.neuroimage.2021.118687_bib0047) 2007; 2 Zhang (10.1016/j.neuroimage.2021.118687_bib0065) 2017; 38 Tian (10.1016/j.neuroimage.2021.118687_bib0054) 2021; 31 Xiao (10.1016/j.neuroimage.2021.118687_bib0059) 2019 Pham (10.1016/j.neuroimage.2021.118687_bib0044) 2019; 77 Zhang (10.1016/j.neuroimage.2021.118687_bib0062) 2017; 63 Huttenlocher (10.1016/j.neuroimage.2021.118687_bib0025) 1993; 15 Alexander-Bloch (10.1016/j.neuroimage.2021.118687_bib0001) 2013; 14 10.1016/j.neuroimage.2021.118687_bib0050 Wang (10.1016/j.neuroimage.2021.118687_bib0058) 2019 Chun (10.1016/j.neuroimage.2021.118687_bib0009) 2019; 46 Zhang (10.1016/j.neuroimage.2021.118687_bib0063) 2017; 27 Ledig (10.1016/j.neuroimage.2021.118687_bib0035) 2017 Yang (10.1016/j.neuroimage.2021.118687_bib0060) 2010; 19 Jog (10.1016/j.neuroimage.2021.118687_bib0028) 2016 Song (10.1016/j.neuroimage.2021.118687_bib0052) 2020; 125 McGraw (10.1016/j.neuroimage.2021.118687_bib0041) 1996; 1 Salat (10.1016/j.neuroimage.2021.118687_bib0045) 2009; 48 Schmaal (10.1016/j.neuroimage.2021.118687_bib0046) 2017; 22 Umehara (10.1016/j.neuroimage.2021.118687_bib0056) 2017 Dong (10.1016/j.neuroimage.2021.118687_bib0015) 2014 Vasa (10.1016/j.neuroimage.2021.118687_bib0057) 2018; 28 Habes (10.1016/j.neuroimage.2021.118687_bib0024) 2021; 17 Tzourio-Mazoyer (10.1016/j.neuroimage.2021.118687_bib0055) 2002; 15 Chaudhari (10.1016/j.neuroimage.2021.118687_bib0006) 2018; 80 David (10.1016/j.neuroimage.2021.118687_bib0012) 2021; 62 Ashburner (10.1016/j.neuroimage.2021.118687_bib0002) 2000; 11 Good (10.1016/j.neuroimage.2021.118687_bib0023) 2001; 14 Evans (10.1016/j.neuroimage.2021.118687_bib0018) 2013; 80 Kochunov (10.1016/j.neuroimage.2021.118687_bib0032) 2020 Patil (10.1016/j.neuroimage.2021.118687_bib0043) 2007 Sowell (10.1016/j.neuroimage.2021.118687_bib0053) 2003; 362 Fischl (10.1016/j.neuroimage.2021.118687_bib0019) 2012; 62 Li (10.1016/j.neuroimage.2021.118687_bib0037) 2021; 42 Kim (10.1016/j.neuroimage.2021.118687_bib0030) 2016 Crespo-Facorro (10.1016/j.neuroimage.2021.118687_bib0011) 2011; 35 Klein (10.1016/j.neuroimage.2021.118687_bib0031) 2012; 6 Fox (10.1016/j.neuroimage.2021.118687_bib0020) 2005; 102 Li (10.1016/j.neuroimage.2021.118687_bib0038) 2019 Briellmann (10.1016/j.neuroimage.2021.118687_bib0005) 2005; 46 Cox (10.1016/j.neuroimage.2021.118687_bib0010) 1996; 29 Gao (10.1016/j.neuroimage.2021.118687_bib0021) 2017 Yeganeh (10.1016/j.neuroimage.2021.118687_bib0061) 2012 Dice (10.1016/j.neuroimage.2021.118687_bib0014) 1945; 26 Chen (10.1016/j.neuroimage.2021.118687_bib0008) 2018 Iglesias (10.1016/j.neuroimage.2021.118687_bib0026) 2021; 237 |
| References_xml | – volume: 29 start-page: 162 year: 1996 end-page: 173 ident: bib0010 article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput. Biomed. Res. – start-page: 184 year: 2014 end-page: 199 ident: bib0015 article-title: Learning a deep convolutional network for image super-resolution publication-title: Computer Vision - ECCV 2014 – volume: 125 start-page: 83 year: 2020 end-page: 91 ident: bib0052 article-title: PET image super-resolution using generative adversarial networks publication-title: Neural Netw. – start-page: 63 year: 2019 end-page: 79 ident: bib0058 article-title: ESRGAN: enhanced super-resolution generative adversarial networks publication-title: Computer Vision – ECCV 2018 Workshops – start-page: 91 year: 2018 end-page: 99 ident: bib0007 article-title: Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 – volume: 15 start-page: 850 year: 1993 end-page: 863 ident: bib0025 article-title: Comparing images using the hausdorff distance publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1481 year: 2012 end-page: 1484 ident: bib0061 article-title: Objective quality assessment for image super-resolution: a natural scene statistics approach publication-title: Proceedings of the 19th IEEE International Conference on Image Processing – volume: 60 start-page: 1054 year: 2019 end-page: 1068 ident: bib0003 article-title: Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: a consensus report from the international league against epilepsy neuroimaging task force publication-title: Epilepsia – volume: 77 start-page: 15 year: 2019 ident: bib0044 article-title: Multiscale brain MRI super-resolution using deep 3D convolutional networks publication-title: Comput. Med. Imaging Graph. – volume: 38 start-page: 295 year: 2016 end-page: 307 ident: bib0016 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 1 start-page: 30 year: 1996 end-page: 46 ident: bib0041 article-title: Forming inferences about some intraclass correlation coefficients publication-title: Psychol. Methods – volume: 62 start-page: 782 year: 2012 end-page: 790 ident: bib0027 article-title: FSL publication-title: Neuroimage – volume: 14 start-page: 2224 year: 2020 end-page: 2231 ident: bib0036 article-title: Voxel-based morphometry results in first-episode schizophrenia: a comparison of publicly available software packages publication-title: Brain Imaging Behav. – year: 2007 ident: bib0043 article-title: Interpolation For Super Resolution Imaging – volume: 19 start-page: 2861 year: 2010 end-page: 2873 ident: bib0060 article-title: Image super-resolution via sparse representation publication-title: IEEE Trans. Image Process. – volume: 35 start-page: 616 year: 2011 end-page: 623 ident: bib0011 article-title: Sex-specific variation of MRI-based cortical morphometry in adult healthy volunteers: the effect on cognitive functioning publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry – year: 2017 ident: bib0021 article-title: A Deep Convolutional Network for Medical Image Super-resolution – volume: 5 start-page: 221 year: 2006 end-page: 227 ident: bib0033 article-title: MRI criteria for dissemination in space in patients with clinically isolated syndromes: a multicentre follow-up study publication-title: Lancet Neurol. – start-page: 739 year: 2018 end-page: 742 ident: bib0008 article-title: Brain MRI super resolution using 3D deep densely connected neural networks publication-title: Proceedings of the IEEE 15th International Symposium on Biomedical Imaging – volume: 17 start-page: 89 year: 2021 end-page: 102 ident: bib0024 article-title: The brain chart of aging: machine-learning analytics reveals links between brain aging, white matter disease, amyloid burden, and cognition in the iSTAGING consortium of 10,216 harmonized MR scans publication-title: Alzheimers Dement. – volume: 6 year: 2012 ident: bib0031 article-title: 101 labeled brain images and a consistent human cortical labeling protocol publication-title: Front. Neurosci. – volume: 62 start-page: 774 year: 2012 end-page: 781 ident: bib0019 article-title: FreeSurfer publication-title: Neuroimage – volume: 362 start-page: 1699 year: 2003 end-page: 1707 ident: bib0053 article-title: Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder publication-title: Lancet – volume: 80 start-page: 2139 year: 2018 end-page: 2154 ident: bib0006 article-title: Super-resolution musculoskeletal MRI using deep learning publication-title: Magn. Reson. Med. – start-page: 553 year: 2016 end-page: 560 ident: bib0028 article-title: Self super-resolution for magnetic resonance images publication-title: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016 – volume: 27 start-page: 2137 year: 2017 end-page: 2145 ident: bib0063 article-title: Resting-state fMRI revealed different brain activities responding to valproic acid and levetiracetam in benign epilepsy with central-temporal spikes publication-title: Eur. Radiol. – start-page: 409 year: 2019 end-page: 416 ident: bib0059 article-title: Weakly Supervised Confidence Learning for Brain MR Image Dense Parcellation – volume: 2 start-page: 2046 year: 2007 ident: bib0047 article-title: Signal-to-noise ratio in neuroscience publication-title: Scholarpedia – volume: 22 start-page: 900 year: 2017 end-page: 909 ident: bib0046 article-title: Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA major depressive disorder working group publication-title: Mol. Psychiatry – start-page: 391 year: 2016 end-page: 407 ident: bib0017 article-title: Accelerating the super-resolution convolutional neural network publication-title: Computer Vision - ECCV 2016 – volume: 34 start-page: 2459 year: 2015 end-page: 2466 ident: bib0048 article-title: LRTV: MR image super-resolution with low-rank and total variation regularizations publication-title: IEEE Trans. Med. Imaging – volume: 38 start-page: 753 year: 2017 end-page: 766 ident: bib0065 article-title: Hippocampus-associated causal network of structural covariance measuring structural damage progression in temporal lobe epilepsy publication-title: Hum. Brain Mapp. – volume: 14 start-page: 322 year: 2013 end-page: 336 ident: bib0001 article-title: Imaging structural co-variance between human brain regions publication-title: Nat. Rev. Neurosci. – volume: 1 start-page: 105 year: 2005 end-page: 113 ident: bib0042 article-title: Voxel-based morphometry of the human brain: methods and applications publication-title: Curr. Med. Imaging – volume: 48 start-page: 21 year: 2009 end-page: 28 ident: bib0045 article-title: Age-associated alterations in cortical gray and white matter signal intensity and gray to white matter contrast publication-title: Neuroimage – volume: 26 start-page: 297 year: 1945 end-page: 302 ident: bib0014 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – volume: 37 start-page: 5065 year: 2017 ident: bib0022 article-title: Age-related effects and sex differences in gray matter density, volume, mass, and cortical thickness from childhood to young adulthood publication-title: J. Neurosci. – start-page: 1132 year: 2017 end-page: 1140 ident: bib0039 article-title: Enhanced deep residual networks for single image super-resolution publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops – volume: 31 start-page: 463 year: 2021 end-page: 482 ident: bib0054 article-title: Improving publication-title: Cereb. Cortex – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: bib0055 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage – volume: 120 year: 2020 ident: bib0013 article-title: SegSRGAN: super-resolution and segmentation using generative adversarial networks - application to neonatal brain MRI publication-title: Comput. Biol. Med. – volume: 107 start-page: 18191 year: 2010 end-page: 18196 ident: bib0066 article-title: Network-level structural covariance in the developing brain publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 102 start-page: 9673 year: 2005 end-page: 9678 ident: bib0020 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc. Natl. Acad. Sci. U. S. A. – start-page: 3862 year: 2019 end-page: 3871 ident: bib0038 article-title: Feedback network for image super-resolution publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 1646 year: 2016 end-page: 1654 ident: bib0030 article-title: Accurate image super-resolution using very deep convolutional networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 46 start-page: 760 year: 2005 end-page: 766 ident: bib0005 article-title: Seizure-associated abnormalities in epilepsy: evidence from MR imaging publication-title: Epilepsia – start-page: 105 year: 2017 end-page: 114 ident: bib0035 article-title: Photo-realistic single image super-resolution using a generative adversarial network publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 11 start-page: 805 year: 2000 end-page: 821 ident: bib0002 article-title: Voxel-based morphometry - the methods publication-title: Neuroimage – volume: 23 start-page: 1129 year: 2019 end-page: 1140 ident: bib0049 article-title: MR image super-resolution via wide residual networks with fixed skip connection publication-title: IEEE J. Biomed. Health Inform. – year: 2020 ident: bib0032 article-title: ENIGMA-DTI: translating reproducible white matter deficits into personalized vulnerability metrics in cross-diagnostic psychiatric research publication-title: Hum. Brain Mapp. – volume: 42 start-page: 120 year: 2021 end-page: 133 ident: bib0037 article-title: A review of the deep learning methods for medical images super resolution problems publication-title: IRBM – volume: 14 start-page: 685 year: 2001 end-page: 700 ident: bib0023 article-title: Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains publication-title: Neuroimage – volume: 49 start-page: 741 year: 2008 end-page: 757 ident: bib0029 article-title: Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature publication-title: Epilepsia – volume: 365 start-page: 919 year: 2011 end-page: 926 ident: bib0034 article-title: Drug-resistant epilepsy publication-title: N. Engl. J. Med. – volume: 237 year: 2021 ident: bib0026 article-title: Joint super-resolution and synthesis of 1mm isotropic MP-RAGE volumes from clinical MRI exams with scans of different orientation, resolution and contrast publication-title: Neuroimage – volume: 46 start-page: 4148 year: 2019 end-page: 4164 ident: bib0009 article-title: MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: in the presence of limited training data and unknown translation model publication-title: Med. Phys. – volume: 28 start-page: 281 year: 2018 end-page: 294 ident: bib0057 article-title: Adolescent tuning of association cortex in human structural brain networks publication-title: Cereb. Cortex – volume: 62 start-page: 1005 year: 2021 end-page: 1021 ident: bib0012 article-title: External validation of automated focal cortical dysplasia detection using morphometric analysis publication-title: Epilepsia – volume: 63 start-page: 531 year: 2017 end-page: 541 ident: bib0062 article-title: Brain atlas fusion from high-thickness diagnostic magnetic resonance images by learning-based super-resolution publication-title: Pattern Recognit. – volume: 6 start-page: e28817 year: 2011 ident: bib0064 article-title: Resting-state brain organization revealed by functional covariance networks publication-title: PLoS ONE – reference: Siu, W.C., Hung, K.W., 2012. Review of image interpolation and super-resolution. – volume: 80 start-page: 489 year: 2013 end-page: 504 ident: bib0018 article-title: Networks of anatomical covariance publication-title: Neuroimage – volume: 61 start-page: 650 year: 2017 end-page: 662 ident: bib0040 article-title: LLNet: a deep autoencoder approach to natural low-light image enhancement publication-title: Pattern Recognit. – year: 2017 ident: bib0056 article-title: Super-resolution convolutional neural network for the improvement of the image quality of magnified images in chest radiographs publication-title: Medical Imaging 2017: Image Processing – volume: 54 start-page: 1315 year: 2013 end-page: 1329 ident: bib0004 article-title: International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE commission on diagnostic methods publication-title: Epilepsia – volume: 28 start-page: 1075 year: 2007 end-page: 1087 ident: bib0051 article-title: Age and gender effects on human brain anatomy: a voxel-based morphometric study in healthy elderly publication-title: Neurobiol. Aging – volume: 362 start-page: 1699 year: 2003 ident: 10.1016/j.neuroimage.2021.118687_bib0053 article-title: Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder publication-title: Lancet doi: 10.1016/S0140-6736(03)14842-8 – volume: 46 start-page: 4148 year: 2019 ident: 10.1016/j.neuroimage.2021.118687_bib0009 article-title: MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: in the presence of limited training data and unknown translation model publication-title: Med. Phys. doi: 10.1002/mp.13717 – volume: 19 start-page: 2861 year: 2010 ident: 10.1016/j.neuroimage.2021.118687_bib0060 article-title: Image super-resolution via sparse representation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2050625 – volume: 15 start-page: 850 year: 1993 ident: 10.1016/j.neuroimage.2021.118687_bib0025 article-title: Comparing images using the hausdorff distance publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.232073 – start-page: 1481 year: 2012 ident: 10.1016/j.neuroimage.2021.118687_bib0061 article-title: Objective quality assessment for image super-resolution: a natural scene statistics approach – volume: 1 start-page: 30 year: 1996 ident: 10.1016/j.neuroimage.2021.118687_bib0041 article-title: Forming inferences about some intraclass correlation coefficients publication-title: Psychol. Methods doi: 10.1037/1082-989X.1.1.30 – volume: 28 start-page: 1075 year: 2007 ident: 10.1016/j.neuroimage.2021.118687_bib0051 article-title: Age and gender effects on human brain anatomy: a voxel-based morphometric study in healthy elderly publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2006.05.018 – volume: 37 start-page: 5065 year: 2017 ident: 10.1016/j.neuroimage.2021.118687_bib0022 article-title: Age-related effects and sex differences in gray matter density, volume, mass, and cortical thickness from childhood to young adulthood publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3550-16.2017 – start-page: 3862 year: 2019 ident: 10.1016/j.neuroimage.2021.118687_bib0038 article-title: Feedback network for image super-resolution – start-page: 409 year: 2019 ident: 10.1016/j.neuroimage.2021.118687_bib0059 – start-page: 105 year: 2017 ident: 10.1016/j.neuroimage.2021.118687_bib0035 article-title: Photo-realistic single image super-resolution using a generative adversarial network – volume: 31 start-page: 463 year: 2021 ident: 10.1016/j.neuroimage.2021.118687_bib0054 article-title: Improving in vivo human cerebral cortical surface reconstruction using data-driven super-resolution publication-title: Cereb. Cortex doi: 10.1093/cercor/bhaa237 – start-page: 553 year: 2016 ident: 10.1016/j.neuroimage.2021.118687_bib0028 article-title: Self super-resolution for magnetic resonance images – volume: 22 start-page: 900 year: 2017 ident: 10.1016/j.neuroimage.2021.118687_bib0046 article-title: Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA major depressive disorder working group publication-title: Mol. Psychiatry doi: 10.1038/mp.2016.60 – volume: 17 start-page: 89 year: 2021 ident: 10.1016/j.neuroimage.2021.118687_bib0024 article-title: The brain chart of aging: machine-learning analytics reveals links between brain aging, white matter disease, amyloid burden, and cognition in the iSTAGING consortium of 10,216 harmonized MR scans publication-title: Alzheimers Dement. doi: 10.1002/alz.12178 – volume: 35 start-page: 616 year: 2011 ident: 10.1016/j.neuroimage.2021.118687_bib0011 article-title: Sex-specific variation of MRI-based cortical morphometry in adult healthy volunteers: the effect on cognitive functioning publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry doi: 10.1016/j.pnpbp.2011.01.005 – volume: 125 start-page: 83 year: 2020 ident: 10.1016/j.neuroimage.2021.118687_bib0052 article-title: PET image super-resolution using generative adversarial networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.01.029 – ident: 10.1016/j.neuroimage.2021.118687_bib0050 – volume: 38 start-page: 753 year: 2017 ident: 10.1016/j.neuroimage.2021.118687_bib0065 article-title: Hippocampus-associated causal network of structural covariance measuring structural damage progression in temporal lobe epilepsy publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23415 – volume: 107 start-page: 18191 year: 2010 ident: 10.1016/j.neuroimage.2021.118687_bib0066 article-title: Network-level structural covariance in the developing brain publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1003109107 – volume: 28 start-page: 281 year: 2018 ident: 10.1016/j.neuroimage.2021.118687_bib0057 article-title: Adolescent tuning of association cortex in human structural brain networks publication-title: Cereb. Cortex doi: 10.1093/cercor/bhx249 – volume: 365 start-page: 919 year: 2011 ident: 10.1016/j.neuroimage.2021.118687_bib0034 article-title: Drug-resistant epilepsy publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1004418 – volume: 42 start-page: 120 year: 2021 ident: 10.1016/j.neuroimage.2021.118687_bib0037 article-title: A review of the deep learning methods for medical images super resolution problems publication-title: IRBM doi: 10.1016/j.irbm.2020.08.004 – volume: 80 start-page: 489 year: 2013 ident: 10.1016/j.neuroimage.2021.118687_bib0018 article-title: Networks of anatomical covariance publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.054 – volume: 61 start-page: 650 year: 2017 ident: 10.1016/j.neuroimage.2021.118687_bib0040 article-title: LLNet: a deep autoencoder approach to natural low-light image enhancement publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.06.008 – volume: 6 start-page: e28817 year: 2011 ident: 10.1016/j.neuroimage.2021.118687_bib0064 article-title: Resting-state brain organization revealed by functional covariance networks publication-title: PLoS ONE doi: 10.1371/journal.pone.0028817 – volume: 34 start-page: 2459 year: 2015 ident: 10.1016/j.neuroimage.2021.118687_bib0048 article-title: LRTV: MR image super-resolution with low-rank and total variation regularizations publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2437894 – volume: 29 start-page: 162 year: 1996 ident: 10.1016/j.neuroimage.2021.118687_bib0010 article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput. Biomed. Res. doi: 10.1006/cbmr.1996.0014 – volume: 48 start-page: 21 year: 2009 ident: 10.1016/j.neuroimage.2021.118687_bib0045 article-title: Age-associated alterations in cortical gray and white matter signal intensity and gray to white matter contrast publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.06.074 – start-page: 739 year: 2018 ident: 10.1016/j.neuroimage.2021.118687_bib0008 article-title: Brain MRI super resolution using 3D deep densely connected neural networks – volume: 2 start-page: 2046 year: 2007 ident: 10.1016/j.neuroimage.2021.118687_bib0047 article-title: Signal-to-noise ratio in neuroscience publication-title: Scholarpedia doi: 10.4249/scholarpedia.2046 – volume: 63 start-page: 531 year: 2017 ident: 10.1016/j.neuroimage.2021.118687_bib0062 article-title: Brain atlas fusion from high-thickness diagnostic magnetic resonance images by learning-based super-resolution publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.09.019 – volume: 80 start-page: 2139 year: 2018 ident: 10.1016/j.neuroimage.2021.118687_bib0006 article-title: Super-resolution musculoskeletal MRI using deep learning publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27178 – start-page: 91 year: 2018 ident: 10.1016/j.neuroimage.2021.118687_bib0007 article-title: Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network – volume: 38 start-page: 295 year: 2016 ident: 10.1016/j.neuroimage.2021.118687_bib0016 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2439281 – start-page: 1646 year: 2016 ident: 10.1016/j.neuroimage.2021.118687_bib0030 article-title: Accurate image super-resolution using very deep convolutional networks – year: 2017 ident: 10.1016/j.neuroimage.2021.118687_bib0056 article-title: Super-resolution convolutional neural network for the improvement of the image quality of magnified images in chest radiographs – volume: 102 start-page: 9673 year: 2005 ident: 10.1016/j.neuroimage.2021.118687_bib0020 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0504136102 – volume: 23 start-page: 1129 year: 2019 ident: 10.1016/j.neuroimage.2021.118687_bib0049 article-title: MR image super-resolution via wide residual networks with fixed skip connection publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2843819 – volume: 5 start-page: 221 year: 2006 ident: 10.1016/j.neuroimage.2021.118687_bib0033 article-title: MRI criteria for dissemination in space in patients with clinically isolated syndromes: a multicentre follow-up study publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(06)70353-2 – start-page: 184 year: 2014 ident: 10.1016/j.neuroimage.2021.118687_bib0015 article-title: Learning a deep convolutional network for image super-resolution – volume: 62 start-page: 782 year: 2012 ident: 10.1016/j.neuroimage.2021.118687_bib0027 article-title: FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 14 start-page: 2224 year: 2020 ident: 10.1016/j.neuroimage.2021.118687_bib0036 article-title: Voxel-based morphometry results in first-episode schizophrenia: a comparison of publicly available software packages publication-title: Brain Imaging Behav. doi: 10.1007/s11682-019-00172-x – volume: 62 start-page: 1005 year: 2021 ident: 10.1016/j.neuroimage.2021.118687_bib0012 article-title: External validation of automated focal cortical dysplasia detection using morphometric analysis publication-title: Epilepsia doi: 10.1111/epi.16853 – start-page: 391 year: 2016 ident: 10.1016/j.neuroimage.2021.118687_bib0017 article-title: Accelerating the super-resolution convolutional neural network – volume: 120 year: 2020 ident: 10.1016/j.neuroimage.2021.118687_bib0013 article-title: SegSRGAN: super-resolution and segmentation using generative adversarial networks - application to neonatal brain MRI publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103755 – volume: 11 start-page: 805 year: 2000 ident: 10.1016/j.neuroimage.2021.118687_bib0002 article-title: Voxel-based morphometry - the methods publication-title: Neuroimage doi: 10.1006/nimg.2000.0582 – volume: 26 start-page: 297 year: 1945 ident: 10.1016/j.neuroimage.2021.118687_bib0014 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 – start-page: 1132 year: 2017 ident: 10.1016/j.neuroimage.2021.118687_bib0039 article-title: Enhanced deep residual networks for single image super-resolution – year: 2017 ident: 10.1016/j.neuroimage.2021.118687_bib0021 – start-page: 63 year: 2019 ident: 10.1016/j.neuroimage.2021.118687_bib0058 article-title: ESRGAN: enhanced super-resolution generative adversarial networks – volume: 77 start-page: 15 year: 2019 ident: 10.1016/j.neuroimage.2021.118687_bib0044 article-title: Multiscale brain MRI super-resolution using deep 3D convolutional networks publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2019.101647 – volume: 1 start-page: 105 year: 2005 ident: 10.1016/j.neuroimage.2021.118687_bib0042 article-title: Voxel-based morphometry of the human brain: methods and applications publication-title: Curr. Med. Imaging doi: 10.2174/1573405054038726 – volume: 62 start-page: 774 year: 2012 ident: 10.1016/j.neuroimage.2021.118687_bib0019 article-title: FreeSurfer publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.021 – volume: 6 year: 2012 ident: 10.1016/j.neuroimage.2021.118687_bib0031 article-title: 101 labeled brain images and a consistent human cortical labeling protocol publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00171 – volume: 27 start-page: 2137 year: 2017 ident: 10.1016/j.neuroimage.2021.118687_bib0063 article-title: Resting-state fMRI revealed different brain activities responding to valproic acid and levetiracetam in benign epilepsy with central-temporal spikes publication-title: Eur. Radiol. doi: 10.1007/s00330-016-4531-z – volume: 14 start-page: 685 year: 2001 ident: 10.1016/j.neuroimage.2021.118687_bib0023 article-title: Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains publication-title: Neuroimage doi: 10.1006/nimg.2001.0857 – volume: 60 start-page: 1054 year: 2019 ident: 10.1016/j.neuroimage.2021.118687_bib0003 article-title: Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: a consensus report from the international league against epilepsy neuroimaging task force publication-title: Epilepsia doi: 10.1111/epi.15612 – volume: 14 start-page: 322 year: 2013 ident: 10.1016/j.neuroimage.2021.118687_bib0001 article-title: Imaging structural co-variance between human brain regions publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3465 – volume: 54 start-page: 1315 year: 2013 ident: 10.1016/j.neuroimage.2021.118687_bib0004 article-title: International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE commission on diagnostic methods publication-title: Epilepsia doi: 10.1111/epi.12220 – year: 2007 ident: 10.1016/j.neuroimage.2021.118687_bib0043 – volume: 49 start-page: 741 year: 2008 ident: 10.1016/j.neuroimage.2021.118687_bib0029 article-title: Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature publication-title: Epilepsia doi: 10.1111/j.1528-1167.2007.01485.x – year: 2020 ident: 10.1016/j.neuroimage.2021.118687_bib0032 article-title: ENIGMA-DTI: translating reproducible white matter deficits into personalized vulnerability metrics in cross-diagnostic psychiatric research publication-title: Hum. Brain Mapp. – volume: 46 start-page: 760 year: 2005 ident: 10.1016/j.neuroimage.2021.118687_bib0005 article-title: Seizure-associated abnormalities in epilepsy: evidence from MR imaging publication-title: Epilepsia doi: 10.1111/j.1528-1167.2005.47604.x – volume: 237 year: 2021 ident: 10.1016/j.neuroimage.2021.118687_bib0026 article-title: Joint super-resolution and synthesis of 1mm isotropic MP-RAGE volumes from clinical MRI exams with scans of different orientation, resolution and contrast publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118206 – volume: 15 start-page: 273 year: 2002 ident: 10.1016/j.neuroimage.2021.118687_bib0055 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 |
| SSID | ssj0009148 |
| Score | 2.4459476 |
| Snippet | Preliminary studies have shown the feasibility of deep learning (DL)-based super-resolution (SR) technique for reconstructing thick-slice/gap diagnostic MR... |
| SourceID | doaj unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 118687 |
| SubjectTerms | Algorithms Brain MRI Brain research Deep Learning Epilepsy Epilepsy - diagnostic imaging Feasibility studies Feedback Female Humans Image Interpretation, Computer-Assisted - methods Image super-resolution Imaging, Three-Dimensional Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Morphometric analysis Morphometry Neuroimaging - methods Practical assessment Sparsity |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQFzwWiHcDBRmJrcUktmNbrABRFaRhgajUneVnKZpJRu2Mqu74Ajb8IV_CdeyEQSyYBbsosa3k-sT3WL73XIReCCdt5LIlIghOmDKMGPCzxJm6VZIHKgad7vnH9uiYfTjhJ1ulvlJMWJYHzoZ7GSNvhZ1Fb51kLgCdCamGlWTRBSHqgRrNpBo3U6PcLrD8EreTo7kGdcizJfyjsCdsalgpZJvC6Lac0aDZ_4dP-ptz3kI3Nt3KXF2axWLLDx3eQbcLgcSv84vfRddCdw9dn5cj8vvoOxDBq5TveIp9DqODhnj-6T0GeoqTENXloD6IbSoOgZc9GLpfprpaDhflny_457cfeCyCgEsiFVyZScYT9x0uBSdOSfKEHg-fjS82q3BOYKAC6Qfo-PDd57dHpBRdIA6Y25o0qrVt5JHSJihmammNMTQGw6NT1huuvBBU-VrGaFKuoZhJxqWI3PtGekUfor2u78I-woY6F22jItAeFgAHXIZ0bucaP6ujNBUSo_W1K4rkqTDGQo-hZ1_173nTad50nrcK1VPPVVbl2KHPmzTBU_ukqz3cALTpgjb9L7RVSI3w0GPqKiy2MNDZDi_waupb6E2mLTv2PhjRqMsyc6Fh-ws7zho8RYWeT49hgUinPqYL_Qba8JR8DSwY2jzKKJ5sQJmgQKlphZoJ1jsb9PH_MOgTdDMNmQKEan6A9tbnm_AUaN7aPhv-6F-bSlfk priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqHngcEG8WCjIS4hZ2HduxLU5QURWk5QBU6i1y_GgX7Sar7a6qXhA_AYl_yC9hJnHSVlxW4rabjCNnPJn5LM98Q8gr5XQVpS4yFZTMhLEisxBnM2dZYbQMXLU83dPPxeGR-HQsj3fIfl8Lg2mVyfd3Pr311unKOGlzvJzNxl8BGUC4QT6vFodjobkQCrsYvPlxmeZhmOjK4STPUDpl83Q5Xi1n5GwBXy7sFHMG_kMXmFx3JUS1TP7XItW_SPQ2ubmpl_bi3M7nV6LTwV1yJ8FK-q6b-T2yE-r75MY0HZw_IL8AHl5gFeQJ9V1yHQjS6ZePFEArRXqq85aTkFbYMoIuGlB_s8BuW44mPqBT-ufnb9q3RqCvaSqwgt92oPekTU1TI4qTDCOkp-2L07PNMqwyeFQy9Yfk6ODDt_3DLDVjyBwgunWWm6Iqooyc58EIy3RlreUxWBmdqbyVxivFjWc6Ros1iGqihdQqSu9z7Q1_RHbrpg5PCLXcuVjlJgIcEgHsQ-qA53ku9xMWtR0R1eu_dImpHBtmzMs-Je17eblyJa5c2a3ciLBh5LJj69hizHtc4kEe-bbbC83qpEwGV8YoC1VNoq-cFi4AqA7YSU2L6IJSDKZsegMp-5JWcMLwoNkWE3g7jL1m-luO3uvtsUzu56yEbTHsRBlEkBF5OdwGx4GnQbYOzQZkJBZlAzoGmcedHQ864EJxgNp8RPLBsLdW6NP_ep9n5Bb-w4whJvfI7nq1Cc8B962rF-2H_Rel6Vqk priority: 102 providerName: Elsevier – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bixMxFA5rF7w8iHerq0QQ34LNZDLJICKu7LIKLbK4sG9DJpe60s7Ubsuyb_4EwX_oL_Gcmcx0RZC-lfZkSHNuX5tzvkPIS2V1GaTOmPJKsjQ3KTOQZ5k1PMu19EI1PN3jSXZ0kn46lac7ZNL1wmBZZRcTm0Dtaov_kb8GpA_gmoNTvFt8Zzg1Cm9XuxEaJo5WcG8birFrZDdBZqwB2d0_mHw-3tDw8rRtjpOCac7zWNvTVnw1DJJnc_Bj-N2YcIgmOsNSuysJq-H1_ytv_YtLb5Eb62phLi_MbHYlVx3eIbcjyKTvW6u4S3Z8dY9cH8dr9PvkJ4DFS-yJnFLXltqBIB0ff6QAYSmSVV00DIW0xAESdF6DMuo5zt6yNLIDfaW_f_yi3aAE-orGdit4bXqyT1pXNI6lmDLMl442X5yerxd-yeBR0fAfkJPDgy8fjlgczcAs4LsVS_KszIIMQiQ-Tw3XpTFGBG9ksHnpjMydUiJ3XIdgsCNRjXQqtQrSuUS7XDwkg6qu_GNCjbA2lEkeABylHqxFao-3ezZxIx60GRLVnX9hI285js-YFV2B2rdio7kCNVe0mhsS3q9ctNwdW6zZRxX38si-3bxRL6dFdOYiBJmpchRcaXVqPUBsj3PVdBqsV4rDlvPOQIquwRVCMjzobIsNvOnXRhDUgpstV-919ljEYHRebFxnSF70H0MYwbshU_l6DTISW7QBK4PMo9aO-zMQqRIAvMWQJL1hb32gT_6_o6fkJgpjgRCXe2SwWq79M4B5q_J59N0_BgBV8w priority: 102 providerName: ProQuest |
| Title | Recycling diagnostic MRI for empowering brain morphometric research – Critical & practical assessment on learning-based image super-resolution |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921009605 https://dx.doi.org/10.1016/j.neuroimage.2021.118687 https://www.ncbi.nlm.nih.gov/pubmed/34732323 https://www.proquest.com/docview/2615481088 https://www.proquest.com/docview/2593599298 https://doi.org/10.1016/j.neuroimage.2021.118687 https://doaj.org/article/ff567b0fdbc84ce991ece2a84fce771a |
| UnpaywallVersion | publishedVersion |
| Volume | 245 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aWonLA_dLYVRGQrxlquM4dsRThzZ1oFZjolJ5ihzHHoM2rbZW03hA_AQk_iG_hOPECRQkVHhpmsa2nOPL-dxzzncAngktM8tlHAgjeBAlKgoU6tlAKxonkhsmSp7u4SgejKNXEz7Zgl4dC7Nmvy_9sEpex9MZri48zYUU17iMpdiGdswRfbegPR4d9d-VRk3OAknLXB6051IQclE77_ytqTWNVBL3rymmP4Hndbi6Khbq8kJNp78oo4Ob8KZ-jcoH5ePuapnt6k-_MTz-y3veghsemZJ-NZVuw5Yp7sCVobe934WviDAvXSDlCckr_zwsSIbHhwRxL3EMVxclrSHJXNYJMpvjCM5nLmGXJp5S6D35_uUbqbMrkOfEx2jhd9UwhJJ5QXwui5PAKdmclP0l56uFOQuwKb9a7sH4YP_ty0Hg8zkEGkHhMgiTOIstt4yFJokUlZlSilmjuNVJliue5EKwJKfSWuXCGEVPRlwKy_M8lHnC7kOrmBfmIRDFtLZZmFhEVJHBKcalcSZBHeY9aqXqgKjHNNWe7Nzl3JimtVfbh_SnwFMn8LQSeAdoU3NREX5sUGfPTZumvKPsLn_AEU79DpBay2OR9WyeaRlpg7jcuGRsMrLaCEGxy0k96dI6Khb3cWzodIMOvGjqeuRUIaINa-_Uczz1O9h5iidrPMxSVEIdeNo8xr3HGZRUYeYrLMNdXDcCbCzzoFobjQxYJBiiddaBsFksGwv00f9UegzX3J3zNaJ8B1rLs5V5gohxmXVhe_czxU8xEV1o9w9fD0Z43dsfHR13y39hun4b-QF6OXDD |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELaqVqJwQPwTKGAk4LYi3rXXXqEKUWiV0CZCVSv1tnj9k7ZKdkN-FOXGIyDxPjwMT8J417spQkK59BYlnpXjGc98Xs98g9ArrkRmmYgDbjgLaCJpICHOBkqSOBHMRLzk6e71484p_XzGzjbQr7oWxqVV1j6xdNS6UO4d-VtA-gCuCWyK9-Nvgesa5W5X6xYa0rdW0LslxZgv7Dg0ywUc4aa73U-g79dheLB_8rET-C4DgQKoMgvCJM5iy2wUhSahkohMShlZI5lVSaYlSzTnUaKJsFa64jreFpQJbpnWodCOjAlCwBaNaAKHv629_f6X4xXtL6FVMR6LAkFI4nOJqgyzkrHyYgR-A86pIQHvJWKX2nclQJZ9BP6Kk__i4Ftoe56P5XIhh8MrsfHgDrrtQS3-UFnhXbRh8nvoRs9f299HPwCcLl0N5gDrKrUPBuLecRcDZMaOHGtRMiLizDWswKMClF-MXK8vhT0b0Tn-_f0nrhsz4DfYl3fBZ9mQi-Iix74NxiBw8Vnj8o_j6XxsJgE8ym-0B-j0WpT0EG3mRW4eIywjpWwWJhbAGDVgnUwYd5uoQt0mVsgW4vX6p8rzpLt2HcO0Toi7TFeaS53m0kpzLUQayXHFFbKGzJ5TcTPesX2XXxSTQeqdR2oti3nWtjpTgioDkN64Pm6CWmU4JzDlpDaQtC6ohRAAD7pYYwLvGlkPuiowtab0Tm2PqXd-03S1VVvoZfMzuC13FyVzU8xhDHMl4YDNYcyjyo6bNYgojwDoRy0UNoa99oI--f-MXqDtzknvKD3q9g-foptO0CUnEbaDNmeTuXkGEHOWPff7GKOv1-06_gCfpZPX |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLamIQ24QPxTGGAk4C5aHcexI4QQMKqV0QkhJu0ucxy7DLVJ6Y-q3vEISLwNj8OTcE7ipENIqDe7ixo7cn2OP3-Jz_kOIU-lUZkTKg6klSKIEh0FGvbZwGgWJ0pYLiud7sFRfHAcvT8RJ1vkV5MLg2GVDSZWQJ2XBr-R7wHTB3LNYFHsOR8W8XG_92ryLcAKUnjS2pTTqF3k0K6W8Po2e9nfB1s_C8Peu89vDwJfYSAwQFPmQZjEWeyE4zy0SaSZyrTW3FktnEmyXIskl5InOVPOaUysk10VCSWdyPNQ5SjEBPB_SXKeYDihPJFrwV8W1Wl4ggeKscRHEdWxZZVW5dkYEAPeUEMGuKViDOo7tzVWFQT-2iH_ZcBXyeVFMdGrpR6Nzu2Kvevkmqez9HXtfzfIli1ukp2BP7C_RX4ALV1h9uWQ5nVQHzSkg099CmSZoizWstJCpBmWqqDjEsxejrHKl6Feh-gL_f39J21KMtDn1Cd2wbVuZUVpWVBfAGMY4M6c0-qP09liYqcBPMovsdvk-EJMdIdsF2Vh7xGquTEuCxMHNCyy4JdCWTxHNGHeZU7pDpHN_KfGK6RjoY5R2oTCfU3XlkvRcmltuQ5hbc9JrRKyQZ83aOK2Pep8Vz-U02HqYSN1TsQy67o8MyoyFsi8xQpuKnLGSslgyEnjIGmTSgvgDw8622AAL9q-nm7VNGrD3ruNP6Ye9mbpepF2yJP2NgAWnkLpwpYLaCMwGRxYObS5W_txOwc8khwoPu-QsHXsjSf0_v9H9JjsAGCkH_pHhw_IFeyHUUlM7JLt-XRhHwK3nGePqkVMyelFo8YfqcaRcQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKVuJx4FlgoSAjIW6u4jiOHXEqiKogbQWIlcop8rMUdpNVu1FVTvwEJP4hv4Rx4gQWJLRwy2Y9lmN7PJ81M98g9FgYqT2XORFOcJIVKiMK7CwxiuaF5I6Jlqd7cpDvT7NXh_xwAyV9LsyK_76Nw2p5HY_noF1wm0sp6LjMpbiANnMO6HuENqcHr3fft05NzoikbS0PmoQShFz0wTt_62rFIrXE_SuG6U_geQVdaqqFOj9Ts9kvxmjvGnrTf0YXg_Jpp1nqHfP5N4bHf_nO6-hqRKZ4t9tKN9CGq26ii5Poe7-FvgLCPA-JlEfYdvF50BBP3r7EgHtxYLg6a2kNsQ5VJ_C8hhWs56Fgl8GRUugD_v7lG-6rK-AnOOZowbMaGEJxXeFYy-KIBCNrcTtefNos3AmBrqK2bKHp3ot3z_dJrOdADIDCJUmLXOeee8ZSV2SKSq2UYt4p7k2hreKFFYIVlkrvVUhjFInMuBSeW5tKW7DbaFTVlbuLsGLGeJ0WHhBV5mCLcemCS9CkNqFeqjES_ZqWJpKdh5obs7KPavtY_pzwMkx42U34GNFBctERfqwh8yxsm6F9oOxuX8AKl_EEKL3nudCJt9rIzDjA5S4UY5OZN04ICkMu-k1X9lmxcI5DR8drDODpIBuRU4eI1pTe7vd4GU-w0xJu1nCZpWCExujR8DecPcGhpCpXN9CGh7xuANjQ5k6nG8McsEwwQOtsjNJBWdae0Hv_I3QfXQ6_QqwR5dtotDxp3ANAjEv9MB4SPwD0WGrB |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recycling+diagnostic+MRI+for+empowering+brain+morphometric+research+%E2%80%93+Critical+%26+practical+assessment+on+learning-based+image+super-resolution&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Liu%2C+Gaoping&rft.au=Cao%2C+Zehong&rft.au=Xu%2C+Qiang&rft.au=Zhang%2C+Qirui&rft.date=2021-12-15&rft.issn=1053-8119&rft.volume=245&rft.spage=118687&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118687&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2021_118687 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |