LSGI: interpretable spatial gradient analysis for spatial transcriptomics data
Cellular anatomy and signaling vary across niches, which can induce gradated gene expressions in subpopulations of cells. Such spatial transcriptomic gradient (STG) makes a significant source of intra-tumor heterogeneity. We present Local Spatial Gradient Inference (LSGI), a computational framework...
Saved in:
Published in | Genome Biology Vol. 26; no. 1; pp. 238 - 19 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
08.08.2025
BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1474-760X 1474-7596 1474-760X |
DOI | 10.1186/s13059-025-03716-1 |
Cover
Summary: | Cellular anatomy and signaling vary across niches, which can induce gradated gene expressions in subpopulations of cells. Such spatial transcriptomic gradient (STG) makes a significant source of intra-tumor heterogeneity. We present
Local Spatial Gradient Inference
(LSGI), a computational framework that systematically identifies spatial locations with prominent, interpretable STGs from spatial transcriptomic (ST) data. We demonstrate LSGI in tumor ST datasets and identify pan-cancer and tumor-type specific pathways with gradated patterns, highlighting the ones related to spatial transcriptional intratumoral heterogeneity. LSGI enables interpretable STG analysis, which can reveal novel insights in tumor biology from the increasingly reported tumor ST datasets. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1474-760X 1474-7596 1474-760X |
DOI: | 10.1186/s13059-025-03716-1 |