A Fuzzy Locally Adaptive Bayesian Segmentation Approach for Volume Determination in PET
Accurate volume estimation in positron emission tomography (PET) is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive Bayesian (FLAB) segmentation for automatic lesion volume delineation. FLAB was compared with a threshold approach as...
Saved in:
| Published in | IEEE transactions on medical imaging Vol. 28; no. 6; pp. 881 - 893 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.06.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0062 1558-254X 1558-254X 1558-0062 |
| DOI | 10.1109/TMI.2008.2012036 |
Cover
| Abstract | Accurate volume estimation in positron emission tomography (PET) is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive Bayesian (FLAB) segmentation for automatic lesion volume delineation. FLAB was compared with a threshold approach as well as the previously proposed fuzzy hidden Markov chains (FHMC) and the fuzzy C-Means (FCM) algorithms. The performance of the algorithms was assessed on acquired datasets of the IEC phantom, covering a range of spherical lesion sizes (10-37 mm), contrast ratios (4:1 and 8:1), noise levels (1, 2, and 5 min acquisitions), and voxel sizes (8 and 64 mm 3 ). In addition, the performance of the FLAB model was assessed on realistic nonuniform and nonspherical volumes simulated from patient lesions. Results show that FLAB performs better than the other methodologies, particularly for smaller objects. The volume error was 5%-15% for the different sphere sizes (down to 13 mm), contrast and image qualities considered, with a high reproducibility (variation < 4%). By comparison, the thresholding results were greatly dependent on image contrast and noise, whereas FCM results were less dependent on noise but consistently failed to segment lesions < 2 cm. In addition, FLAB performed consistently better for lesions < 2 cm in comparison to the FHMC algorithm. Finally the FLAB model provided errors less than 10% for nonspherical lesions with inhomogeneous activity distributions. Future developments will concentrate on an extension of FLAB in order to allow the segmentation of separate activity distribution regions within the same functional volume as well as a robustness study with respect to different scanners and reconstruction algorithms. |
|---|---|
| AbstractList | Accurate volume estimation in positron emission tomography (PET) is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive Bayesian (FLAB) segmentation for automatic lesion volume delineation. FLAB was compared with a threshold approach as well as the previously proposed fuzzy hidden Markov chains (FHMC) and the fuzzy C-Means (FCM) algorithms. The performance of the algorithms was assessed on acquired datasets of the IEC phantom, covering a range of spherical lesion sizes (10-37 mm), contrast ratios (4:1 and 8:1), noise levels (1, 2, and 5 min acquisitions), and voxel sizes (8 and 64 mm reversible reaction ). In addition, the performance of the FLAB model was assessed on realistic nonuniform and nonspherical volumes simulated from patient lesions. Results show that FLAB performs better than the other methodologies, particularly for smaller objects. The volume error was 5%-15% for the different sphere sizes (down to 13 mm), contrast and image qualities considered, with a high reproducibility (variation 4%). By comparison, the thresholding results were greatly dependent on image contrast and noise, whereas FCM results were less dependent on noise but consistently failed to segment lesions $ 2 cm. In addition, FLAB performed consistently better for lesions $ 2 cm in comparison to the FHMC algorithm. Finally the FLAB model provided errors less than 10% for nonspherical lesions with inhomogeneous activity distributions. Future developments will concentrate on an extension of FLAB in order to allow the segmentation of separate activity distribution regions within the same functional volume as well as a robustness st-. Accurate volume estimation in positron emission tomography (PET) is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive Bayesian (FLAB) segmentation for automatic lesion volume delineation. FLAB was compared with a threshold approach as well as the previously proposed fuzzy hidden Markov chains (FHMC) and the fuzzy C-Means (FCM) algorithms. The performance of the algorithms was assessed on acquired datasets of the IEC phantom, covering a range of spherical lesion sizes (10-37 mm), contrast ratios (4:1 and 8:1), noise levels (1, 2, and 5 min acquisitions), and voxel sizes (8 and 64 mm(3)). In addition, the performance of the FLAB model was assessed on realistic nonuniform and nonspherical volumes simulated from patient lesions. Results show that FLAB performs better than the other methodologies, particularly for smaller objects. The volume error was 5%-15% for the different sphere sizes (down to 13 mm), contrast and image qualities considered, with a high reproducibility (variation < 4%). By comparison, the thresholding results were greatly dependent on image contrast and noise, whereas FCM results were less dependent on noise but consistently failed to segment lesions < 2 cm. In addition, FLAB performed consistently better for lesions < 2 cm in comparison to the FHMC algorithm. Finally the FLAB model provided errors less than 10% for nonspherical lesions with inhomogeneous activity distributions. Future developments will concentrate on an extension of FLAB in order to allow the segmentation of separate activity distribution regions within the same functional volume as well as a robustness study with respect to different scanners and reconstruction algorithms. [...] the FLAB model provided errors less than 10% for nonspherical lesions with inhomogeneous activity distributions. Accurate volume estimation in positron emission tomography (PET) is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive Bayesian (FLAB) segmentation for automatic lesion volume delineation. FLAB was compared with a threshold approach as well as the previously proposed fuzzy hidden Markov chains (FHMC) and the fuzzy C-Means (FCM) algorithms. The performance of the algorithms was assessed on acquired datasets of the IEC phantom, covering a range of spherical lesion sizes (10-37 mm), contrast ratios (4:1 and 8:1), noise levels (1, 2, and 5 min acquisitions), and voxel sizes (8 and 64 mm3). In addition, the performance of the FLAB model was assessed on realistic nonuniform and nonspherical volumes simulated from patient lesions. Results show that FLAB performs better than the other methodologies, particularly for smaller objects. The volume error was 5%-15% for the different sphere sizes (down to 13 mm), contrast and image qualities considered, with a high reproducibility (variation 4%). By comparison, the thresholding results were greatly dependent on image contrast and noise, whereas FCM results were less dependent on noise but consistently failed to segment lesions $ 2 cm. In addition, FLAB performed consistently better for lesions $ 2 cm in comparison to the FHMC algorithm. Finally the FLAB model provided errors less than 10% for nonspherical lesions with inhomogeneous activity distributions. Future developments will concentrate on an extension of FLAB in order to allow the segmentation of separate activity distribution regions within the same functional volume as well as a robustness st-. Accurate volume estimation in PET is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive Bayesian (FLAB) segmentation for automatic lesion volume delineation. FLAB was compared with a threshold approach as well as the previously proposed fuzzy hidden Markov chains (FHMC) and the Fuzzy C-Means (FCM) algorithms. The performance of the algorithms was assessed on acquired datasets of the IEC phantom, covering a range of spherical lesion sizes (10–37mm), contrast ratios (4:1 and 8:1), noise levels (1, 2 and 5 min acquisitions) and voxel sizes (8mm3 and 64mm3). In addition, the performance of the FLAB model was assessed on realistic non-uniform and non-spherical volumes simulated from patient lesions. Results show that FLAB performs better than the other methodologies, particularly for smaller objects. The volume error was 5%–15% for the different sphere sizes (down to 13mm), contrast and image qualities considered, with a high reproducibility (variation <4%). By comparison, the thresholding results were greatly dependent on image contrast and noise, whereas FCM results were less dependent on noise but consistently failed to segment lesions <2cm. In addition, FLAB performed consistently better for lesions <2cm in comparison to the FHMC algorithm. Finally the FLAB model provided errors less than 10% for non-spherical lesions with inhomogeneous activity distributions. Future developments will concentrate on an extension of FLAB in order to allow the segmentation of separate activity distribution regions within the same functional volume as well as a robustness study with respect to different scanners and reconstruction algorithms. Accurate volume estimation in positron emission tomography (PET) is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive Bayesian (FLAB) segmentation for automatic lesion volume delineation. FLAB was compared with a threshold approach as well as the previously proposed fuzzy hidden Markov chains (FHMC) and the fuzzy C-Means (FCM) algorithms. The performance of the algorithms was assessed on acquired datasets of the IEC phantom, covering a range of spherical lesion sizes (10-37 