fast expectation-maximum algorithm for fine-scale QTL mapping

The recent technology of the single-nucleotide-polymorphism (SNP) array makes it possible to genotype millions of SNP markers on genome, which in turn requires to develop fast and efficient method for fine-scale quantitative trait loci (QTL) mapping. The single-marker association (SMA) is the simple...

Full description

Saved in:
Bibliographic Details
Published inTheoretical and applied genetics Vol. 125; no. 8; pp. 1727 - 1734
Main Author Fang, Ming
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.12.2012
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0040-5752
1432-2242
1432-2242
DOI10.1007/s00122-012-1949-9

Cover

More Information
Summary:The recent technology of the single-nucleotide-polymorphism (SNP) array makes it possible to genotype millions of SNP markers on genome, which in turn requires to develop fast and efficient method for fine-scale quantitative trait loci (QTL) mapping. The single-marker association (SMA) is the simplest method for fine-scale QTL mapping, but it usually shows many false-positive signals and has low QTL-detection power. Compared with SMA, the haplotype-based method of Meuwissen and Goddard who assume QTL effect to be random and estimate variance components (VC) with identity-by-descent (IBD) matrices that inferred from unknown historic population is more powerful for fine-scale QTL mapping; furthermore, their method also tends to show continuous QTL-detection profile to diminish many false-positive signals. However, as we know, the variance component estimation is usually very time consuming and difficult to converge. Thus, an extremely fast EMF (Expectation-Maximization algorithm under Fixed effect model) is proposed in this research, which assumes a biallelic QTL and uses an expectation-maximization (EM) algorithm to solve model effects. The results of simulation experiments showed that (1) EMF was computationally much faster than VC method; (2) EMF and VC performed similarly in QTL detection power and parameter estimations, and both outperformed the paired-marker analysis and SMA. However, the power of EMF would be lower than that of VC if the QTL was multiallelic.
Bibliography:http://dx.doi.org/10.1007/s00122-012-1949-9
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0040-5752
1432-2242
1432-2242
DOI:10.1007/s00122-012-1949-9