Sparse Array Angle Estimation Using Reduced-Dimension ESPRIT-MUSIC in MIMO Radar
Sparse linear arrays provide better performance than the filled linear arrays in terms of angle estimation and resolution with reduced size and low cost. However, they are subject to manifold ambiguity. In this paper, both the transmit array and receive array are sparse linear arrays in the bistatic...
        Saved in:
      
    
          | Published in | TheScientificWorld Vol. 2013; no. 2013; pp. 1 - 6 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cairo, Egypt
          Hindawi Publishing Corporation
    
        01.01.2013
     John Wiley & Sons, Inc Wiley  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2356-6140 1537-744X 1537-744X  | 
| DOI | 10.1155/2013/784267 | 
Cover
| Summary: | Sparse linear arrays provide better performance than the filled linear arrays in terms of angle estimation and resolution with reduced size and low cost. However, they are subject to manifold ambiguity. In this paper, both the transmit array and receive array are sparse linear arrays in the bistatic MIMO radar. Firstly, we present an ESPRIT-MUSIC method in which ESPRIT algorithm is used to obtain ambiguous angle estimates. The disambiguation algorithm uses MUSIC-based procedure to identify the true direction cosine estimate from a set of ambiguous candidate estimates. The paired transmit angle and receive angle can be estimated and the manifold ambiguity can be solved. However, the proposed algorithm has high computational complexity due to the requirement of two-dimension search. Further, the Reduced-Dimension ESPRIT-MUSIC (RD-ESPRIT-MUSIC) is proposed to reduce the complexity of the algorithm. And the RD-ESPRIT-MUSIC only demands one-dimension search. Simulation results demonstrate the effectiveness of the method. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editors: E. A. Marengo, K. Teh, and A. Torsello  | 
| ISSN: | 2356-6140 1537-744X 1537-744X  | 
| DOI: | 10.1155/2013/784267 |