mm), contrast ratios (4:1 and 8:1), noise levels (1, 2, and 5 min acquisitions), and voxel sizes (8 and 64 mm super(3)). In addition, the performance of the FLAB model was assessed on realistic nonuniform and nonspherical volumes simulated from patient lesions. Results show that FLAB performs better than the other methodologies, particularly for smaller objects. The volume error was 5%-15% for the different sphere sizes (down to 13 mm), contrast and image qualities considered, with a high reproducibility (variation <4%). By comparison, the thresholding results were greatly dependent on image contrast and noise, whereas FCM results were less dependent on noise but consistently failed to segment lesions <2 cm. In addition, FLAB performed consistently better for lesions <2 cm in comparison to the FHMC algorithm. Finally the FLAB model provided errors less than 10% for nonspherical lesions with inhomogeneous activity distributions. Future developments will concentrate on an extension of FLAB in order to allow the segmentation of separate activity distribution regions within the same functional volume as well as a robustness study with respect to different scanners and reconstruction algorithms. Accurate volume estimation in positron emission tomography (PET) is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive Bayesian (FLAB) segmentation for automatic lesion volume delineation. FLAB was compared with a threshold approach as well as the previously proposed fuzzy hidden Markov chains (FHMC) and the fuzzy C-Means (FCM) algorithms. The performance of the algorithms was assessed on acquired datasets of the IEC phantom, covering a range of spherical lesion sizes (10-37 mm), contrast ratios (4:1 and 8:1), noise levels (1, 2, and 5 min acquisitions), and voxel sizes (8 and 64 mm(3)). In addition, the performance of the FLAB model was assessed on realistic nonuniform and nonspherical volumes simulated from patient lesions. Results show that FLAB performs better than the other methodologies, particularly for smaller objects. The volume error was 5%-15% for the different sphere sizes (down to 13 mm), contrast and image qualities considered, with a high reproducibility (variation < 4%). By comparison, the thresholding results were greatly dependent on image contrast and noise, whereas FCM results were less dependent on noise but consistently failed to segment lesions < 2 cm. In addition, FLAB performed consistently better for lesions < 2 cm in comparison to the FHMC algorithm. Finally the FLAB model provided errors less than 10% for nonspherical lesions with inhomogeneous activity distributions. Future developments will concentrate on an extension of FLAB in order to allow the segmentation of separate activity distribution regions within the same functional volume as well as a robustness study with respect to different scanners and reconstruction algorithms.Accurate volume estimation in positron emission tomography (PET) is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive Bayesian (FLAB) segmentation for automatic lesion volume delineation. FLAB was compared with a threshold approach as well as the previously proposed fuzzy hidden Markov chains (FHMC) and the fuzzy C-Means (FCM) algorithms. The performance of the algorithms was assessed on acquired datasets of the IEC phantom, covering a range of spherical lesion sizes (10-37 mm), contrast ratios (4:1 and 8:1), noise levels (1, 2, and 5 min acquisitions), and voxel sizes (8 and 64 mm(3)). In addition, the performance of the FLAB model was assessed on realistic nonuniform and nonspherical volumes simulated from patient lesions. Results show that FLAB performs better than the other methodologies, particularly for smaller objects. The volume error was 5%-15% for the different sphere sizes (down to 13 mm), contrast and image qualities considered, with a high reproducibility (variation < 4%). By comparison, the thresholding results were greatly dependent on image contrast and noise, whereas FCM results were less dependent on noise but consistently failed to segment lesions < 2 cm. In addition, FLAB performed consistently better for lesions < 2 cm in comparison to the FHMC algorithm. Finally the FLAB model provided errors less than 10% for nonspherical lesions with inhomogeneous activity distributions. Future developments will concentrate on an extension of FLAB in order to allow the segmentation of separate activity distribution regions within the same functional volume as well as a robustness study with respect to different scanners and reconstruction algorithms. |
| Author | Cheze le Rest, C. Turzo, A. Hatt, M. Roux, C. Visvikis, D. |
| AuthorAffiliation | 1 LATIM, Laboratoire de Traitement de l'Information Medicale INSERM : U650 Université de Bretagne Occidentale - Brest Institut Télécom Télécom Bretagne Centre hospitalier universitaire de Brest Université européenne de Bretagne Hopital Morvan, 5 Avenue Foch, 29609 Brest Cedex,FR 3 Service de médecine nucléaire CHU Brest Hôpital Morvan Brest, F-29609,FR 2 GET, GET Ecole Nationale Supérieure des Télécommunications de Bretagne Technopôle de Brest Iroise - BP 832 - 29285 Brest CEDEX,FR |
| AuthorAffiliation_xml | – name: 3 Service de médecine nucléaire CHU Brest Hôpital Morvan Brest, F-29609,FR – name: 1 LATIM, Laboratoire de Traitement de l'Information Medicale INSERM : U650 Université de Bretagne Occidentale - Brest Institut Télécom Télécom Bretagne Centre hospitalier universitaire de Brest Université européenne de Bretagne Hopital Morvan, 5 Avenue Foch, 29609 Brest Cedex,FR – name: 2 GET, GET Ecole Nationale Supérieure des Télécommunications de Bretagne Technopôle de Brest Iroise - BP 832 - 29285 Brest CEDEX,FR |
| Author_xml | – sequence: 1 givenname: M. surname: Hatt fullname: Hatt, M. organization: LaTIM, INSERM, Brest – sequence: 2 givenname: C. surname: Cheze le Rest fullname: Cheze le Rest, C. organization: LaTIM, INSERM, Brest – sequence: 3 givenname: A. surname: Turzo fullname: Turzo, A. organization: LaTIM, INSERM, Brest – sequence: 4 givenname: C. surname: Roux fullname: Roux, C. organization: LaTIM, INSERM, Brest – sequence: 5 givenname: D. surname: Visvikis fullname: Visvikis, D. organization: LaTIM, INSERM, Brest |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19150782$$D View this record in MEDLINE/PubMed https://inserm.hal.science/inserm-00372910$$DView record in HAL |
| BookMark | eNqFkktvEzEUhS1URNPCHgkJjVjAhpTrt2eDFEpLKwWBRHjsLMfjaVzN2MM8gtJfj6OJWogQ3dgLf-f63nPuEToIMTiEnmI4wRjyN4uPlycEQKUDE6DiAZpgztWUcPbjAE2ASDUFEOQQHXXdNQBmHPJH6BDnmINUZIK-z7Lz4eZmk82jNVW1yWaFaXq_dtk7s3GdNyH74q5qF3rT-xiyWdO00dhVVsY2-xaroXbZe9e7tvZhJHzIPp8tHqOHpak692R3H6Ov52eL04vp_NOHy9PZfGq5JP2UE2MApM3lUhYWCipsCcap0oKjthRClhiWS5V6pSWmpXRQKEUZoaAILgp6jPBYdwiN2fxKI-im9bVpNxqD3pqk-9rrrUl6Z1LSvB01zbCsXWHTcK2500Xj9d8vwa_0VVxrkmOSU5wKvB4LrPZkF7O59qFLbmgAKhMP6y3-avdfG38Orut17TvrqsoEF4dOKyElkxRvO3v5X1IkinEu7wUpU4KLZNp9IMEgGBc0gS_2wOs4tCFlpxWXjBNGeIKe_-ncndW7fUqAGAHbxq5rXamtHzcnGemr20zS4u5nAnvC_Rj_IXk2Srxz7hZnkuWUKPobrvf1DQ |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1109_TRPMS_2017_2777890 crossref_primary_10_1259_bjr_20160665 crossref_primary_10_2967_jnumed_111_092767 crossref_primary_10_1038_s41598_023_45215_y crossref_primary_10_1016_j_ctro_2020_05_004 crossref_primary_10_1097_RLU_0000000000003789 crossref_primary_10_2967_jnumed_110_085399 crossref_primary_10_18632_oncotarget_24234 crossref_primary_10_1016_j_radonc_2013_03_024 crossref_primary_10_1118_1_4929561 crossref_primary_10_2967_jnumed_110_078501 crossref_primary_10_1007_s00259_010_1472_7 crossref_primary_10_1097_RLU_0000000000004194 crossref_primary_10_1118_1_4728219 crossref_primary_10_1007_s11517_019_02094_8 crossref_primary_10_1049_iet_ipr_2016_1024 crossref_primary_10_3413_Nukmed_0452_11_12 crossref_primary_10_2967_jnumed_111_092775 crossref_primary_10_1016_j_cpet_2021_06_001 crossref_primary_10_1118_1_3608907 crossref_primary_10_1088_0031_9155_57_22_7409 crossref_primary_10_1007_s11307_011_0514_2 crossref_primary_10_1007_s10928_013_9307_3 crossref_primary_10_1259_bjr_20150056 crossref_primary_10_1118_1_4903282 crossref_primary_10_1016_j_compmedimag_2014_09_007 crossref_primary_10_1186_s13550_018_0379_3 crossref_primary_10_1118_1_4761952 crossref_primary_10_2967_jnumed_116_173112 crossref_primary_10_1097_MNM_0000000000000045 crossref_primary_10_1186_s13014_014_0300_9 crossref_primary_10_1038_s41598_019_51096_x crossref_primary_10_1118_1_4939127 crossref_primary_10_1016_j_cviu_2016_10_002 crossref_primary_10_1080_01431161_2012_718455 crossref_primary_10_1371_journal_pone_0057105 crossref_primary_10_1007_s00259_013_2651_0 crossref_primary_10_1007_s00259_017_3898_7 crossref_primary_10_1007_s40336_014_0064_0 crossref_primary_10_1016_j_canrad_2011_07_243 crossref_primary_10_1002_mp_13100 crossref_primary_10_1007_s00259_017_3744_y crossref_primary_10_1016_j_irbm_2015_11_001 crossref_primary_10_1002_acm2_13321 crossref_primary_10_1007_s00530_017_0579_0 crossref_primary_10_1007_s00138_012_0454_0 crossref_primary_10_1007_s00066_013_0454_7 crossref_primary_10_1088_1361_6560_aaa86a crossref_primary_10_1118_1_4737022 crossref_primary_10_2967_jnumed_115_162511 crossref_primary_10_3390_math12050764 crossref_primary_10_2967_jnumed_110_084897 crossref_primary_10_1002_mp_12124 crossref_primary_10_1007_s00066_014_0752_8 crossref_primary_10_1109_TBME_2015_2433397 crossref_primary_10_1371_journal_pone_0140830 crossref_primary_10_1007_s00259_018_4231_9 crossref_primary_10_1016_j_media_2021_102336 crossref_primary_10_1148_radiol_2016160329 crossref_primary_10_1007_s00259_011_1858_1 crossref_primary_10_1186_s40658_021_00385_4 crossref_primary_10_1016_j_mednuc_2016_03_141 crossref_primary_10_1002_mp_12312 crossref_primary_10_1016_j_ijrobp_2009_08_018 crossref_primary_10_1016_j_radonc_2013_08_033 crossref_primary_10_1088_0031_9155_61_13_R150 crossref_primary_10_1118_1_3301610 crossref_primary_10_1109_TMI_2012_2202322 crossref_primary_10_2967_jnumed_111_099127 crossref_primary_10_1016_j_radonc_2016_04_039 crossref_primary_10_1016_j_media_2017_12_007 crossref_primary_10_1088_1361_6560_aa6e20 crossref_primary_10_1088_1361_6560_ac01f4 crossref_primary_10_1118_1_4812892 crossref_primary_10_3390_app12104865 crossref_primary_10_1016_j_rpor_2013_10_007 crossref_primary_10_1016_j_canrad_2015_06_018 crossref_primary_10_1371_journal_pone_0253653 crossref_primary_10_2967_jnumed_110_082404 crossref_primary_10_7763_IJCTE_2013_V5_636 crossref_primary_10_1038_s41598_024_66487_y crossref_primary_10_3389_fradi_2023_1225215 crossref_primary_10_1016_j_compbiomed_2018_09_002 crossref_primary_10_1007_s00259_011_1834_9 crossref_primary_10_1007_s00259_013_2407_x crossref_primary_10_1109_TMI_2010_2083681 crossref_primary_10_1109_TMI_2022_3156614 crossref_primary_10_1007_s00259_022_05925_3 crossref_primary_10_1088_1361_6560_ab8535 crossref_primary_10_1109_TMI_2012_2193896 crossref_primary_10_1002_ima_22154 crossref_primary_10_1109_TMI_2012_2199511 crossref_primary_10_1007_s13139_024_00845_6 crossref_primary_10_1109_TCBB_2023_3281638 crossref_primary_10_3938_jkps_77_1049 crossref_primary_10_1002_mp_12334 crossref_primary_10_1118_1_3213099 crossref_primary_10_2967_jnumed_113_133389 crossref_primary_10_1109_TMI_2023_3336237 crossref_primary_10_1177_15330338221086396 crossref_primary_10_1186_s13014_018_1163_2 crossref_primary_10_1109_TMI_2013_2263388 crossref_primary_10_1117_1_JMI_4_1_011009 crossref_primary_10_1007_s00259_017_3865_3 crossref_primary_10_1080_0013791X_2019_1597239 crossref_primary_10_1007_s00259_016_3325_5 crossref_primary_10_1186_s13550_017_0310_3 crossref_primary_10_1186_s40658_015_0116_1 crossref_primary_10_1007_s00259_012_2233_6 crossref_primary_10_1016_j_ejmp_2019_04_020 crossref_primary_10_2967_jnumed_120_249524 crossref_primary_10_1016_j_asoc_2023_110825 crossref_primary_10_1016_j_cpet_2019_08_005 crossref_primary_10_1371_journal_pone_0099567 crossref_primary_10_1007_s00259_017_3855_5 crossref_primary_10_1007_s00259_011_2053_0 crossref_primary_10_2967_jnumed_113_129858 crossref_primary_10_1155_2014_401201 crossref_primary_10_1109_JPROC_2009_2027925 crossref_primary_10_1007_s00259_021_05303_5 crossref_primary_10_1016_j_cmpb_2017_07_006 crossref_primary_10_1016_j_ijrobp_2018_05_022 crossref_primary_10_1109_TRPMS_2018_2878934 crossref_primary_10_1016_j_compbiomed_2024_108827 crossref_primary_10_2967_jnumed_114_144055 crossref_primary_10_1007_s00330_015_3681_8 crossref_primary_10_1186_s13550_020_00744_9 crossref_primary_10_1007_s00259_021_05244_z crossref_primary_10_1007_s11548_015_1231_0 crossref_primary_10_1016_j_compbiomed_2013_07_023 crossref_primary_10_1186_s13550_017_0262_7 crossref_primary_10_1118_1_4863480 crossref_primary_10_3413_Nukmed_0455_11_12 crossref_primary_10_1097_MNM_0000000000000317 crossref_primary_10_1007_s00259_015_3110_x crossref_primary_10_1155_2013_942353 crossref_primary_10_1016_j_ymeth_2020_11_002 crossref_primary_10_1016_j_remnie_2014_01_007 crossref_primary_10_1118_1_4826162 crossref_primary_10_1088_0031_9155_57_17_5381 crossref_primary_10_1109_TBME_2013_2288258 crossref_primary_10_1088_1361_6560_aaf44b crossref_primary_10_1118_1_4793721 crossref_primary_10_1016_j_compmedimag_2011_06_004 crossref_primary_10_1016_j_canrad_2020_04_010 crossref_primary_10_1007_s40336_018_0292_9 crossref_primary_10_1016_j_cmpb_2012_10_009 crossref_primary_10_1109_TMI_2017_2771379 crossref_primary_10_1109_TBME_2023_3297249 crossref_primary_10_1002_mp_12531 crossref_primary_10_1007_s00259_016_3441_2 crossref_primary_10_1118_1_4898122 crossref_primary_10_1142_S0218001423570069 crossref_primary_10_1186_2001_1326_1_18 crossref_primary_10_1109_TMI_2014_2329019 crossref_primary_10_1016_j_mednuc_2016_01_002 crossref_primary_10_1016_j_media_2014_06_014 crossref_primary_10_3389_fmed_2020_00218 crossref_primary_10_1038_s41598_020_62414_z crossref_primary_10_1016_j_compmedimag_2015_09_006 crossref_primary_10_1109_TRPMS_2019_2911597 crossref_primary_10_1186_s40644_016_0086_0 crossref_primary_10_3389_fonc_2021_726865 crossref_primary_10_2967_jnumed_109_068411 crossref_primary_10_1186_s40658_015_0110_7 crossref_primary_10_1118_1_4947483 crossref_primary_10_1016_j_mednuc_2020_03_003 crossref_primary_10_1007_s10278_023_00823_y crossref_primary_10_1002_mp_12880 crossref_primary_10_1007_s00330_011_2311_3 crossref_primary_10_1155_2013_980769 crossref_primary_10_1118_1_4930251 crossref_primary_10_1007_s11548_014_1104_y crossref_primary_10_1007_s11547_014_0446_4 crossref_primary_10_1016_j_energy_2014_02_076 crossref_primary_10_1007_s00259_023_06187_3 crossref_primary_10_1186_s13550_014_0069_8 crossref_primary_10_1016_j_radi_2021_07_012 crossref_primary_10_1118_1_4954844 crossref_primary_10_1016_j_ejrad_2012_01_001 crossref_primary_10_1016_j_radonc_2018_12_022 crossref_primary_10_1016_j_semradonc_2017_08_003 crossref_primary_10_1155_2014_747549 crossref_primary_10_2967_jnumed_112_118083 crossref_primary_10_1016_j_compbiomed_2014_04_014 crossref_primary_10_1016_j_irbm_2009_05_004 crossref_primary_10_1109_TITB_2011_2159307 crossref_primary_10_1118_1_4948679 crossref_primary_10_1016_j_media_2023_102972 crossref_primary_10_1007_s00259_021_05430_z crossref_primary_10_1016_j_canrad_2015_09_009 crossref_primary_10_1016_j_neucom_2018_10_099 crossref_primary_10_1016_j_compbiomed_2016_02_002 crossref_primary_10_1002_hbm_24497 crossref_primary_10_1007_s00259_015_3239_7 crossref_primary_10_1016_j_remn_2013_06_010 crossref_primary_10_1097_MNM_0b013e3283573d0d crossref_primary_10_2967_jnumed_111_102566 crossref_primary_10_1118_1_4764900 crossref_primary_10_1007_s10278_010_9300_y crossref_primary_10_1155_2012_327861 crossref_primary_10_1016_j_ijrobp_2017_12_268 crossref_primary_10_1088_0031_9155_61_13_4855 crossref_primary_10_3389_fonc_2020_00678 crossref_primary_10_1109_JBHI_2016_2624798 crossref_primary_10_1120_jacmp_v15i5_4696 crossref_primary_10_1007_s00259_013_2486_8 crossref_primary_10_1088_0031_9155_60_9_3731 crossref_primary_10_1371_journal_pone_0239438 crossref_primary_10_1016_j_media_2015_04_016 crossref_primary_10_1016_j_mednuc_2017_02_003 crossref_primary_10_1038_s41598_020_66110_w crossref_primary_10_1186_s40658_021_00367_6 crossref_primary_10_1007_s00259_010_1688_6 crossref_primary_10_1109_TIP_2018_2872908 crossref_primary_10_1016_j_ejrad_2024_111297 crossref_primary_10_1016_j_irbm_2011_09_011 crossref_primary_10_1109_JBHI_2020_3024563 crossref_primary_10_1016_j_radonc_2020_10_040 crossref_primary_10_2217_fon_2017_0464 crossref_primary_10_3389_fmed_2015_00018 crossref_primary_10_1016_j_compmedimag_2011_01_004 crossref_primary_10_1118_1_4905162 crossref_primary_10_2967_jnumed_115_166918 crossref_primary_10_1109_TNS_2013_2295975 crossref_primary_10_1016_j_heliyon_2020_e05267 crossref_primary_10_1016_j_media_2013_05_005 crossref_primary_10_2967_jnumed_115_154138 crossref_primary_10_1016_j_media_2013_05_004 crossref_primary_10_1007_s00259_010_1423_3 crossref_primary_10_1007_s11042_017_4951_z crossref_primary_10_1007_s00259_011_1755_7 |
| Cites_doi | 10.1006/gmip.1997.0431 10.1109/NSSMIC.2008.4774243 10.1088/0031-9155/51/4/013 10.1007/s00259-004-1566-1 10.1109/23.775604 10.1109/83.624951 10.1007/3-540-45729-1_50 10.1109/83.772242 10.1088/0031-9155/52/12/010 10.1111/j.2517-6161.1977.tb01600.x 10.1080/01969727308546046 10.1109/23.910837 10.1007/s002590000421 10.1259/bjr/35628509 10.1109/NSSMIC.2003.1352428 10.1109/83.557353 10.1002/(SICI)1097-0142(19971215)80:12+<2505::AID-CNCR24>3.3.CO;2-B 10.1109/23.656454 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 1XC VOOES 5PM ADTOC UNPAY |
| DOI | 10.1109/TMI.2008.2012036 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Engineering Research Database MEDLINE Materials Research Database Technology Research Database Engineering Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X 1558-0062 |
| EndPage | 893 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:2912931 PMC2912931 oai:HAL:inserm-00372910v1 2295053901 19150782 10_1109_TMI_2008_2012036 4749328 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION AAYOK CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 1XC VOOES 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c572t-52aa007c97b7dc0d36cf0ae8fc0e3cf667f10bb87823f13f7e0d8834230821dd3 |
| IEDL.DBID | RIE |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Wed Oct 29 12:09:21 EDT 2025 Tue Sep 30 16:56:19 EDT 2025 Tue Oct 14 21:02:34 EDT 2025 Tue Oct 07 09:49:20 EDT 2025 Wed Oct 01 14:51:28 EDT 2025 Wed Oct 01 14:06:49 EDT 2025 Mon Oct 06 18:06:14 EDT 2025 Sun Oct 05 00:21:55 EDT 2025 Thu Apr 03 07:10:24 EDT 2025 Thu Apr 24 22:54:55 EDT 2025 Wed Oct 01 03:55:18 EDT 2025 Tue Aug 26 16:47:41 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Oncology segmentation volume determination PET |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c572t-52aa007c97b7dc0d36cf0ae8fc0e3cf667f10bb87823f13f7e0d8834230821dd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ORCID | 0000-0002-5880-2933 0000-0003-0831-3637 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://doi.org/10.1109/TMI.2008.2012036 |
| PMID | 19150782 |
| PQID | 857452425 |
| PQPubID | 23462 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_34865682 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2912931 proquest_miscellaneous_67314557 proquest_miscellaneous_867747316 proquest_miscellaneous_21064563 crossref_citationtrail_10_1109_TMI_2008_2012036 proquest_journals_857452425 hal_primary_oai_HAL_inserm_00372910v1 pubmed_primary_19150782 unpaywall_primary_10_1109_tmi_2008_2012036 ieee_primary_4749328 crossref_primary_10_1109_TMI_2008_2012036 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2009-06-01 |
| PublicationDateYYYYMMDD | 2009-06-01 |
| PublicationDate_xml | – month: 06 year: 2009 text: 2009-06-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2009 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref12 ref15 pieczynski (ref9) 2003; 20 ref11 chen (ref10) 2001; 2082 ref2 celeux (ref18) 1986; 34 ref1 ref16 boussion (ref28) 2008; 49 johnson (ref17) 1970; 1 dempster (ref19) 1977; 39 kim (ref8) 2002; 3 nestle (ref4) 2005; 46 ref24 ref26 ref25 jordan (ref22) 1990 ref21 ref27 ref7 ref3 ref6 lodge (ref23) 2004; 45 visvikis (ref14) 2004; 45 ref5 mcqueen (ref20) 1967; 1 |
| References_xml | – volume: 3 start-page: 1580 year: 2002 ident: ref8 article-title: automatic 3-d temporal kinetics segmentation of dynamic emission tomography image using adaptative region growing cluster analysis publication-title: IEEE NSS-MIC Conf Rec – ident: ref16 doi: 10.1006/gmip.1997.0431 – ident: ref27 doi: 10.1109/NSSMIC.2008.4774243 – volume: 45 start-page: 103p year: 2004 ident: ref14 article-title: characterisation of suv accuracy in fdg pet using 3-d ramla and the philips allegro pet scanner publication-title: J Nucl Med – ident: ref26 doi: 10.1088/0031-9155/51/4/013 – volume: 34 year: 1986 ident: ref18 article-title: l'algorithme sem: un algorithme d'apprentissage probabiliste pour la reconnaissance de mlanges de densits publication-title: Revue de Statistique Applique – ident: ref2 doi: 10.1007/s00259-004-1566-1 – ident: ref6 doi: 10.1109/23.775604 – ident: ref13 doi: 10.1109/83.624951 – volume: 49 start-page: 388 year: 2008 ident: ref28 article-title: partial volume correction in pet based on functional volumes publication-title: J Nucl Med – volume: 2082 start-page: 468 year: 2001 ident: ref10 article-title: markov random field model for segmentation of pet images publication-title: Lecture Notes on Computer Science doi: 10.1007/3-540-45729-1_50 – ident: ref12 doi: 10.1109/83.772242 – volume: 46 start-page: 1342 year: 2005 ident: ref4 article-title: comparison of different methods for delineation of 18f-fdg pet-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer publication-title: J Nucl Med – ident: ref11 doi: 10.1088/0031-9155/52/12/010 – volume: 39 start-page: 1 year: 1977 ident: ref19 article-title: maximum likelihood from incomplete data via the em algorithm publication-title: J R Stat Soc B doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 1 start-page: 281 year: 1967 ident: ref20 article-title: some methods for classification and analysis of multivariate observations publication-title: Proc 5th Berkeley Symp Math Stat Probabil – ident: ref21 doi: 10.1080/01969727308546046 – volume: 45 start-page: 425 year: 2004 ident: ref23 article-title: performance assessment of the philips gemini pet/ct scanner publication-title: J Nucl Med – ident: ref24 doi: 10.1109/23.910837 – volume: 1 year: 1970 ident: ref17 publication-title: Distributions in Statistics Continuous Univariate Distributions – ident: ref25 doi: 10.1007/s002590000421 – ident: ref1 doi: 10.1259/bjr/35628509 – ident: ref7 doi: 10.1109/NSSMIC.2003.1352428 – ident: ref15 doi: 10.1109/83.557353 – ident: ref3 doi: 10.1002/(SICI)1097-0142(19971215)80:12+<2505::AID-CNCR24>3.3.CO;2-B – ident: ref5 doi: 10.1109/23.656454 – volume: 20 start-page: 255 year: 2003 ident: ref9 article-title: modles de markov en traitement d'images publication-title: Traitement du Signal – year: 1990 ident: ref22 article-title: iec emission phantom appendix performance evaluation of positron emission tomographs publication-title: Med Public Health Res Programme Eur Commun |
| SSID | ssj0014509 |
| Score | 2.4539418 |
| Snippet | Accurate volume estimation in positron emission tomography (PET) is crucial for different oncology applications. The objective of our study was to develop a... [...] the FLAB model provided errors less than 10% for nonspherical lesions with inhomogeneous activity distributions. Accurate volume estimation in PET is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive... |
| SourceID | unpaywall pubmedcentral hal proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 881 |
| SubjectTerms | Algorithms Bayes Theorem Bayesian methods Bioengineering Computer Simulation Fuzzy Logic Hidden Markov models Humans IEC Image Processing, Computer-Assisted Image Processing, Computer-Assisted - methods Image quality Imaging phantoms Lesions Life Sciences Markov Chains Neoplasms Neoplasms - diagnostic imaging Noise Noise level Normal Distribution Nuclear medicine Oncology Positron emission tomography positron emission tomography (PET) Positron-Emission Tomography - methods Reproducibility of Results segmentation Studies volume determination |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF7RVOJx4NHyMOWxBziAlHadtXfXRwONAmqqSiSQnqz1ek0jEjeiMSj59cz4kcYKAXH2ZOXMzux-45n5hpBXjFvM_7G2lkiqneigrQDmtrUBjCQVV9Zg73D_VPSG3qeRP7omSVpP37ssOBr0P5b1jh1s8uRih-wKH0B3i-wOT8_C8-ILCnLEsmJ0KFyOsO--N6oTkrDEfDpuLNG4gHYusPyxmKvyJ4i5WSl5K89mevFLTyZr11D3HunVzTxl9cn3w3weH5rlJrfjv_7hfXK3gqI0LG3nAblhsz1yZ42gcI_c7Fep933yNaTdfLlc0BO8_SYLGiZ6hmclfacXFlsx6Wf7bVq1MmU0rMjKKaBi-qU4A-mHuvamkBhn9Ox48JAMu8eD9712NZWhbXzZmUPkqjUACxPIWCaGJVyYlGmrUsMsN6kQMnVZHCuAHjx1eSotS5RCokFAG26S8EeklV1m9gmhgcutCRI4rFnspZ1UpR1hlNSukCKF69UhR_VWRaaiLMfJGZOoCF1YEIH2ykGalfYc8mb1i1lJ1_EX2dew-ysx5NnuhSfROAPfnyJnKsQdLvsJb7GP9rES9KQHoFc55KC2l6jy-6tI-dLzMYpzyMvVU3BYzMLozF7mVxHE2AJQK98uwT0FKFt1tksIyZFgXjqEbpFAmkIPp5I55HFpwtf6CDAIwOVlw7gbmmg-ycYXBfM4KATgIWjk7coNNtQM_tZQ89P_ET4gt8t0HX7mekZa8x-5fQ6obx6_qDz-N5mzSrs priority: 102 providerName: Unpaywall |
| Title | A Fuzzy Locally Adaptive Bayesian Segmentation Approach for Volume Determination in PET |
| URI | https://ieeexplore.ieee.org/document/4749328 https://www.ncbi.nlm.nih.gov/pubmed/19150782 https://www.proquest.com/docview/857452425 https://www.proquest.com/docview/21064563 https://www.proquest.com/docview/34865682 https://www.proquest.com/docview/67314557 https://www.proquest.com/docview/867747316 https://inserm.hal.science/inserm-00372910 https://pubmed.ncbi.nlm.nih.gov/PMC2912931 http://doi.org/10.1109/TMI.2008.2012036 |
| UnpaywallVersion | submittedVersion |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB41ReJx4NHyMIWyBziASLL2Ot710UCjgpqqEgm0J2u9XtOIxIloAkp-PTO2YxraIG6WPJbsmdnZbz0z3wC85MJS_o83tSRS7VSHTYUwt6kNYiSphLKGeod7x8HhwP902jndgrd1L4y1tig-sy26LHL56cTM6VdZ25c-wg3VgIZUQdmrVWcM_E5ZzuERYywPvFVKkoftfu9jWTTpUaeoKKYWhQSElLe2GzXOqRayGLJyHd68WjZ5a55P9eKXHo0u7Unde9BbfU1ZivK9NZ8lLbP8i-jxfz_3PtytwCmLSm96AFs234E7lygLd-Bmr0rG78LXiHXny-WCHdF-OFqwKNVTip7snV5Yas5kn-23cdXclLOooi9niJPZlyIqsg-rapxCYpizk4P-Qxh0D_rvD5vVnIam6UhvhmdZrRFqmFAmMjU8FYHJuLYqM9wKkwWBzFyeJAr1LTJXZNLyVCmiHkT84aapeATb-SS3T4CFrrAmTDF888TPvExlXmCU1G4ggww3XAfaK3vFpiIxp1kao7g4zPAwRmOXozUrYzvwun5iWhJ4_EP2FbpALUbM24fRUTzMMRqMiUUVTyIu_4lvsUvWqgUrQzmwt3KauIoEF7HqSL9D5zoHXtR3cQlTXkbndjK_iPHUHSCOFZslhK8Qdytvs0QgBVHOSwfYBgkiLvRpTpkDj0s__qOPajU4INc8fE0T63fy4XnBRY4KQcCIGnlTr4Urap6Nh2tqfnq9-vbgdpmqo19cz2B79mNunyPimyX7xVLfhxuD45Po7Dcj3VA5 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9NADLe2ITF44GPjIwzYPcADiLaXXJK7PBZY1UE7IdHB3qLL5cIq2rRiLaj967GTNKxsRbxFiiMlts_3u9j-GeAFF5byf7yhJZFqpzpqKIS5DW0QI0kllDXUO9w_Cbun_oez4GwL3tS9MNbaovjMNumyyOWnEzOnX2UtX_oIN9Q23Ah83w_Kbq06Z-AHZUGHR5yxPPRWSUketQb947Js0qNeUVHMLYoICilvbT_aPqdqyGLMynWI82rh5O48n-rFLz0aXdqVOnehv_qeshjle3M-S5pm-RfV4_9-8D24U8FT1i796T5s2XwPbl8iLdyDm_0qHb8PX9usM18uF6xHO-JowdqpnlL8ZG_1wlJ7Jvtsv42r9qactSsCc4ZImX0p4iJ7v6rHKSSGOft0NHgAp52jwbtuo5rU0DCB9GZ4mtUawYaJZCJTw1MRmoxrqzLDrTBZGMrM5UmiUN8ic0UmLU-VIvJBRCBumoqHsJNPcvsYWOQKa6IUAzhP_MzLVOaFRknthjLMcMt1oLWyV2wqGnOapjGKi-MMj2I0djlcszK2A6_qJ6Ylhcc_ZF-iC9RixL3dbffiYY7xYEw8qngWcflPfIt9slYtWBnKgYOV08RVLLiIVSD9gE52DhzWd3ERU2ZG53Yyv4jx3B0ikhWbJYSvEHkrb7NEKAWRzksH2AYJoi70aVKZA49KP_6jj2o1OCDXPHxNE-t38uF5wUaOCkHIiBp5Xa-FK2qejYdran5yvfoOYbc76Pfi3vHJxwO4VSbu6IfXU9iZ_ZjbZ4j_ZsnzYtn_Bj0aUdY |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF7RVOJx4NHyMOWxBziAlHadtXfXRwONAmqqSiSQnqz1ek0jEjeiMSj59cz4kcYKAXH2ZOXMzux-45n5hpBXjFvM_7G2lkiqneigrQDmtrUBjCQVV9Zg73D_VPSG3qeRP7omSVpP37ssOBr0P5b1jh1s8uRih-wKH0B3i-wOT8_C8-ILCnLEsmJ0KFyOsO--N6oTkrDEfDpuLNG4gHYusPyxmKvyJ4i5WSl5K89mevFLTyZr11D3HunVzTxl9cn3w3weH5rlJrfjv_7hfXK3gqI0LG3nAblhsz1yZ42gcI_c7Fep933yNaTdfLlc0BO8_SYLGiZ6hmclfacXFlsx6Wf7bVq1MmU0rMjKKaBi-qU4A-mHuvamkBhn9Ox48JAMu8eD9712NZWhbXzZmUPkqjUACxPIWCaGJVyYlGmrUsMsN6kQMnVZHCuAHjx1eSotS5RCokFAG26S8EeklV1m9gmhgcutCRI4rFnspZ1UpR1hlNSukCKF69UhR_VWRaaiLMfJGZOoCF1YEIH2ykGalfYc8mb1i1lJ1_EX2dew-ysx5NnuhSfROAPfnyJnKsQdLvsJb7GP9rES9KQHoFc55KC2l6jy-6tI-dLzMYpzyMvVU3BYzMLozF7mVxHE2AJQK98uwT0FKFt1tksIyZFgXjqEbpFAmkIPp5I55HFpwtf6CDAIwOVlw7gbmmg-ycYXBfM4KATgIWjk7coNNtQM_tZQ89P_ET4gt8t0HX7mekZa8x-5fQ6obx6_qDz-N5mzSrs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fuzzy+Locally+Adaptive+Bayesian+Segmentation+Approach+for+Volume+Determination+in+PET&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Hatt%2C+M&rft.au=Cheze+le+Rest%2C+C&rft.au=Turzo%2C+A&rft.au=Roux%2C+C&rft.date=2009-06-01&rft.issn=0278-0062&rft.volume=28&rft.issue=6&rft_id=info:doi/10.1109%2FTMI.2008.2012036&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |