Recycling diagnostic MRI for empowering brain morphometric research – Critical & practical assessment on learning-based image super-resolution

Preliminary studies have shown the feasibility of deep learning (DL)-based super-resolution (SR) technique for reconstructing thick-slice/gap diagnostic MR images into high-resolution isotropic data, which would be of great significance for brain research field if the vast amount of diagnostic MRI d...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 245; p. 118687
Main Authors Liu, Gaoping, Cao, Zehong, Xu, Qiang, Zhang, Qirui, Yang, Fang, Xie, Xinyu, Hao, Jingru, Shi, Yinghuan, Bernhardt, Boris C., He, Yichu, Shi, Feng, Lu, Guangming, Zhang, Zhiqiang
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.12.2021
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2021.118687

Cover

Abstract Preliminary studies have shown the feasibility of deep learning (DL)-based super-resolution (SR) technique for reconstructing thick-slice/gap diagnostic MR images into high-resolution isotropic data, which would be of great significance for brain research field if the vast amount of diagnostic MRI data could be successively put into brain morphometric study. However, less evidence has addressed the practicability of the strategy, because lack of a large-sample available real data for constructing DL model. In this work, we employed a large cohort (n = 2052) of peculiar data with both low through-plane resolution diagnostic and high-resolution isotropic brain MR images from identical subjects. By leveraging a series of SR approaches, including a proposed novel DL algorithm of Structure Constrained Super Resolution Network (SCSRN), the diagnostic images were transformed to high-resolution isotropic data to meet the criteria of brain research in voxel-based and surface-based morphometric analyses. We comprehensively assessed image quality and the practicability of the reconstructed data in a variety of morphometric analysis scenarios. We further compared the performance of SR approaches to the ground truth high-resolution isotropic data. The results showed (i) DL-based SR algorithms generally improve the quality of diagnostic images and render morphometric analysis more accurate, especially, with the most superior performance of the novel approach of SCSRN. (ii) Accuracies vary across brain structures and methods, and (iii) performance increases were higher for voxel than for surface based approaches. This study supports that DL-based image super-resolution potentially recycle huge amount of routine diagnostic brain MRI deposited in sleeping state, and turning them into useful data for neurometric research.
AbstractList Preliminary studies have shown the feasibility of deep learning (DL)-based super-resolution (SR) technique for reconstructing thick-slice/gap diagnostic MR images into high-resolution isotropic data, which would be of great significance for brain research field if the vast amount of diagnostic MRI data could be successively put into brain morphometric study. However, less evidence has addressed the practicability of the strategy, because lack of a large-sample available real data for constructing DL model. In this work, we employed a large cohort (n = 2052) of peculiar data with both low through-plane resolution diagnostic and high-resolution isotropic brain MR images from identical subjects. By leveraging a series of SR approaches, including a proposed novel DL algorithm of Structure Constrained Super Resolution Network (SCSRN), the diagnostic images were transformed to high-resolution isotropic data to meet the criteria of brain research in voxel-based and surface-based morphometric analyses. We comprehensively assessed image quality and the practicability of the reconstructed data in a variety of morphometric analysis scenarios. We further compared the performance of SR approaches to the ground truth high-resolution isotropic data. The results showed (i) DL-based SR algorithms generally improve the quality of diagnostic images and render morphometric analysis more accurate, especially, with the most superior performance of the novel approach of SCSRN. (ii) Accuracies vary across brain structures and methods, and (iii) performance increases were higher for voxel than for surface based approaches. This study supports that DL-based image super-resolution potentially recycle huge amount of routine diagnostic brain MRI deposited in sleeping state, and turning them into useful data for neurometric research.Preliminary studies have shown the feasibility of deep learning (DL)-based super-resolution (SR) technique for reconstructing thick-slice/gap diagnostic MR images into high-resolution isotropic data, which would be of great significance for brain research field if the vast amount of diagnostic MRI data could be successively put into brain morphometric study. However, less evidence has addressed the practicability of the strategy, because lack of a large-sample available real data for constructing DL model. In this work, we employed a large cohort (n = 2052) of peculiar data with both low through-plane resolution diagnostic and high-resolution isotropic brain MR images from identical subjects. By leveraging a series of SR approaches, including a proposed novel DL algorithm of Structure Constrained Super Resolution Network (SCSRN), the diagnostic images were transformed to high-resolution isotropic data to meet the criteria of brain research in voxel-based and surface-based morphometric analyses. We comprehensively assessed image quality and the practicability of the reconstructed data in a variety of morphometric analysis scenarios. We further compared the performance of SR approaches to the ground truth high-resolution isotropic data. The results showed (i) DL-based SR algorithms generally improve the quality of diagnostic images and render morphometric analysis more accurate, especially, with the most superior performance of the novel approach of SCSRN. (ii) Accuracies vary across brain structures and methods, and (iii) performance increases were higher for voxel than for surface based approaches. This study supports that DL-based image super-resolution potentially recycle huge amount of routine diagnostic brain MRI deposited in sleeping state, and turning them into useful data for neurometric research.
Preliminary studies have shown the feasibility of deep learning (DL)-based super-resolution (SR) technique for reconstructing thick-slice/gap diagnostic MR images into high-resolution isotropic data, which would be of great significance for brain research field if the vast amount of diagnostic MRI data could be successively put into brain morphometric study. However, less evidence has addressed the practicability of the strategy, because lack of a large-sample available real data for constructing DL model. In this work, we employed a large cohort (n = 2052) of peculiar data with both low through-plane resolution diagnostic and high-resolution isotropic brain MR images from identical subjects. By leveraging a series of SR approaches, including a proposed novel DL algorithm of Structure Constrained Super Resolution Network (SCSRN), the diagnostic images were transformed to high-resolution isotropic data to meet the criteria of brain research in voxel-based and surface-based morphometric analyses. We comprehensively assessed image quality and the practicability of the reconstructed data in a variety of morphometric analysis scenarios. We further compared the performance of SR approaches to the ground truth high-resolution isotropic data. The results showed (i) DL-based SR algorithms generally improve the quality of diagnostic images and render morphometric analysis more accurate, especially, with the most superior performance of the novel approach of SCSRN. (ii) Accuracies vary across brain structures and methods, and (iii) performance increases were higher for voxel than for surface based approaches. This study supports that DL-based image super-resolution potentially recycle huge amount of routine diagnostic brain MRI deposited in sleeping state, and turning them into useful data for neurometric research.
Preliminary studies have shown the feasibility of deep learning (DL)-based super-resolution (SR) technique for reconstructing thick-slice/gap diagnostic MR images into high-resolution isotropic data, which would be of great significance for brain research field if the vast amount of diagnostic MRI data could be successively put into brain morphometric study. However, less evidence has addressed the practicability of the strategy, because lack of a large-sample available real data for constructing DL model. In this work, we employed a large cohort (n = 2052) of peculiar data with both low through-plane resolution diagnostic and high-resolution isotropic brain MR images from identical subjects. By leveraging a series of SR approaches, including a proposed novel DL algorithm of Structure Constrained Super Resolution Network (SCSRN), the diagnostic images were transformed to high-resolution isotropic data to meet the criteria of brain research in voxel-based and surface-based morphometric analyses. We comprehensively assessed image quality and the practicability of the reconstructed data in a variety of morphometric analysis scenarios. We further compared the performance of SR approaches to the ground truth high-resolution isotropic data. The results showed (i) DL-based SR algorithms generally improve the quality of diagnostic images and render morphometric analysis more accurate, especially, with the most superior performance of the novel approach of SCSRN. (ii) Accuracies vary across brain structures and methods, and (iii) performance increases were higher for voxel than for surface based approaches. This study supports that DL-based image super-resolution potentially recycle huge amount of routine diagnostic brain MRI deposited in sleeping state, and turning them into useful data for neurometric research.
ArticleNumber 118687
Author Shi, Yinghuan
Lu, Guangming
Hao, Jingru
Zhang, Qirui
Xie, Xinyu
Liu, Gaoping
Xu, Qiang
Shi, Feng
He, Yichu
Bernhardt, Boris C.
Zhang, Zhiqiang
Cao, Zehong
Yang, Fang
Author_xml – sequence: 1
  givenname: Gaoping
  surname: Liu
  fullname: Liu, Gaoping
  organization: Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, #305 East Zhongshan Rd, Nanjing, Jiangsu 210002, China
– sequence: 2
  givenname: Zehong
  surname: Cao
  fullname: Cao, Zehong
  organization: Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
– sequence: 3
  givenname: Qiang
  surname: Xu
  fullname: Xu, Qiang
  organization: Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, #305 East Zhongshan Rd, Nanjing, Jiangsu 210002, China
– sequence: 4
  givenname: Qirui
  surname: Zhang
  fullname: Zhang, Qirui
  organization: Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, #305 East Zhongshan Rd, Nanjing, Jiangsu 210002, China
– sequence: 5
  givenname: Fang
  surname: Yang
  fullname: Yang, Fang
  organization: Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
– sequence: 6
  givenname: Xinyu
  surname: Xie
  fullname: Xie, Xinyu
  organization: Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, #305 East Zhongshan Rd, Nanjing, Jiangsu 210002, China
– sequence: 7
  givenname: Jingru
  surname: Hao
  fullname: Hao, Jingru
  organization: Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, #305 East Zhongshan Rd, Nanjing, Jiangsu 210002, China
– sequence: 8
  givenname: Yinghuan
  surname: Shi
  fullname: Shi, Yinghuan
  organization: Department of Computer Science and Technology, Nanjing University, Nanjing 210046, China
– sequence: 9
  givenname: Boris C.
  surname: Bernhardt
  fullname: Bernhardt, Boris C.
  organization: Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
– sequence: 10
  givenname: Yichu
  surname: He
  fullname: He, Yichu
  organization: Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
– sequence: 11
  givenname: Feng
  surname: Shi
  fullname: Shi, Feng
  email: feng.shi@uii-ai.com
  organization: Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
– sequence: 12
  givenname: Guangming
  surname: Lu
  fullname: Lu, Guangming
  email: cjr.luguangming@vip.163.com
  organization: Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, #305 East Zhongshan Rd, Nanjing, Jiangsu 210002, China
– sequence: 13
  givenname: Zhiqiang
  surname: Zhang
  fullname: Zhang, Zhiqiang
  email: zhangzq2001@126.com
  organization: Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, #305 East Zhongshan Rd, Nanjing, Jiangsu 210002, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34732323$$D View this record in MEDLINE/PubMed
BookMark eNqVkt2K1TAQx4usuB_6ChIQxJsem7ZpkxtxPfhxYEVY9DpM08nZHNukJq3LufMRBN_QJzHdriucq5VcZEj-82Nm_nOaHFlnMUkIzVY0o9XL3cri5J3pYYurPMvpilJe8fpBckIzwVLB6vxojlmRckrFcXIawi7LMkFL_ig5Lsq6yOM5SX5eotqrztgtaQ1srQujUeTj5YZo5wn2g7tGP_82HowlvfPDletx9FHlMSB4dUV-__hF1t7ETOjIczJ4UEsMIWAIPdqROEu6qLaRlTYQsCU31ZMwDejTiHLdNBpnHycPNXQBn9zeZ8mXd28_rz-kF5_eb9bnF6liNRvTXFRNpZkuihxFCZQ3AFBoBKaVaFpgoq3rQrSUaw2CxdlkvGS81qxtc96K4izZLNzWwU4OPlbj99KBkTcPzm8l-NhFh1JrVtVNpttG8VKhEBQV5sBLrbCuKUSWWFiTHWB_DV13B6SZnB2TO_nPMTk7JhfHYu6LJXfw7tuEYZS9CQq7Diy6KciciYIJkQsepc8OpDs3eRunJPOKspLTjM-qp7eqqemxvavkr-dR8GoRKO9C8KilMiPMsx-jx919SuYHgP_o9s2SitHa7wa9DMqgVdgaj2qMszf3gbw-gMwLPC_cV9zfD_EHnd8LtA
CitedBy_id crossref_primary_10_1007_s00371_023_02938_3
crossref_primary_10_1002_hbm_26126
crossref_primary_10_1148_ryai_220061
crossref_primary_10_1016_j_ebiom_2023_104541
Cites_doi 10.1016/S0140-6736(03)14842-8
10.1002/mp.13717
10.1109/TIP.2010.2050625
10.1109/34.232073
10.1037/1082-989X.1.1.30
10.1016/j.neurobiolaging.2006.05.018
10.1523/JNEUROSCI.3550-16.2017
10.1093/cercor/bhaa237
10.1038/mp.2016.60
10.1002/alz.12178
10.1016/j.pnpbp.2011.01.005
10.1016/j.neunet.2020.01.029
10.1002/hbm.23415
10.1073/pnas.1003109107
10.1093/cercor/bhx249
10.1056/NEJMra1004418
10.1016/j.irbm.2020.08.004
10.1016/j.neuroimage.2013.05.054
10.1016/j.patcog.2016.06.008
10.1371/journal.pone.0028817
10.1109/TMI.2015.2437894
10.1006/cbmr.1996.0014
10.1016/j.neuroimage.2009.06.074
10.4249/scholarpedia.2046
10.1016/j.patcog.2016.09.019
10.1002/mrm.27178
10.1109/TPAMI.2015.2439281
10.1073/pnas.0504136102
10.1109/JBHI.2018.2843819
10.1016/S1474-4422(06)70353-2
10.1016/j.neuroimage.2011.09.015
10.1007/s11682-019-00172-x
10.1111/epi.16853
10.1016/j.compbiomed.2020.103755
10.1006/nimg.2000.0582
10.2307/1932409
10.1016/j.compmedimag.2019.101647
10.2174/1573405054038726
10.1016/j.neuroimage.2012.01.021
10.3389/fnins.2012.00171
10.1007/s00330-016-4531-z
10.1006/nimg.2001.0857
10.1111/epi.15612
10.1038/nrn3465
10.1111/epi.12220
10.1111/j.1528-1167.2007.01485.x
10.1111/j.1528-1167.2005.47604.x
10.1016/j.neuroimage.2021.118206
10.1006/nimg.2001.0978
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
2021. The Author(s)
Copyright_xml – notice: 2021 The Author(s)
– notice: Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2021. The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
ADTOC
UNPAY
DOA
DOI 10.1016/j.neuroimage.2021.118687
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


ProQuest One Psychology

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_ff567b0fdbc84ce991ece2a84fce771a
10.1016/j.neuroimage.2021.118687
34732323
10_1016_j_neuroimage_2021_118687
S1053811921009605
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SNS
ZA5
29N
53G
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFLBG
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
SEW
WUQ
XPP
ZMT
0SF
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c575t-296b6f5f332e94a18baaa3fea5fc9bda59d7739d18ffa95687084587f5dd28d93
IEDL.DBID UNPAY
ISSN 1053-8119
1095-9572
IngestDate Tue Oct 14 19:03:56 EDT 2025
Tue Aug 19 18:43:11 EDT 2025
Sat Sep 27 20:25:26 EDT 2025
Tue Oct 07 07:12:32 EDT 2025
Wed Feb 19 02:27:13 EST 2025
Sat Oct 25 05:05:02 EDT 2025
Thu Apr 24 23:08:42 EDT 2025
Fri Feb 23 02:40:24 EST 2024
Tue Oct 14 19:35:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Brain MRI
Practical assessment
Deep-learning
Morphometric analysis
Image super-resolution
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-296b6f5f332e94a18baaa3fea5fc9bda59d7739d18ffa95687084587f5dd28d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.neuroimage.2021.118687
PMID 34732323
PQID 2615481088
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_ff567b0fdbc84ce991ece2a84fce771a
unpaywall_primary_10_1016_j_neuroimage_2021_118687
proquest_miscellaneous_2593599298
proquest_journals_2615481088
pubmed_primary_34732323
crossref_citationtrail_10_1016_j_neuroimage_2021_118687
crossref_primary_10_1016_j_neuroimage_2021_118687
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118687
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118687
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Ashburner, Friston (bib0002) 2000; 11
Bernasconi, Cendes, Theodore, Gill, Koepp, Hogan, Jackson, Federico, Labate, Vaudano, Blümcke, Ryvlin, Bernasconi (bib0003) 2019; 60
Schmaal, Hibar, Sämann, Hall, Baune, Jahanshad, Cheung, van Erp, Bos, Ikram, Vernooij, Niessen, Tiemeier, Hofman, Wittfeld, Grabe, Janowitz, Bülow, Selonke, Völzke, Grotegerd, Dannlowski, Arolt, Opel, Heindel, Kugel, Hoehn, Czisch, Couvy-Duchesne, Rentería, Strike, Wright, Mills, de Zubicaray, McMahon, Medland, Martin, Gillespie, Goya-Maldonado, Gruber, Krämer, Hatton, Lagopoulos, Hickie, Frodl, Carballedo, Frey, van Velzen, Penninx, van Tol, van der Wee, Davey, Harrison, Mwangi, Cao, Soares, Veer, Walter, Schoepf, Zurowski, Konrad, Schramm, Normann, Schnell, Sacchet, Gotlib, MacQueen, Godlewska, Nickson, McIntosh, Papmeyer, Whalley, Hall, Sussmann, Li, Walter, Aftanas, Brack, Bokhan, Thompson, Veltman (bib0046) 2017; 22
Zhang, Yang, Hu, Zhang, Xu, Dante, Wu, Li, Li, Li, Lu (bib0063) 2017; 27
Evans (bib0018) 2013; 80
Klein, Tourville (bib0031) 2012; 6
Siu, W.C., Hung, K.W., 2012. Review of image interpolation and super-resolution.
Zhang, Zhang, Xiang, Shao, Wu, Zhou, Shen, Wang (bib0062) 2017; 63
Pham, Tor-Diez, Meunier, Bednarek, Fablet, Passat, Rousseau (bib0044) 2019; 77
Kim, Lee, Lee (bib0030) 2016
Song, Chowdhury, Yang, Dutta (bib0052) 2020; 125
Blumcke, Thom, Aronica, Armstrong, Bartolomei, Bernasconi, Bernasconi, Bien, Cendes, Coras, Cross, Jacques, Kahane, Mathern, Miyata, Moshe, Oz, Ozkara, Perucca, Sisodiya, Wiebe, Spreafico (bib0004) 2013; 54
Xiao, Cheng, Li, Wang, Zhang, Wei, Zhan, Zhou, Xue, Lu, Shi (bib0059) 2019
Yeganeh, Rostami, Wang (bib0061) 2012
Korteweg, Tintoré, Uitdehaag, Rovira, Frederiksen, Miller, Fernando, Filippi, Agosta, Rocca, Fazekas, Enzinger, Matthews, Parry, Polman, Montalban, Barkhof (bib0033) 2006; 5
Mechelli, Price, Friston, Ashburner (bib0042) 2005; 1
Dong, Loy, He, Tang (bib0015) 2014
Ledig, Theis, Huszár, Caballero, Cunningham, Acosta, Aitken, Tejani, Totz, Wang, Shi (bib0035) 2017
Delannoy, Chi-Hieu, Cazorla, Tor-Diez, Dolle, Meunier, Bednarek, Fablet, Passat, Rousseau (bib0013) 2020; 120
Li, Yang, Liu, Yang, Jeon, Wu, Soc (bib0038) 2019
Zhang, Liao, Xu, Wei, Zhou, Sun, Yang, Mantini, Ji, Lu (bib0065) 2017; 38
Good, Johnsrude, Ashburner, Henson, Friston, Frackowiak (bib0023) 2001; 14
Chen, Shi, Christodoulou, Xie, Zhou, Li (bib0007) 2018
Jog, Carass, Prince (bib0028) 2016
Shi, Cheng, Wang, Yap, Shen (bib0048) 2015; 34
Crespo-Facorro, Roiz-Santianez, Perez-Iglesias, Mata, Manuel Rodriguez-Sanchez, Tordesillas-Gutierrez, Ortiz-Garcia de la Foz, Tabares-Seisdedos, Sanchez, Andreasen, Magnotta, Luis Vazquez-Barquero (bib0011) 2011; 35
Shi, Li, Ying, Wang, Liu, Zhang, Yan (bib0049) 2019; 23
Dong, Loy, Tang (bib0017) 2016
Gennatas, Avants, Wolf, Satterthwaite, Ruparel, Ciric, Hakonarson, Gur, Gur (bib0022) 2017; 37
Jenkinson, Beckmann, Behrens, Woolrich, Smith (bib0027) 2012; 62
Li, Liu, Guo, Wang, Kang, Xu, Xi, Wang, Zhu, Yin (bib0036) 2020; 14
Keller, Roberts (bib0029) 2008; 49
McGraw, Wong (bib0041) 1996; 1
Iglesias, Billot, Balbastre, Tabari, Conklin, Gilberto Gonzalez, Alexander, Golland, Edlow, Fischl (bib0026) 2021; 237
Smith, Chebrolu, Wekstein, Schmitt, Markesbery (bib0051) 2007; 28
Umehara, Ota, Ishimaru, Ohno, Okamoto, Suzuki, Shirai, Ishida (bib0056) 2017
Fischl (bib0019) 2012; 62
Tian, Bilgic, Fan, Ngamsombat, Zaretskaya, Fultz, Ohringer, Chaudhari, Hu, Witzel, Setsompop, Polimeni, Huang (bib0054) 2021; 31
Sowell, Thompson, Welcome, Henkenius, Toga, Peterson (bib0053) 2003; 362
Chen, Xie, Zhou, Shi, Christodoulou, Li (bib0008) 2018
Wang, Yu, Wu, Gu, Liu, Dong, Qiao, Loy (bib0058) 2019
Salat, Lee, Van Der Kouwe, Greve, Fischl, Rosas (bib0045) 2009; 48
Zielinski, Gennatas, Zhou, Seeley (bib0066) 2010; 107
Lore, Akintayo, Sarkar (bib0040) 2017; 61
Schultz (bib0047) 2007; 2
Zhang, Liao, Zuo, Wang, Yuan, Jiao, Chen, Biswal, Lu, Liu (bib0064) 2011; 6
Cox (bib0010) 1996; 29
Alexander-Bloch, Giedd, Bullmore (bib0001) 2013; 14
Huttenlocher, Klanderman, Rucklidge (bib0025) 1993; 15
Briellmann, Wellard, Jackson (bib0005) 2005; 46
Yang, Wright, Huang, Ma (bib0060) 2010; 19
Habes, Pomponio, Shou, Doshi, Mamourian, Erus, Nasrallah, Launer, Rashid, Bilgel, Fan, Toledo, Yaffe, Sotiras, Srinivasan, Espeland, Masters, Maruff, Fripp, Völzk, Johnson, Morris, Albert, Miller, Bryan, Grabe, Resnick, Wolk, Davatzikos (bib0024) 2021; 17
Li, Sixou, Peyrin (bib0037) 2021; 42
Chun, Zhang, Gach, Olberg, Mazur, Green, Kim, Kim, Kim, Mutic, Park (bib0009) 2019; 46
Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (bib0020) 2005; 102
Gao, Li, Dong, Feng (bib0021) 2017
Patil, Bormane (bib0043) 2007
David, Kröll-Seger, Schuch, Wagner, Wellmer, Woermann, Oehl, Van Paesschen, Breyer, Becker, Vatter, Hattingen, Urbach, Weber, Surges, Elger, Huppertz, Rüber (bib0012) 2021; 62
Kochunov, Hong, Dennis, Morey, Tate, Wilde, Logue, Kelly, Donohoe, Favre, Houenou, Ching, Holleran, Andreassen, van Velzen, Schmaal, Villalón-Reina, Bearden, Piras, Spalletta, van den Heuvel, Veltman, Stein, Ryan, Tan, van Erp, Turner, Haddad, Nir, Glahn, Thompson, Jahanshad (bib0032) 2020
Vasa, Seidlitz, Romero-Garcia, Whitaker, Rosenthal, Vertes, Shinn, Alexander-Bloch, Fonagy, Dolan, Jones, Goodyer, consortium, Sporns, Bullmore (bib0057) 2018; 28
Kwan, Schachter, Brodie (bib0034) 2011; 365
Dice (bib0014) 1945; 26
Chaudhari, Fang, Kogan, Wood, Stevens, Gibbons, Lee, Gold, Hargreaves (bib0006) 2018; 80
Dong, Loy, He, Tang (bib0016) 2016; 38
Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib0055) 2002; 15
Lim, Son, Kim, Nah, Lee (bib0039) 2017
Li (10.1016/j.neuroimage.2021.118687_bib0036) 2020; 14
Smith (10.1016/j.neuroimage.2021.118687_bib0051) 2007; 28
Keller (10.1016/j.neuroimage.2021.118687_bib0029) 2008; 49
Zielinski (10.1016/j.neuroimage.2021.118687_bib0066) 2010; 107
Gennatas (10.1016/j.neuroimage.2021.118687_bib0022) 2017; 37
Lore (10.1016/j.neuroimage.2021.118687_bib0040) 2017; 61
Delannoy (10.1016/j.neuroimage.2021.118687_bib0013) 2020; 120
Chen (10.1016/j.neuroimage.2021.118687_bib0007) 2018
Dong (10.1016/j.neuroimage.2021.118687_bib0017) 2016
Korteweg (10.1016/j.neuroimage.2021.118687_bib0033) 2006; 5
Blumcke (10.1016/j.neuroimage.2021.118687_bib0004) 2013; 54
Kwan (10.1016/j.neuroimage.2021.118687_bib0034) 2011; 365
Zhang (10.1016/j.neuroimage.2021.118687_bib0064) 2011; 6
Dong (10.1016/j.neuroimage.2021.118687_bib0016) 2016; 38
Jenkinson (10.1016/j.neuroimage.2021.118687_bib0027) 2012; 62
Lim (10.1016/j.neuroimage.2021.118687_bib0039) 2017
Bernasconi (10.1016/j.neuroimage.2021.118687_bib0003) 2019; 60
Shi (10.1016/j.neuroimage.2021.118687_bib0048) 2015; 34
Shi (10.1016/j.neuroimage.2021.118687_bib0049) 2019; 23
Mechelli (10.1016/j.neuroimage.2021.118687_bib0042) 2005; 1
Schultz (10.1016/j.neuroimage.2021.118687_bib0047) 2007; 2
Zhang (10.1016/j.neuroimage.2021.118687_bib0065) 2017; 38
Tian (10.1016/j.neuroimage.2021.118687_bib0054) 2021; 31
Xiao (10.1016/j.neuroimage.2021.118687_bib0059) 2019
Pham (10.1016/j.neuroimage.2021.118687_bib0044) 2019; 77
Zhang (10.1016/j.neuroimage.2021.118687_bib0062) 2017; 63
Huttenlocher (10.1016/j.neuroimage.2021.118687_bib0025) 1993; 15
Alexander-Bloch (10.1016/j.neuroimage.2021.118687_bib0001) 2013; 14
10.1016/j.neuroimage.2021.118687_bib0050
Wang (10.1016/j.neuroimage.2021.118687_bib0058) 2019
Chun (10.1016/j.neuroimage.2021.118687_bib0009) 2019; 46
Zhang (10.1016/j.neuroimage.2021.118687_bib0063) 2017; 27
Ledig (10.1016/j.neuroimage.2021.118687_bib0035) 2017
Yang (10.1016/j.neuroimage.2021.118687_bib0060) 2010; 19
Jog (10.1016/j.neuroimage.2021.118687_bib0028) 2016
Song (10.1016/j.neuroimage.2021.118687_bib0052) 2020; 125
McGraw (10.1016/j.neuroimage.2021.118687_bib0041) 1996; 1
Salat (10.1016/j.neuroimage.2021.118687_bib0045) 2009; 48
Schmaal (10.1016/j.neuroimage.2021.118687_bib0046) 2017; 22
Umehara (10.1016/j.neuroimage.2021.118687_bib0056) 2017
Dong (10.1016/j.neuroimage.2021.118687_bib0015) 2014
Vasa (10.1016/j.neuroimage.2021.118687_bib0057) 2018; 28
Habes (10.1016/j.neuroimage.2021.118687_bib0024) 2021; 17
Tzourio-Mazoyer (10.1016/j.neuroimage.2021.118687_bib0055) 2002; 15
Chaudhari (10.1016/j.neuroimage.2021.118687_bib0006) 2018; 80
David (10.1016/j.neuroimage.2021.118687_bib0012) 2021; 62
Ashburner (10.1016/j.neuroimage.2021.118687_bib0002) 2000; 11
Good (10.1016/j.neuroimage.2021.118687_bib0023) 2001; 14
Evans (10.1016/j.neuroimage.2021.118687_bib0018) 2013; 80
Kochunov (10.1016/j.neuroimage.2021.118687_bib0032) 2020
Patil (10.1016/j.neuroimage.2021.118687_bib0043) 2007
Sowell (10.1016/j.neuroimage.2021.118687_bib0053) 2003; 362
Fischl (10.1016/j.neuroimage.2021.118687_bib0019) 2012; 62
Li (10.1016/j.neuroimage.2021.118687_bib0037) 2021; 42
Kim (10.1016/j.neuroimage.2021.118687_bib0030) 2016
Crespo-Facorro (10.1016/j.neuroimage.2021.118687_bib0011) 2011; 35
Klein (10.1016/j.neuroimage.2021.118687_bib0031) 2012; 6
Fox (10.1016/j.neuroimage.2021.118687_bib0020) 2005; 102
Li (10.1016/j.neuroimage.2021.118687_bib0038) 2019
Briellmann (10.1016/j.neuroimage.2021.118687_bib0005) 2005; 46
Cox (10.1016/j.neuroimage.2021.118687_bib0010) 1996; 29
Gao (10.1016/j.neuroimage.2021.118687_bib0021) 2017
Yeganeh (10.1016/j.neuroimage.2021.118687_bib0061) 2012
Dice (10.1016/j.neuroimage.2021.118687_bib0014) 1945; 26
Chen (10.1016/j.neuroimage.2021.118687_bib0008) 2018
Iglesias (10.1016/j.neuroimage.2021.118687_bib0026) 2021; 237
References_xml – volume: 29
  start-page: 162
  year: 1996
  end-page: 173
  ident: bib0010
  article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Comput. Biomed. Res.
– start-page: 184
  year: 2014
  end-page: 199
  ident: bib0015
  article-title: Learning a deep convolutional network for image super-resolution
  publication-title: Computer Vision - ECCV 2014
– volume: 125
  start-page: 83
  year: 2020
  end-page: 91
  ident: bib0052
  article-title: PET image super-resolution using generative adversarial networks
  publication-title: Neural Netw.
– start-page: 63
  year: 2019
  end-page: 79
  ident: bib0058
  article-title: ESRGAN: enhanced super-resolution generative adversarial networks
  publication-title: Computer Vision – ECCV 2018 Workshops
– start-page: 91
  year: 2018
  end-page: 99
  ident: bib0007
  article-title: Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018
– volume: 15
  start-page: 850
  year: 1993
  end-page: 863
  ident: bib0025
  article-title: Comparing images using the hausdorff distance
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1481
  year: 2012
  end-page: 1484
  ident: bib0061
  article-title: Objective quality assessment for image super-resolution: a natural scene statistics approach
  publication-title: Proceedings of the 19th IEEE International Conference on Image Processing
– volume: 60
  start-page: 1054
  year: 2019
  end-page: 1068
  ident: bib0003
  article-title: Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: a consensus report from the international league against epilepsy neuroimaging task force
  publication-title: Epilepsia
– volume: 77
  start-page: 15
  year: 2019
  ident: bib0044
  article-title: Multiscale brain MRI super-resolution using deep 3D convolutional networks
  publication-title: Comput. Med. Imaging Graph.
– volume: 38
  start-page: 295
  year: 2016
  end-page: 307
  ident: bib0016
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 1
  start-page: 30
  year: 1996
  end-page: 46
  ident: bib0041
  article-title: Forming inferences about some intraclass correlation coefficients
  publication-title: Psychol. Methods
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  ident: bib0027
  article-title: FSL
  publication-title: Neuroimage
– volume: 14
  start-page: 2224
  year: 2020
  end-page: 2231
  ident: bib0036
  article-title: Voxel-based morphometry results in first-episode schizophrenia: a comparison of publicly available software packages
  publication-title: Brain Imaging Behav.
– year: 2007
  ident: bib0043
  article-title: Interpolation For Super Resolution Imaging
– volume: 19
  start-page: 2861
  year: 2010
  end-page: 2873
  ident: bib0060
  article-title: Image super-resolution via sparse representation
  publication-title: IEEE Trans. Image Process.
– volume: 35
  start-page: 616
  year: 2011
  end-page: 623
  ident: bib0011
  article-title: Sex-specific variation of MRI-based cortical morphometry in adult healthy volunteers: the effect on cognitive functioning
  publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry
– year: 2017
  ident: bib0021
  article-title: A Deep Convolutional Network for Medical Image Super-resolution
– volume: 5
  start-page: 221
  year: 2006
  end-page: 227
  ident: bib0033
  article-title: MRI criteria for dissemination in space in patients with clinically isolated syndromes: a multicentre follow-up study
  publication-title: Lancet Neurol.
– start-page: 739
  year: 2018
  end-page: 742
  ident: bib0008
  article-title: Brain MRI super resolution using 3D deep densely connected neural networks
  publication-title: Proceedings of the IEEE 15th International Symposium on Biomedical Imaging
– volume: 17
  start-page: 89
  year: 2021
  end-page: 102
  ident: bib0024
  article-title: The brain chart of aging: machine-learning analytics reveals links between brain aging, white matter disease, amyloid burden, and cognition in the iSTAGING consortium of 10,216 harmonized MR scans
  publication-title: Alzheimers Dement.
– volume: 6
  year: 2012
  ident: bib0031
  article-title: 101 labeled brain images and a consistent human cortical labeling protocol
  publication-title: Front. Neurosci.
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  ident: bib0019
  article-title: FreeSurfer
  publication-title: Neuroimage
– volume: 362
  start-page: 1699
  year: 2003
  end-page: 1707
  ident: bib0053
  article-title: Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder
  publication-title: Lancet
– volume: 80
  start-page: 2139
  year: 2018
  end-page: 2154
  ident: bib0006
  article-title: Super-resolution musculoskeletal MRI using deep learning
  publication-title: Magn. Reson. Med.
– start-page: 553
  year: 2016
  end-page: 560
  ident: bib0028
  article-title: Self super-resolution for magnetic resonance images
  publication-title: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016
– volume: 27
  start-page: 2137
  year: 2017
  end-page: 2145
  ident: bib0063
  article-title: Resting-state fMRI revealed different brain activities responding to valproic acid and levetiracetam in benign epilepsy with central-temporal spikes
  publication-title: Eur. Radiol.
– start-page: 409
  year: 2019
  end-page: 416
  ident: bib0059
  article-title: Weakly Supervised Confidence Learning for Brain MR Image Dense Parcellation
– volume: 2
  start-page: 2046
  year: 2007
  ident: bib0047
  article-title: Signal-to-noise ratio in neuroscience
  publication-title: Scholarpedia
– volume: 22
  start-page: 900
  year: 2017
  end-page: 909
  ident: bib0046
  article-title: Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA major depressive disorder working group
  publication-title: Mol. Psychiatry
– start-page: 391
  year: 2016
  end-page: 407
  ident: bib0017
  article-title: Accelerating the super-resolution convolutional neural network
  publication-title: Computer Vision - ECCV 2016
– volume: 34
  start-page: 2459
  year: 2015
  end-page: 2466
  ident: bib0048
  article-title: LRTV: MR image super-resolution with low-rank and total variation regularizations
  publication-title: IEEE Trans. Med. Imaging
– volume: 38
  start-page: 753
  year: 2017
  end-page: 766
  ident: bib0065
  article-title: Hippocampus-associated causal network of structural covariance measuring structural damage progression in temporal lobe epilepsy
  publication-title: Hum. Brain Mapp.
– volume: 14
  start-page: 322
  year: 2013
  end-page: 336
  ident: bib0001
  article-title: Imaging structural co-variance between human brain regions
  publication-title: Nat. Rev. Neurosci.
– volume: 1
  start-page: 105
  year: 2005
  end-page: 113
  ident: bib0042
  article-title: Voxel-based morphometry of the human brain: methods and applications
  publication-title: Curr. Med. Imaging
– volume: 48
  start-page: 21
  year: 2009
  end-page: 28
  ident: bib0045
  article-title: Age-associated alterations in cortical gray and white matter signal intensity and gray to white matter contrast
  publication-title: Neuroimage
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: bib0014
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 37
  start-page: 5065
  year: 2017
  ident: bib0022
  article-title: Age-related effects and sex differences in gray matter density, volume, mass, and cortical thickness from childhood to young adulthood
  publication-title: J. Neurosci.
– start-page: 1132
  year: 2017
  end-page: 1140
  ident: bib0039
  article-title: Enhanced deep residual networks for single image super-resolution
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
– volume: 31
  start-page: 463
  year: 2021
  end-page: 482
  ident: bib0054
  article-title: Improving
  publication-title: Cereb. Cortex
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  ident: bib0055
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
– volume: 120
  year: 2020
  ident: bib0013
  article-title: SegSRGAN: super-resolution and segmentation using generative adversarial networks - application to neonatal brain MRI
  publication-title: Comput. Biol. Med.
– volume: 107
  start-page: 18191
  year: 2010
  end-page: 18196
  ident: bib0066
  article-title: Network-level structural covariance in the developing brain
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  ident: bib0020
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– start-page: 3862
  year: 2019
  end-page: 3871
  ident: bib0038
  article-title: Feedback network for image super-resolution
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 1646
  year: 2016
  end-page: 1654
  ident: bib0030
  article-title: Accurate image super-resolution using very deep convolutional networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 46
  start-page: 760
  year: 2005
  end-page: 766
  ident: bib0005
  article-title: Seizure-associated abnormalities in epilepsy: evidence from MR imaging
  publication-title: Epilepsia
– start-page: 105
  year: 2017
  end-page: 114
  ident: bib0035
  article-title: Photo-realistic single image super-resolution using a generative adversarial network
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 11
  start-page: 805
  year: 2000
  end-page: 821
  ident: bib0002
  article-title: Voxel-based morphometry - the methods
  publication-title: Neuroimage
– volume: 23
  start-page: 1129
  year: 2019
  end-page: 1140
  ident: bib0049
  article-title: MR image super-resolution via wide residual networks with fixed skip connection
  publication-title: IEEE J. Biomed. Health Inform.
– year: 2020
  ident: bib0032
  article-title: ENIGMA-DTI: translating reproducible white matter deficits into personalized vulnerability metrics in cross-diagnostic psychiatric research
  publication-title: Hum. Brain Mapp.
– volume: 42
  start-page: 120
  year: 2021
  end-page: 133
  ident: bib0037
  article-title: A review of the deep learning methods for medical images super resolution problems
  publication-title: IRBM
– volume: 14
  start-page: 685
  year: 2001
  end-page: 700
  ident: bib0023
  article-title: Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains
  publication-title: Neuroimage
– volume: 49
  start-page: 741
  year: 2008
  end-page: 757
  ident: bib0029
  article-title: Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature
  publication-title: Epilepsia
– volume: 365
  start-page: 919
  year: 2011
  end-page: 926
  ident: bib0034
  article-title: Drug-resistant epilepsy
  publication-title: N. Engl. J. Med.
– volume: 237
  year: 2021
  ident: bib0026
  article-title: Joint super-resolution and synthesis of 1mm isotropic MP-RAGE volumes from clinical MRI exams with scans of different orientation, resolution and contrast
  publication-title: Neuroimage
– volume: 46
  start-page: 4148
  year: 2019
  end-page: 4164
  ident: bib0009
  article-title: MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: in the presence of limited training data and unknown translation model
  publication-title: Med. Phys.
– volume: 28
  start-page: 281
  year: 2018
  end-page: 294
  ident: bib0057
  article-title: Adolescent tuning of association cortex in human structural brain networks
  publication-title: Cereb. Cortex
– volume: 62
  start-page: 1005
  year: 2021
  end-page: 1021
  ident: bib0012
  article-title: External validation of automated focal cortical dysplasia detection using morphometric analysis
  publication-title: Epilepsia
– volume: 63
  start-page: 531
  year: 2017
  end-page: 541
  ident: bib0062
  article-title: Brain atlas fusion from high-thickness diagnostic magnetic resonance images by learning-based super-resolution
  publication-title: Pattern Recognit.
– volume: 6
  start-page: e28817
  year: 2011
  ident: bib0064
  article-title: Resting-state brain organization revealed by functional covariance networks
  publication-title: PLoS ONE
– reference: Siu, W.C., Hung, K.W., 2012. Review of image interpolation and super-resolution.
– volume: 80
  start-page: 489
  year: 2013
  end-page: 504
  ident: bib0018
  article-title: Networks of anatomical covariance
  publication-title: Neuroimage
– volume: 61
  start-page: 650
  year: 2017
  end-page: 662
  ident: bib0040
  article-title: LLNet: a deep autoencoder approach to natural low-light image enhancement
  publication-title: Pattern Recognit.
– year: 2017
  ident: bib0056
  article-title: Super-resolution convolutional neural network for the improvement of the image quality of magnified images in chest radiographs
  publication-title: Medical Imaging 2017: Image Processing
– volume: 54
  start-page: 1315
  year: 2013
  end-page: 1329
  ident: bib0004
  article-title: International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE commission on diagnostic methods
  publication-title: Epilepsia
– volume: 28
  start-page: 1075
  year: 2007
  end-page: 1087
  ident: bib0051
  article-title: Age and gender effects on human brain anatomy: a voxel-based morphometric study in healthy elderly
  publication-title: Neurobiol. Aging
– volume: 362
  start-page: 1699
  year: 2003
  ident: 10.1016/j.neuroimage.2021.118687_bib0053
  article-title: Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder
  publication-title: Lancet
  doi: 10.1016/S0140-6736(03)14842-8
– volume: 46
  start-page: 4148
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118687_bib0009
  article-title: MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: in the presence of limited training data and unknown translation model
  publication-title: Med. Phys.
  doi: 10.1002/mp.13717
– volume: 19
  start-page: 2861
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118687_bib0060
  article-title: Image super-resolution via sparse representation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2050625
– volume: 15
  start-page: 850
  year: 1993
  ident: 10.1016/j.neuroimage.2021.118687_bib0025
  article-title: Comparing images using the hausdorff distance
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.232073
– start-page: 1481
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118687_bib0061
  article-title: Objective quality assessment for image super-resolution: a natural scene statistics approach
– volume: 1
  start-page: 30
  year: 1996
  ident: 10.1016/j.neuroimage.2021.118687_bib0041
  article-title: Forming inferences about some intraclass correlation coefficients
  publication-title: Psychol. Methods
  doi: 10.1037/1082-989X.1.1.30
– volume: 28
  start-page: 1075
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118687_bib0051
  article-title: Age and gender effects on human brain anatomy: a voxel-based morphometric study in healthy elderly
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2006.05.018
– volume: 37
  start-page: 5065
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118687_bib0022
  article-title: Age-related effects and sex differences in gray matter density, volume, mass, and cortical thickness from childhood to young adulthood
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3550-16.2017
– start-page: 3862
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118687_bib0038
  article-title: Feedback network for image super-resolution
– start-page: 409
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118687_bib0059
– start-page: 105
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118687_bib0035
  article-title: Photo-realistic single image super-resolution using a generative adversarial network
– volume: 31
  start-page: 463
  year: 2021
  ident: 10.1016/j.neuroimage.2021.118687_bib0054
  article-title: Improving in vivo human cerebral cortical surface reconstruction using data-driven super-resolution
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhaa237
– start-page: 553
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118687_bib0028
  article-title: Self super-resolution for magnetic resonance images
– volume: 22
  start-page: 900
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118687_bib0046
  article-title: Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA major depressive disorder working group
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2016.60
– volume: 17
  start-page: 89
  year: 2021
  ident: 10.1016/j.neuroimage.2021.118687_bib0024
  article-title: The brain chart of aging: machine-learning analytics reveals links between brain aging, white matter disease, amyloid burden, and cognition in the iSTAGING consortium of 10,216 harmonized MR scans
  publication-title: Alzheimers Dement.
  doi: 10.1002/alz.12178
– volume: 35
  start-page: 616
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118687_bib0011
  article-title: Sex-specific variation of MRI-based cortical morphometry in adult healthy volunteers: the effect on cognitive functioning
  publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry
  doi: 10.1016/j.pnpbp.2011.01.005
– volume: 125
  start-page: 83
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118687_bib0052
  article-title: PET image super-resolution using generative adversarial networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.01.029
– ident: 10.1016/j.neuroimage.2021.118687_bib0050
– volume: 38
  start-page: 753
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118687_bib0065
  article-title: Hippocampus-associated causal network of structural covariance measuring structural damage progression in temporal lobe epilepsy
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23415
– volume: 107
  start-page: 18191
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118687_bib0066
  article-title: Network-level structural covariance in the developing brain
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1003109107
– volume: 28
  start-page: 281
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118687_bib0057
  article-title: Adolescent tuning of association cortex in human structural brain networks
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhx249
– volume: 365
  start-page: 919
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118687_bib0034
  article-title: Drug-resistant epilepsy
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1004418
– volume: 42
  start-page: 120
  year: 2021
  ident: 10.1016/j.neuroimage.2021.118687_bib0037
  article-title: A review of the deep learning methods for medical images super resolution problems
  publication-title: IRBM
  doi: 10.1016/j.irbm.2020.08.004
– volume: 80
  start-page: 489
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118687_bib0018
  article-title: Networks of anatomical covariance
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.054
– volume: 61
  start-page: 650
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118687_bib0040
  article-title: LLNet: a deep autoencoder approach to natural low-light image enhancement
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.06.008
– volume: 6
  start-page: e28817
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118687_bib0064
  article-title: Resting-state brain organization revealed by functional covariance networks
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0028817
– volume: 34
  start-page: 2459
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118687_bib0048
  article-title: LRTV: MR image super-resolution with low-rank and total variation regularizations
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2437894
– volume: 29
  start-page: 162
  year: 1996
  ident: 10.1016/j.neuroimage.2021.118687_bib0010
  article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Comput. Biomed. Res.
  doi: 10.1006/cbmr.1996.0014
– volume: 48
  start-page: 21
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118687_bib0045
  article-title: Age-associated alterations in cortical gray and white matter signal intensity and gray to white matter contrast
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.06.074
– start-page: 739
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118687_bib0008
  article-title: Brain MRI super resolution using 3D deep densely connected neural networks
– volume: 2
  start-page: 2046
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118687_bib0047
  article-title: Signal-to-noise ratio in neuroscience
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.2046
– volume: 63
  start-page: 531
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118687_bib0062
  article-title: Brain atlas fusion from high-thickness diagnostic magnetic resonance images by learning-based super-resolution
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.09.019
– volume: 80
  start-page: 2139
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118687_bib0006
  article-title: Super-resolution musculoskeletal MRI using deep learning
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27178
– start-page: 91
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118687_bib0007
  article-title: Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network
– volume: 38
  start-page: 295
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118687_bib0016
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2439281
– start-page: 1646
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118687_bib0030
  article-title: Accurate image super-resolution using very deep convolutional networks
– year: 2017
  ident: 10.1016/j.neuroimage.2021.118687_bib0056
  article-title: Super-resolution convolutional neural network for the improvement of the image quality of magnified images in chest radiographs
– volume: 102
  start-page: 9673
  year: 2005
  ident: 10.1016/j.neuroimage.2021.118687_bib0020
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0504136102
– volume: 23
  start-page: 1129
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118687_bib0049
  article-title: MR image super-resolution via wide residual networks with fixed skip connection
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2843819
– volume: 5
  start-page: 221
  year: 2006
  ident: 10.1016/j.neuroimage.2021.118687_bib0033
  article-title: MRI criteria for dissemination in space in patients with clinically isolated syndromes: a multicentre follow-up study
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(06)70353-2
– start-page: 184
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118687_bib0015
  article-title: Learning a deep convolutional network for image super-resolution
– volume: 62
  start-page: 782
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118687_bib0027
  article-title: FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 14
  start-page: 2224
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118687_bib0036
  article-title: Voxel-based morphometry results in first-episode schizophrenia: a comparison of publicly available software packages
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-019-00172-x
– volume: 62
  start-page: 1005
  year: 2021
  ident: 10.1016/j.neuroimage.2021.118687_bib0012
  article-title: External validation of automated focal cortical dysplasia detection using morphometric analysis
  publication-title: Epilepsia
  doi: 10.1111/epi.16853
– start-page: 391
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118687_bib0017
  article-title: Accelerating the super-resolution convolutional neural network
– volume: 120
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118687_bib0013
  article-title: SegSRGAN: super-resolution and segmentation using generative adversarial networks - application to neonatal brain MRI
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103755
– volume: 11
  start-page: 805
  year: 2000
  ident: 10.1016/j.neuroimage.2021.118687_bib0002
  article-title: Voxel-based morphometry - the methods
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0582
– volume: 26
  start-page: 297
  year: 1945
  ident: 10.1016/j.neuroimage.2021.118687_bib0014
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– start-page: 1132
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118687_bib0039
  article-title: Enhanced deep residual networks for single image super-resolution
– year: 2017
  ident: 10.1016/j.neuroimage.2021.118687_bib0021
– start-page: 63
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118687_bib0058
  article-title: ESRGAN: enhanced super-resolution generative adversarial networks
– volume: 77
  start-page: 15
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118687_bib0044
  article-title: Multiscale brain MRI super-resolution using deep 3D convolutional networks
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.101647
– volume: 1
  start-page: 105
  year: 2005
  ident: 10.1016/j.neuroimage.2021.118687_bib0042
  article-title: Voxel-based morphometry of the human brain: methods and applications
  publication-title: Curr. Med. Imaging
  doi: 10.2174/1573405054038726
– volume: 62
  start-page: 774
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118687_bib0019
  article-title: FreeSurfer
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 6
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118687_bib0031
  article-title: 101 labeled brain images and a consistent human cortical labeling protocol
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00171
– volume: 27
  start-page: 2137
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118687_bib0063
  article-title: Resting-state fMRI revealed different brain activities responding to valproic acid and levetiracetam in benign epilepsy with central-temporal spikes
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-016-4531-z
– volume: 14
  start-page: 685
  year: 2001
  ident: 10.1016/j.neuroimage.2021.118687_bib0023
  article-title: Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0857
– volume: 60
  start-page: 1054
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118687_bib0003
  article-title: Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: a consensus report from the international league against epilepsy neuroimaging task force
  publication-title: Epilepsia
  doi: 10.1111/epi.15612
– volume: 14
  start-page: 322
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118687_bib0001
  article-title: Imaging structural co-variance between human brain regions
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3465
– volume: 54
  start-page: 1315
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118687_bib0004
  article-title: International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE commission on diagnostic methods
  publication-title: Epilepsia
  doi: 10.1111/epi.12220
– year: 2007
  ident: 10.1016/j.neuroimage.2021.118687_bib0043
– volume: 49
  start-page: 741
  year: 2008
  ident: 10.1016/j.neuroimage.2021.118687_bib0029
  article-title: Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2007.01485.x
– year: 2020
  ident: 10.1016/j.neuroimage.2021.118687_bib0032
  article-title: ENIGMA-DTI: translating reproducible white matter deficits into personalized vulnerability metrics in cross-diagnostic psychiatric research
  publication-title: Hum. Brain Mapp.
– volume: 46
  start-page: 760
  year: 2005
  ident: 10.1016/j.neuroimage.2021.118687_bib0005
  article-title: Seizure-associated abnormalities in epilepsy: evidence from MR imaging
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2005.47604.x
– volume: 237
  year: 2021
  ident: 10.1016/j.neuroimage.2021.118687_bib0026
  article-title: Joint super-resolution and synthesis of 1mm isotropic MP-RAGE volumes from clinical MRI exams with scans of different orientation, resolution and contrast
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118206
– volume: 15
  start-page: 273
  year: 2002
  ident: 10.1016/j.neuroimage.2021.118687_bib0055
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
SSID ssj0009148
Score 2.4459476
Snippet Preliminary studies have shown the feasibility of deep learning (DL)-based super-resolution (SR) technique for reconstructing thick-slice/gap diagnostic MR...
SourceID doaj
unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118687
SubjectTerms Algorithms
Brain MRI
Brain research
Deep Learning
Epilepsy
Epilepsy - diagnostic imaging
Feasibility studies
Feedback
Female
Humans
Image Interpretation, Computer-Assisted - methods
Image super-resolution
Imaging, Three-Dimensional
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Morphometric analysis
Morphometry
Neuroimaging - methods
Practical assessment
Sparsity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQFzwWiHcDBRmJrcUktmNbrABRFaRhgajUneVnKZpJRu2Mqu74Ajb8IV_CdeyEQSyYBbsosa3k-sT3WL73XIReCCdt5LIlIghOmDKMGPCzxJm6VZIHKgad7vnH9uiYfTjhJ1ulvlJMWJYHzoZ7GSNvhZ1Fb51kLgCdCamGlWTRBSHqgRrNpBo3U6PcLrD8EreTo7kGdcizJfyjsCdsalgpZJvC6Lac0aDZ_4dP-ptz3kI3Nt3KXF2axWLLDx3eQbcLgcSv84vfRddCdw9dn5cj8vvoOxDBq5TveIp9DqODhnj-6T0GeoqTENXloD6IbSoOgZc9GLpfprpaDhflny_457cfeCyCgEsiFVyZScYT9x0uBSdOSfKEHg-fjS82q3BOYKAC6Qfo-PDd57dHpBRdIA6Y25o0qrVt5JHSJihmammNMTQGw6NT1huuvBBU-VrGaFKuoZhJxqWI3PtGekUfor2u78I-woY6F22jItAeFgAHXIZ0bucaP6ujNBUSo_W1K4rkqTDGQo-hZ1_173nTad50nrcK1VPPVVbl2KHPmzTBU_ukqz3cALTpgjb9L7RVSI3w0GPqKiy2MNDZDi_waupb6E2mLTv2PhjRqMsyc6Fh-ws7zho8RYWeT49hgUinPqYL_Qba8JR8DSwY2jzKKJ5sQJmgQKlphZoJ1jsb9PH_MOgTdDMNmQKEan6A9tbnm_AUaN7aPhv-6F-bSlfk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqHngcEG8WCjIS4hZ2HduxLU5QURWk5QBU6i1y_GgX7Sar7a6qXhA_AYl_yC9hJnHSVlxW4rabjCNnPJn5LM98Q8gr5XQVpS4yFZTMhLEisxBnM2dZYbQMXLU83dPPxeGR-HQsj3fIfl8Lg2mVyfd3Pr311unKOGlzvJzNxl8BGUC4QT6vFodjobkQCrsYvPlxmeZhmOjK4STPUDpl83Q5Xi1n5GwBXy7sFHMG_kMXmFx3JUS1TP7XItW_SPQ2ubmpl_bi3M7nV6LTwV1yJ8FK-q6b-T2yE-r75MY0HZw_IL8AHl5gFeQJ9V1yHQjS6ZePFEArRXqq85aTkFbYMoIuGlB_s8BuW44mPqBT-ufnb9q3RqCvaSqwgt92oPekTU1TI4qTDCOkp-2L07PNMqwyeFQy9Yfk6ODDt_3DLDVjyBwgunWWm6Iqooyc58EIy3RlreUxWBmdqbyVxivFjWc6Ros1iGqihdQqSu9z7Q1_RHbrpg5PCLXcuVjlJgIcEgHsQ-qA53ku9xMWtR0R1eu_dImpHBtmzMs-Je17eblyJa5c2a3ciLBh5LJj69hizHtc4kEe-bbbC83qpEwGV8YoC1VNoq-cFi4AqA7YSU2L6IJSDKZsegMp-5JWcMLwoNkWE3g7jL1m-luO3uvtsUzu56yEbTHsRBlEkBF5OdwGx4GnQbYOzQZkJBZlAzoGmcedHQ864EJxgNp8RPLBsLdW6NP_ep9n5Bb-w4whJvfI7nq1Cc8B962rF-2H_Rel6Vqk
  priority: 102
  providerName: Elsevier
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bixMxFA5rF7w8iHerq0QQ34LNZDLJICKu7LIKLbK4sG9DJpe60s7Ubsuyb_4EwX_oL_Gcmcx0RZC-lfZkSHNuX5tzvkPIS2V1GaTOmPJKsjQ3KTOQZ5k1PMu19EI1PN3jSXZ0kn46lac7ZNL1wmBZZRcTm0Dtaov_kb8GpA_gmoNTvFt8Zzg1Cm9XuxEaJo5WcG8birFrZDdBZqwB2d0_mHw-3tDw8rRtjpOCac7zWNvTVnw1DJJnc_Bj-N2YcIgmOsNSuysJq-H1_ytv_YtLb5Eb62phLi_MbHYlVx3eIbcjyKTvW6u4S3Z8dY9cH8dr9PvkJ4DFS-yJnFLXltqBIB0ff6QAYSmSVV00DIW0xAESdF6DMuo5zt6yNLIDfaW_f_yi3aAE-orGdit4bXqyT1pXNI6lmDLMl442X5yerxd-yeBR0fAfkJPDgy8fjlgczcAs4LsVS_KszIIMQiQ-Tw3XpTFGBG9ksHnpjMydUiJ3XIdgsCNRjXQqtQrSuUS7XDwkg6qu_GNCjbA2lEkeABylHqxFao-3ezZxIx60GRLVnX9hI285js-YFV2B2rdio7kCNVe0mhsS3q9ctNwdW6zZRxX38si-3bxRL6dFdOYiBJmpchRcaXVqPUBsj3PVdBqsV4rDlvPOQIquwRVCMjzobIsNvOnXRhDUgpstV-919ljEYHRebFxnSF70H0MYwbshU_l6DTISW7QBK4PMo9aO-zMQqRIAvMWQJL1hb32gT_6_o6fkJgpjgRCXe2SwWq79M4B5q_J59N0_BgBV8w
  priority: 102
  providerName: ProQuest
Title Recycling diagnostic MRI for empowering brain morphometric research – Critical & practical assessment on learning-based image super-resolution
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921009605
https://dx.doi.org/10.1016/j.neuroimage.2021.118687
https://www.ncbi.nlm.nih.gov/pubmed/34732323
https://www.proquest.com/docview/2615481088
https://www.proquest.com/docview/2593599298
https://doi.org/10.1016/j.neuroimage.2021.118687
https://doaj.org/article/ff567b0fdbc84ce991ece2a84fce771a
UnpaywallVersion publishedVersion
Volume 245
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aWonLA_dLYVRGQrxlquM4dsRThzZ1oFZjolJ5ihzHHoM2rbZW03hA_AQk_iG_hOPECRQkVHhpmsa2nOPL-dxzzncAngktM8tlHAgjeBAlKgoU6tlAKxonkhsmSp7u4SgejKNXEz7Zgl4dC7Nmvy_9sEpex9MZri48zYUU17iMpdiGdswRfbegPR4d9d-VRk3OAknLXB6051IQclE77_ytqTWNVBL3rymmP4Hndbi6Khbq8kJNp78oo4Ob8KZ-jcoH5ePuapnt6k-_MTz-y3veghsemZJ-NZVuw5Yp7sCVobe934WviDAvXSDlCckr_zwsSIbHhwRxL3EMVxclrSHJXNYJMpvjCM5nLmGXJp5S6D35_uUbqbMrkOfEx2jhd9UwhJJ5QXwui5PAKdmclP0l56uFOQuwKb9a7sH4YP_ty0Hg8zkEGkHhMgiTOIstt4yFJokUlZlSilmjuNVJliue5EKwJKfSWuXCGEVPRlwKy_M8lHnC7kOrmBfmIRDFtLZZmFhEVJHBKcalcSZBHeY9aqXqgKjHNNWe7Nzl3JimtVfbh_SnwFMn8LQSeAdoU3NREX5sUGfPTZumvKPsLn_AEU79DpBay2OR9WyeaRlpg7jcuGRsMrLaCEGxy0k96dI6Khb3cWzodIMOvGjqeuRUIaINa-_Uczz1O9h5iidrPMxSVEIdeNo8xr3HGZRUYeYrLMNdXDcCbCzzoFobjQxYJBiiddaBsFksGwv00f9UegzX3J3zNaJ8B1rLs5V5gohxmXVhe_czxU8xEV1o9w9fD0Z43dsfHR13y39hun4b-QF6OXDD
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELaqVqJwQPwTKGAk4LYi3rXXXqEKUWiV0CZCVSv1tnj9k7ZKdkN-FOXGIyDxPjwMT8J417spQkK59BYlnpXjGc98Xs98g9ArrkRmmYgDbjgLaCJpICHOBkqSOBHMRLzk6e71484p_XzGzjbQr7oWxqVV1j6xdNS6UO4d-VtA-gCuCWyK9-Nvgesa5W5X6xYa0rdW0LslxZgv7Dg0ywUc4aa73U-g79dheLB_8rET-C4DgQKoMgvCJM5iy2wUhSahkohMShlZI5lVSaYlSzTnUaKJsFa64jreFpQJbpnWodCOjAlCwBaNaAKHv629_f6X4xXtL6FVMR6LAkFI4nOJqgyzkrHyYgR-A86pIQHvJWKX2nclQJZ9BP6Kk__i4Ftoe56P5XIhh8MrsfHgDrrtQS3-UFnhXbRh8nvoRs9f299HPwCcLl0N5gDrKrUPBuLecRcDZMaOHGtRMiLizDWswKMClF-MXK8vhT0b0Tn-_f0nrhsz4DfYl3fBZ9mQi-Iix74NxiBw8Vnj8o_j6XxsJgE8ym-0B-j0WpT0EG3mRW4eIywjpWwWJhbAGDVgnUwYd5uoQt0mVsgW4vX6p8rzpLt2HcO0Toi7TFeaS53m0kpzLUQayXHFFbKGzJ5TcTPesX2XXxSTQeqdR2oti3nWtjpTgioDkN64Pm6CWmU4JzDlpDaQtC6ohRAAD7pYYwLvGlkPuiowtab0Tm2PqXd-03S1VVvoZfMzuC13FyVzU8xhDHMl4YDNYcyjyo6bNYgojwDoRy0UNoa99oI--f-MXqDtzknvKD3q9g-foptO0CUnEbaDNmeTuXkGEHOWPff7GKOv1-06_gCfpZPX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLamIQ24QPxTGGAk4C5aHcexI4QQMKqV0QkhJu0ucxy7DLVJ6Y-q3vEISLwNj8OTcE7ipENIqDe7ixo7cn2OP3-Jz_kOIU-lUZkTKg6klSKIEh0FGvbZwGgWJ0pYLiud7sFRfHAcvT8RJ1vkV5MLg2GVDSZWQJ2XBr-R7wHTB3LNYFHsOR8W8XG_92ryLcAKUnjS2pTTqF3k0K6W8Po2e9nfB1s_C8Peu89vDwJfYSAwQFPmQZjEWeyE4zy0SaSZyrTW3FktnEmyXIskl5InOVPOaUysk10VCSWdyPNQ5SjEBPB_SXKeYDihPJFrwV8W1Wl4ggeKscRHEdWxZZVW5dkYEAPeUEMGuKViDOo7tzVWFQT-2iH_ZcBXyeVFMdGrpR6Nzu2Kvevkmqez9HXtfzfIli1ukp2BP7C_RX4ALV1h9uWQ5nVQHzSkg099CmSZoizWstJCpBmWqqDjEsxejrHKl6Feh-gL_f39J21KMtDn1Cd2wbVuZUVpWVBfAGMY4M6c0-qP09liYqcBPMovsdvk-EJMdIdsF2Vh7xGquTEuCxMHNCyy4JdCWTxHNGHeZU7pDpHN_KfGK6RjoY5R2oTCfU3XlkvRcmltuQ5hbc9JrRKyQZ83aOK2Pep8Vz-U02HqYSN1TsQy67o8MyoyFsi8xQpuKnLGSslgyEnjIGmTSgvgDw8622AAL9q-nm7VNGrD3ruNP6Ye9mbpepF2yJP2NgAWnkLpwpYLaCMwGRxYObS5W_txOwc8khwoPu-QsHXsjSf0_v9H9JjsAGCkH_pHhw_IFeyHUUlM7JLt-XRhHwK3nGePqkVMyelFo8YfqcaRcQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKVuJx4FlgoSAjIW6u4jiOHXEqiKogbQWIlcop8rMUdpNVu1FVTvwEJP4hv4Rx4gQWJLRwy2Y9lmN7PJ81M98g9FgYqT2XORFOcJIVKiMK7CwxiuaF5I6Jlqd7cpDvT7NXh_xwAyV9LsyK_76Nw2p5HY_noF1wm0sp6LjMpbiANnMO6HuENqcHr3fft05NzoikbS0PmoQShFz0wTt_62rFIrXE_SuG6U_geQVdaqqFOj9Ts9kvxmjvGnrTf0YXg_Jpp1nqHfP5N4bHf_nO6-hqRKZ4t9tKN9CGq26ii5Poe7-FvgLCPA-JlEfYdvF50BBP3r7EgHtxYLg6a2kNsQ5VJ_C8hhWs56Fgl8GRUugD_v7lG-6rK-AnOOZowbMaGEJxXeFYy-KIBCNrcTtefNos3AmBrqK2bKHp3ot3z_dJrOdADIDCJUmLXOeee8ZSV2SKSq2UYt4p7k2hreKFFYIVlkrvVUhjFInMuBSeW5tKW7DbaFTVlbuLsGLGeJ0WHhBV5mCLcemCS9CkNqFeqjES_ZqWJpKdh5obs7KPavtY_pzwMkx42U34GNFBctERfqwh8yxsm6F9oOxuX8AKl_EEKL3nudCJt9rIzDjA5S4UY5OZN04ICkMu-k1X9lmxcI5DR8drDODpIBuRU4eI1pTe7vd4GU-w0xJu1nCZpWCExujR8DecPcGhpCpXN9CGh7xuANjQ5k6nG8McsEwwQOtsjNJBWdae0Hv_I3QfXQ6_QqwR5dtotDxp3ANAjEv9MB4SPwD0WGrB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recycling+diagnostic+MRI+for+empowering+brain+morphometric+research+%E2%80%93+Critical+%26+practical+assessment+on+learning-based+image+super-resolution&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Liu%2C+Gaoping&rft.au=Cao%2C+Zehong&rft.au=Xu%2C+Qiang&rft.au=Zhang%2C+Qirui&rft.date=2021-12-15&rft.issn=1053-8119&rft.volume=245&rft.spage=118687&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118687&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2021_118687
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon