A Fuzzy Locally Adaptive Bayesian Segmentation Approach for Volume Determination in PET

Accurate volume estimation in positron emission tomography (PET) is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive Bayesian (FLAB) segmentation for automatic lesion volume delineation. FLAB was compared with a threshold approach as...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 28; no. 6; pp. 881 - 893
Main Authors Hatt, M., Cheze le Rest, C., Turzo, A., Roux, C., Visvikis, D.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
1558-0062
DOI10.1109/TMI.2008.2012036

Cover

Abstract Accurate volume estimation in positron emission tomography (PET) is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive Bayesian (FLAB) segmentation for automatic lesion volume delineation. FLAB was compared with a threshold approach as well as the previously proposed fuzzy hidden Markov chains (FHMC) and the fuzzy C-Means (FCM) algorithms. The performance of the algorithms was assessed on acquired datasets of the IEC phantom, covering a range of spherical lesion sizes (10-37 mm), contrast ratios (4:1 and 8:1), noise levels (1, 2, and 5 min acquisitions), and voxel sizes (8 and 64 mm 3 ). In addition, the performance of the FLAB model was assessed on realistic nonuniform and nonspherical volumes simulated from patient lesions. Results show that FLAB performs better than the other methodologies, particularly for smaller objects. The volume error was 5%-15% for the different sphere sizes (down to 13 mm), contrast and image qualities considered, with a high reproducibility (variation < 4%). By comparison, the thresholding results were greatly dependent on image contrast and noise, whereas FCM results were less dependent on noise but consistently failed to segment lesions < 2 cm. In addition, FLAB performed consistently better for lesions < 2 cm in comparison to the FHMC algorithm. Finally the FLAB model provided errors less than 10% for nonspherical lesions with inhomogeneous activity distributions. Future developments will concentrate on an extension of FLAB in order to allow the segmentation of separate activity distribution regions within the same functional volume as well as a robustness study with respect to different scanners and reconstruction algorithms.
AbstractList Accurate volume estimation in positron emission tomography (PET) is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive Bayesian (FLAB) segmentation for automatic lesion volume delineation. FLAB was compared with a threshold approach as well as the previously proposed fuzzy hidden Markov chains (FHMC) and the fuzzy C-Means (FCM) algorithms. The performance of the algorithms was assessed on acquired datasets of the IEC phantom, covering a range of spherical lesion sizes (10-37 mm), contrast ratios (4:1 and 8:1), noise levels (1, 2, and 5 min acquisitions), and voxel sizes (8 and 64 mm reversible reaction ). In addition, the performance of the FLAB model was assessed on realistic nonuniform and nonspherical volumes simulated from patient lesions. Results show that FLAB performs better than the other methodologies, particularly for smaller objects. The volume error was 5%-15% for the different sphere sizes (down to 13 mm), contrast and image qualities considered, with a high reproducibility (variation 4%). By comparison, the thresholding results were greatly dependent on image contrast and noise, whereas FCM results were less dependent on noise but consistently failed to segment lesions $ 2 cm. In addition, FLAB performed consistently better for lesions $ 2 cm in comparison to the FHMC algorithm. Finally the FLAB model provided errors less than 10% for nonspherical lesions with inhomogeneous activity distributions. Future developments will concentrate on an extension of FLAB in order to allow the segmentation of separate activity distribution regions within the same functional volume as well as a robustness st-.
Accurate volume estimation in positron emission tomography (PET) is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive Bayesian (FLAB) segmentation for automatic lesion volume delineation. FLAB was compared with a threshold approach as well as the previously proposed fuzzy hidden Markov chains (FHMC) and the fuzzy C-Means (FCM) algorithms. The performance of the algorithms was assessed on acquired datasets of the IEC phantom, covering a range of spherical lesion sizes (10-37 mm), contrast ratios (4:1 and 8:1), noise levels (1, 2, and 5 min acquisitions), and voxel sizes (8 and 64 mm(3)). In addition, the performance of the FLAB model was assessed on realistic nonuniform and nonspherical volumes simulated from patient lesions. Results show that FLAB performs better than the other methodologies, particularly for smaller objects. The volume error was 5%-15% for the different sphere sizes (down to 13 mm), contrast and image qualities considered, with a high reproducibility (variation < 4%). By comparison, the thresholding results were greatly dependent on image contrast and noise, whereas FCM results were less dependent on noise but consistently failed to segment lesions < 2 cm. In addition, FLAB performed consistently better for lesions < 2 cm in comparison to the FHMC algorithm. Finally the FLAB model provided errors less than 10% for nonspherical lesions with inhomogeneous activity distributions. Future developments will concentrate on an extension of FLAB in order to allow the segmentation of separate activity distribution regions within the same functional volume as well as a robustness study with respect to different scanners and reconstruction algorithms.
[...] the FLAB model provided errors less than 10% for nonspherical lesions with inhomogeneous activity distributions.
Accurate volume estimation in positron emission tomography (PET) is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive Bayesian (FLAB) segmentation for automatic lesion volume delineation. FLAB was compared with a threshold approach as well as the previously proposed fuzzy hidden Markov chains (FHMC) and the fuzzy C-Means (FCM) algorithms. The performance of the algorithms was assessed on acquired datasets of the IEC phantom, covering a range of spherical lesion sizes (10-37 mm), contrast ratios (4:1 and 8:1), noise levels (1, 2, and 5 min acquisitions), and voxel sizes (8 and 64 mm3). In addition, the performance of the FLAB model was assessed on realistic nonuniform and nonspherical volumes simulated from patient lesions. Results show that FLAB performs better than the other methodologies, particularly for smaller objects. The volume error was 5%-15% for the different sphere sizes (down to 13 mm), contrast and image qualities considered, with a high reproducibility (variation 4%). By comparison, the thresholding results were greatly dependent on image contrast and noise, whereas FCM results were less dependent on noise but consistently failed to segment lesions $ 2 cm. In addition, FLAB performed consistently better for lesions $ 2 cm in comparison to the FHMC algorithm. Finally the FLAB model provided errors less than 10% for nonspherical lesions with inhomogeneous activity distributions. Future developments will concentrate on an extension of FLAB in order to allow the segmentation of separate activity distribution regions within the same functional volume as well as a robustness st-.
Accurate volume estimation in PET is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive Bayesian (FLAB) segmentation for automatic lesion volume delineation. FLAB was compared with a threshold approach as well as the previously proposed fuzzy hidden Markov chains (FHMC) and the Fuzzy C-Means (FCM) algorithms. The performance of the algorithms was assessed on acquired datasets of the IEC phantom, covering a range of spherical lesion sizes (10–37mm), contrast ratios (4:1 and 8:1), noise levels (1, 2 and 5 min acquisitions) and voxel sizes (8mm3 and 64mm3). In addition, the performance of the FLAB model was assessed on realistic non-uniform and non-spherical volumes simulated from patient lesions. Results show that FLAB performs better than the other methodologies, particularly for smaller objects. The volume error was 5%–15% for the different sphere sizes (down to 13mm), contrast and image qualities considered, with a high reproducibility (variation <4%). By comparison, the thresholding results were greatly dependent on image contrast and noise, whereas FCM results were less dependent on noise but consistently failed to segment lesions <2cm. In addition, FLAB performed consistently better for lesions <2cm in comparison to the FHMC algorithm. Finally the FLAB model provided errors less than 10% for non-spherical lesions with inhomogeneous activity distributions. Future developments will concentrate on an extension of FLAB in order to allow the segmentation of separate activity distribution regions within the same functional volume as well as a robustness study with respect to different scanners and reconstruction algorithms.
Accurate volume estimation in positron emission tomography (PET) is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive Bayesian (FLAB) segmentation for automatic lesion volume delineation. FLAB was compared with a threshold approach as well as the previously proposed fuzzy hidden Markov chains (FHMC) and the fuzzy C-Means (FCM) algorithms. The performance of the algorithms was assessed on acquired datasets of the IEC phantom, covering a range of spherical lesion sizes (10-37 mm), contrast ratios (4:1 and 8:1), noise levels (1, 2, and 5 min acquisitions), and voxel sizes (8 and 64 mm super(3)). In addition, the performance of the FLAB model was assessed on realistic nonuniform and nonspherical volumes simulated from patient lesions. Results show that FLAB performs better than the other methodologies, particularly for smaller objects. The volume error was 5%-15% for the different sphere sizes (down to 13 mm), contrast and image qualities considered, with a high reproducibility (variation <4%). By comparison, the thresholding results were greatly dependent on image contrast and noise, whereas FCM results were less dependent on noise but consistently failed to segment lesions <2 cm. In addition, FLAB performed consistently better for lesions <2 cm in comparison to the FHMC algorithm. Finally the FLAB model provided errors less than 10% for nonspherical lesions with inhomogeneous activity distributions. Future developments will concentrate on an extension of FLAB in order to allow the segmentation of separate activity distribution regions within the same functional volume as well as a robustness study with respect to different scanners and reconstruction algorithms.
Accurate volume estimation in positron emission tomography (PET) is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive Bayesian (FLAB) segmentation for automatic lesion volume delineation. FLAB was compared with a threshold approach as well as the previously proposed fuzzy hidden Markov chains (FHMC) and the fuzzy C-Means (FCM) algorithms. The performance of the algorithms was assessed on acquired datasets of the IEC phantom, covering a range of spherical lesion sizes (10-37 mm), contrast ratios (4:1 and 8:1), noise levels (1, 2, and 5 min acquisitions), and voxel sizes (8 and 64 mm(3)). In addition, the performance of the FLAB model was assessed on realistic nonuniform and nonspherical volumes simulated from patient lesions. Results show that FLAB performs better than the other methodologies, particularly for smaller objects. The volume error was 5%-15% for the different sphere sizes (down to 13 mm), contrast and image qualities considered, with a high reproducibility (variation < 4%). By comparison, the thresholding results were greatly dependent on image contrast and noise, whereas FCM results were less dependent on noise but consistently failed to segment lesions < 2 cm. In addition, FLAB performed consistently better for lesions < 2 cm in comparison to the FHMC algorithm. Finally the FLAB model provided errors less than 10% for nonspherical lesions with inhomogeneous activity distributions. Future developments will concentrate on an extension of FLAB in order to allow the segmentation of separate activity distribution regions within the same functional volume as well as a robustness study with respect to different scanners and reconstruction algorithms.Accurate volume estimation in positron emission tomography (PET) is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive Bayesian (FLAB) segmentation for automatic lesion volume delineation. FLAB was compared with a threshold approach as well as the previously proposed fuzzy hidden Markov chains (FHMC) and the fuzzy C-Means (FCM) algorithms. The performance of the algorithms was assessed on acquired datasets of the IEC phantom, covering a range of spherical lesion sizes (10-37 mm), contrast ratios (4:1 and 8:1), noise levels (1, 2, and 5 min acquisitions), and voxel sizes (8 and 64 mm(3)). In addition, the performance of the FLAB model was assessed on realistic nonuniform and nonspherical volumes simulated from patient lesions. Results show that FLAB performs better than the other methodologies, particularly for smaller objects. The volume error was 5%-15% for the different sphere sizes (down to 13 mm), contrast and image qualities considered, with a high reproducibility (variation < 4%). By comparison, the thresholding results were greatly dependent on image contrast and noise, whereas FCM results were less dependent on noise but consistently failed to segment lesions < 2 cm. In addition, FLAB performed consistently better for lesions < 2 cm in comparison to the FHMC algorithm. Finally the FLAB model provided errors less than 10% for nonspherical lesions with inhomogeneous activity distributions. Future developments will concentrate on an extension of FLAB in order to allow the segmentation of separate activity distribution regions within the same functional volume as well as a robustness study with respect to different scanners and reconstruction algorithms.
Author Cheze le Rest, C.
Turzo, A.
Hatt, M.
Roux, C.
Visvikis, D.
AuthorAffiliation 1 LATIM, Laboratoire de Traitement de l'Information Medicale INSERM : U650 Université de Bretagne Occidentale - Brest Institut Télécom Télécom Bretagne Centre hospitalier universitaire de Brest Université européenne de Bretagne Hopital Morvan, 5 Avenue Foch, 29609 Brest Cedex,FR
3 Service de médecine nucléaire CHU Brest Hôpital Morvan Brest, F-29609,FR
2 GET, GET Ecole Nationale Supérieure des Télécommunications de Bretagne Technopôle de Brest Iroise - BP 832 - 29285 Brest CEDEX,FR
AuthorAffiliation_xml – name: 3 Service de médecine nucléaire CHU Brest Hôpital Morvan Brest, F-29609,FR
– name: 1 LATIM, Laboratoire de Traitement de l'Information Medicale INSERM : U650 Université de Bretagne Occidentale - Brest Institut Télécom Télécom Bretagne Centre hospitalier universitaire de Brest Université européenne de Bretagne Hopital Morvan, 5 Avenue Foch, 29609 Brest Cedex,FR
– name: 2 GET, GET Ecole Nationale Supérieure des Télécommunications de Bretagne Technopôle de Brest Iroise - BP 832 - 29285 Brest CEDEX,FR
Author_xml – sequence: 1
  givenname: M.
  surname: Hatt
  fullname: Hatt, M.
  organization: LaTIM, INSERM, Brest
– sequence: 2
  givenname: C.
  surname: Cheze le Rest
  fullname: Cheze le Rest, C.
  organization: LaTIM, INSERM, Brest
– sequence: 3
  givenname: A.
  surname: Turzo
  fullname: Turzo, A.
  organization: LaTIM, INSERM, Brest
– sequence: 4
  givenname: C.
  surname: Roux
  fullname: Roux, C.
  organization: LaTIM, INSERM, Brest
– sequence: 5
  givenname: D.
  surname: Visvikis
  fullname: Visvikis, D.
  organization: LaTIM, INSERM, Brest
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19150782$$D View this record in MEDLINE/PubMed
https://inserm.hal.science/inserm-00372910$$DView record in HAL
BookMark eNqFkktvEzEUhS1URNPCHgkJjVjAhpTrt2eDFEpLKwWBRHjsLMfjaVzN2MM8gtJfj6OJWogQ3dgLf-f63nPuEToIMTiEnmI4wRjyN4uPlycEQKUDE6DiAZpgztWUcPbjAE2ASDUFEOQQHXXdNQBmHPJH6BDnmINUZIK-z7Lz4eZmk82jNVW1yWaFaXq_dtk7s3GdNyH74q5qF3rT-xiyWdO00dhVVsY2-xaroXbZe9e7tvZhJHzIPp8tHqOHpak692R3H6Ov52eL04vp_NOHy9PZfGq5JP2UE2MApM3lUhYWCipsCcap0oKjthRClhiWS5V6pSWmpXRQKEUZoaAILgp6jPBYdwiN2fxKI-im9bVpNxqD3pqk-9rrrUl6Z1LSvB01zbCsXWHTcK2500Xj9d8vwa_0VVxrkmOSU5wKvB4LrPZkF7O59qFLbmgAKhMP6y3-avdfG38Orut17TvrqsoEF4dOKyElkxRvO3v5X1IkinEu7wUpU4KLZNp9IMEgGBc0gS_2wOs4tCFlpxWXjBNGeIKe_-ncndW7fUqAGAHbxq5rXamtHzcnGemr20zS4u5nAnvC_Rj_IXk2Srxz7hZnkuWUKPobrvf1DQ
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_TRPMS_2017_2777890
crossref_primary_10_1259_bjr_20160665
crossref_primary_10_2967_jnumed_111_092767
crossref_primary_10_1038_s41598_023_45215_y
crossref_primary_10_1016_j_ctro_2020_05_004
crossref_primary_10_1097_RLU_0000000000003789
crossref_primary_10_2967_jnumed_110_085399
crossref_primary_10_18632_oncotarget_24234
crossref_primary_10_1016_j_radonc_2013_03_024
crossref_primary_10_1118_1_4929561
crossref_primary_10_2967_jnumed_110_078501
crossref_primary_10_1007_s00259_010_1472_7
crossref_primary_10_1097_RLU_0000000000004194
crossref_primary_10_1118_1_4728219
crossref_primary_10_1007_s11517_019_02094_8
crossref_primary_10_1049_iet_ipr_2016_1024
crossref_primary_10_3413_Nukmed_0452_11_12
crossref_primary_10_2967_jnumed_111_092775
crossref_primary_10_1016_j_cpet_2021_06_001
crossref_primary_10_1118_1_3608907
crossref_primary_10_1088_0031_9155_57_22_7409
crossref_primary_10_1007_s11307_011_0514_2
crossref_primary_10_1007_s10928_013_9307_3
crossref_primary_10_1259_bjr_20150056
crossref_primary_10_1118_1_4903282
crossref_primary_10_1016_j_compmedimag_2014_09_007
crossref_primary_10_1186_s13550_018_0379_3
crossref_primary_10_1118_1_4761952
crossref_primary_10_2967_jnumed_116_173112
crossref_primary_10_1097_MNM_0000000000000045
crossref_primary_10_1186_s13014_014_0300_9
crossref_primary_10_1038_s41598_019_51096_x
crossref_primary_10_1118_1_4939127
crossref_primary_10_1016_j_cviu_2016_10_002
crossref_primary_10_1080_01431161_2012_718455
crossref_primary_10_1371_journal_pone_0057105
crossref_primary_10_1007_s00259_013_2651_0
crossref_primary_10_1007_s00259_017_3898_7
crossref_primary_10_1007_s40336_014_0064_0
crossref_primary_10_1016_j_canrad_2011_07_243
crossref_primary_10_1002_mp_13100
crossref_primary_10_1007_s00259_017_3744_y
crossref_primary_10_1016_j_irbm_2015_11_001
crossref_primary_10_1002_acm2_13321
crossref_primary_10_1007_s00530_017_0579_0
crossref_primary_10_1007_s00138_012_0454_0
crossref_primary_10_1007_s00066_013_0454_7
crossref_primary_10_1088_1361_6560_aaa86a
crossref_primary_10_1118_1_4737022
crossref_primary_10_2967_jnumed_115_162511
crossref_primary_10_3390_math12050764
crossref_primary_10_2967_jnumed_110_084897
crossref_primary_10_1002_mp_12124
crossref_primary_10_1007_s00066_014_0752_8
crossref_primary_10_1109_TBME_2015_2433397
crossref_primary_10_1371_journal_pone_0140830
crossref_primary_10_1007_s00259_018_4231_9
crossref_primary_10_1016_j_media_2021_102336
crossref_primary_10_1148_radiol_2016160329
crossref_primary_10_1007_s00259_011_1858_1
crossref_primary_10_1186_s40658_021_00385_4
crossref_primary_10_1016_j_mednuc_2016_03_141
crossref_primary_10_1002_mp_12312
crossref_primary_10_1016_j_ijrobp_2009_08_018
crossref_primary_10_1016_j_radonc_2013_08_033
crossref_primary_10_1088_0031_9155_61_13_R150
crossref_primary_10_1118_1_3301610
crossref_primary_10_1109_TMI_2012_2202322
crossref_primary_10_2967_jnumed_111_099127
crossref_primary_10_1016_j_radonc_2016_04_039
crossref_primary_10_1016_j_media_2017_12_007
crossref_primary_10_1088_1361_6560_aa6e20
crossref_primary_10_1088_1361_6560_ac01f4
crossref_primary_10_1118_1_4812892
crossref_primary_10_3390_app12104865
crossref_primary_10_1016_j_rpor_2013_10_007
crossref_primary_10_1016_j_canrad_2015_06_018
crossref_primary_10_1371_journal_pone_0253653
crossref_primary_10_2967_jnumed_110_082404
crossref_primary_10_7763_IJCTE_2013_V5_636
crossref_primary_10_1038_s41598_024_66487_y
crossref_primary_10_3389_fradi_2023_1225215
crossref_primary_10_1016_j_compbiomed_2018_09_002
crossref_primary_10_1007_s00259_011_1834_9
crossref_primary_10_1007_s00259_013_2407_x
crossref_primary_10_1109_TMI_2010_2083681
crossref_primary_10_1109_TMI_2022_3156614
crossref_primary_10_1007_s00259_022_05925_3
crossref_primary_10_1088_1361_6560_ab8535
crossref_primary_10_1109_TMI_2012_2193896
crossref_primary_10_1002_ima_22154
crossref_primary_10_1109_TMI_2012_2199511
crossref_primary_10_1007_s13139_024_00845_6
crossref_primary_10_1109_TCBB_2023_3281638
crossref_primary_10_3938_jkps_77_1049
crossref_primary_10_1002_mp_12334
crossref_primary_10_1118_1_3213099
crossref_primary_10_2967_jnumed_113_133389
crossref_primary_10_1109_TMI_2023_3336237
crossref_primary_10_1177_15330338221086396
crossref_primary_10_1186_s13014_018_1163_2
crossref_primary_10_1109_TMI_2013_2263388
crossref_primary_10_1117_1_JMI_4_1_011009
crossref_primary_10_1007_s00259_017_3865_3
crossref_primary_10_1080_0013791X_2019_1597239
crossref_primary_10_1007_s00259_016_3325_5
crossref_primary_10_1186_s13550_017_0310_3
crossref_primary_10_1186_s40658_015_0116_1
crossref_primary_10_1007_s00259_012_2233_6
crossref_primary_10_1016_j_ejmp_2019_04_020
crossref_primary_10_2967_jnumed_120_249524
crossref_primary_10_1016_j_asoc_2023_110825
crossref_primary_10_1016_j_cpet_2019_08_005
crossref_primary_10_1371_journal_pone_0099567
crossref_primary_10_1007_s00259_017_3855_5
crossref_primary_10_1007_s00259_011_2053_0
crossref_primary_10_2967_jnumed_113_129858
crossref_primary_10_1155_2014_401201
crossref_primary_10_1109_JPROC_2009_2027925
crossref_primary_10_1007_s00259_021_05303_5
crossref_primary_10_1016_j_cmpb_2017_07_006
crossref_primary_10_1016_j_ijrobp_2018_05_022
crossref_primary_10_1109_TRPMS_2018_2878934
crossref_primary_10_1016_j_compbiomed_2024_108827
crossref_primary_10_2967_jnumed_114_144055
crossref_primary_10_1007_s00330_015_3681_8
crossref_primary_10_1186_s13550_020_00744_9
crossref_primary_10_1007_s00259_021_05244_z
crossref_primary_10_1007_s11548_015_1231_0
crossref_primary_10_1016_j_compbiomed_2013_07_023
crossref_primary_10_1186_s13550_017_0262_7
crossref_primary_10_1118_1_4863480
crossref_primary_10_3413_Nukmed_0455_11_12
crossref_primary_10_1097_MNM_0000000000000317
crossref_primary_10_1007_s00259_015_3110_x
crossref_primary_10_1155_2013_942353
crossref_primary_10_1016_j_ymeth_2020_11_002
crossref_primary_10_1016_j_remnie_2014_01_007
crossref_primary_10_1118_1_4826162
crossref_primary_10_1088_0031_9155_57_17_5381
crossref_primary_10_1109_TBME_2013_2288258
crossref_primary_10_1088_1361_6560_aaf44b
crossref_primary_10_1118_1_4793721
crossref_primary_10_1016_j_compmedimag_2011_06_004
crossref_primary_10_1016_j_canrad_2020_04_010
crossref_primary_10_1007_s40336_018_0292_9
crossref_primary_10_1016_j_cmpb_2012_10_009
crossref_primary_10_1109_TMI_2017_2771379
crossref_primary_10_1109_TBME_2023_3297249
crossref_primary_10_1002_mp_12531
crossref_primary_10_1007_s00259_016_3441_2
crossref_primary_10_1118_1_4898122
crossref_primary_10_1142_S0218001423570069
crossref_primary_10_1186_2001_1326_1_18
crossref_primary_10_1109_TMI_2014_2329019
crossref_primary_10_1016_j_mednuc_2016_01_002
crossref_primary_10_1016_j_media_2014_06_014
crossref_primary_10_3389_fmed_2020_00218
crossref_primary_10_1038_s41598_020_62414_z
crossref_primary_10_1016_j_compmedimag_2015_09_006
crossref_primary_10_1109_TRPMS_2019_2911597
crossref_primary_10_1186_s40644_016_0086_0
crossref_primary_10_3389_fonc_2021_726865
crossref_primary_10_2967_jnumed_109_068411
crossref_primary_10_1186_s40658_015_0110_7
crossref_primary_10_1118_1_4947483
crossref_primary_10_1016_j_mednuc_2020_03_003
crossref_primary_10_1007_s10278_023_00823_y
crossref_primary_10_1002_mp_12880
crossref_primary_10_1007_s00330_011_2311_3
crossref_primary_10_1155_2013_980769
crossref_primary_10_1118_1_4930251
crossref_primary_10_1007_s11548_014_1104_y
crossref_primary_10_1007_s11547_014_0446_4
crossref_primary_10_1016_j_energy_2014_02_076
crossref_primary_10_1007_s00259_023_06187_3
crossref_primary_10_1186_s13550_014_0069_8
crossref_primary_10_1016_j_radi_2021_07_012
crossref_primary_10_1118_1_4954844
crossref_primary_10_1016_j_ejrad_2012_01_001
crossref_primary_10_1016_j_radonc_2018_12_022
crossref_primary_10_1016_j_semradonc_2017_08_003
crossref_primary_10_1155_2014_747549
crossref_primary_10_2967_jnumed_112_118083
crossref_primary_10_1016_j_compbiomed_2014_04_014
crossref_primary_10_1016_j_irbm_2009_05_004
crossref_primary_10_1109_TITB_2011_2159307
crossref_primary_10_1118_1_4948679
crossref_primary_10_1016_j_media_2023_102972
crossref_primary_10_1007_s00259_021_05430_z
crossref_primary_10_1016_j_canrad_2015_09_009
crossref_primary_10_1016_j_neucom_2018_10_099
crossref_primary_10_1016_j_compbiomed_2016_02_002
crossref_primary_10_1002_hbm_24497
crossref_primary_10_1007_s00259_015_3239_7
crossref_primary_10_1016_j_remn_2013_06_010
crossref_primary_10_1097_MNM_0b013e3283573d0d
crossref_primary_10_2967_jnumed_111_102566
crossref_primary_10_1118_1_4764900
crossref_primary_10_1007_s10278_010_9300_y
crossref_primary_10_1155_2012_327861
crossref_primary_10_1016_j_ijrobp_2017_12_268
crossref_primary_10_1088_0031_9155_61_13_4855
crossref_primary_10_3389_fonc_2020_00678
crossref_primary_10_1109_JBHI_2016_2624798
crossref_primary_10_1120_jacmp_v15i5_4696
crossref_primary_10_1007_s00259_013_2486_8
crossref_primary_10_1088_0031_9155_60_9_3731
crossref_primary_10_1371_journal_pone_0239438
crossref_primary_10_1016_j_media_2015_04_016
crossref_primary_10_1016_j_mednuc_2017_02_003
crossref_primary_10_1038_s41598_020_66110_w
crossref_primary_10_1186_s40658_021_00367_6
crossref_primary_10_1007_s00259_010_1688_6
crossref_primary_10_1109_TIP_2018_2872908
crossref_primary_10_1016_j_ejrad_2024_111297
crossref_primary_10_1016_j_irbm_2011_09_011
crossref_primary_10_1109_JBHI_2020_3024563
crossref_primary_10_1016_j_radonc_2020_10_040
crossref_primary_10_2217_fon_2017_0464
crossref_primary_10_3389_fmed_2015_00018
crossref_primary_10_1016_j_compmedimag_2011_01_004
crossref_primary_10_1118_1_4905162
crossref_primary_10_2967_jnumed_115_166918
crossref_primary_10_1109_TNS_2013_2295975
crossref_primary_10_1016_j_heliyon_2020_e05267
crossref_primary_10_1016_j_media_2013_05_005
crossref_primary_10_2967_jnumed_115_154138
crossref_primary_10_1016_j_media_2013_05_004
crossref_primary_10_1007_s00259_010_1423_3
crossref_primary_10_1007_s11042_017_4951_z
crossref_primary_10_1007_s00259_011_1755_7
Cites_doi 10.1006/gmip.1997.0431
10.1109/NSSMIC.2008.4774243
10.1088/0031-9155/51/4/013
10.1007/s00259-004-1566-1
10.1109/23.775604
10.1109/83.624951
10.1007/3-540-45729-1_50
10.1109/83.772242
10.1088/0031-9155/52/12/010
10.1111/j.2517-6161.1977.tb01600.x
10.1080/01969727308546046
10.1109/23.910837
10.1007/s002590000421
10.1259/bjr/35628509
10.1109/NSSMIC.2003.1352428
10.1109/83.557353
10.1002/(SICI)1097-0142(19971215)80:12+<2505::AID-CNCR24>3.3.CO;2-B
10.1109/23.656454
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
DOI 10.1109/TMI.2008.2012036
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Engineering Research Database


MEDLINE
Materials Research Database
Technology Research Database

Engineering Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
1558-0062
EndPage 893
ExternalDocumentID oai:pubmedcentral.nih.gov:2912931
PMC2912931
oai:HAL:inserm-00372910v1
2295053901
19150782
10_1109_TMI_2008_2012036
4749328
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c572t-52aa007c97b7dc0d36cf0ae8fc0e3cf667f10bb87823f13f7e0d8834230821dd3
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Wed Oct 29 12:09:21 EDT 2025
Tue Sep 30 16:56:19 EDT 2025
Tue Oct 14 21:02:34 EDT 2025
Tue Oct 07 09:49:20 EDT 2025
Wed Oct 01 14:51:28 EDT 2025
Wed Oct 01 14:06:49 EDT 2025
Mon Oct 06 18:06:14 EDT 2025
Sun Oct 05 00:21:55 EDT 2025
Thu Apr 03 07:10:24 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Wed Oct 01 03:55:18 EDT 2025
Tue Aug 26 16:47:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords Oncology
segmentation
volume determination
PET
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c572t-52aa007c97b7dc0d36cf0ae8fc0e3cf667f10bb87823f13f7e0d8834230821dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-5880-2933
0000-0003-0831-3637
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1109/TMI.2008.2012036
PMID 19150782
PQID 857452425
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_34865682
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2912931
proquest_miscellaneous_67314557
proquest_miscellaneous_867747316
proquest_miscellaneous_21064563
crossref_citationtrail_10_1109_TMI_2008_2012036
proquest_journals_857452425
hal_primary_oai_HAL_inserm_00372910v1
pubmed_primary_19150782
unpaywall_primary_10_1109_tmi_2008_2012036
ieee_primary_4749328
crossref_primary_10_1109_TMI_2008_2012036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-06-01
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-06-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2009
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref15
pieczynski (ref9) 2003; 20
ref11
chen (ref10) 2001; 2082
ref2
celeux (ref18) 1986; 34
ref1
ref16
boussion (ref28) 2008; 49
johnson (ref17) 1970; 1
dempster (ref19) 1977; 39
kim (ref8) 2002; 3
nestle (ref4) 2005; 46
ref24
ref26
ref25
jordan (ref22) 1990
ref21
ref27
ref7
ref3
ref6
lodge (ref23) 2004; 45
visvikis (ref14) 2004; 45
ref5
mcqueen (ref20) 1967; 1
References_xml – volume: 3
  start-page: 1580
  year: 2002
  ident: ref8
  article-title: automatic 3-d temporal kinetics segmentation of dynamic emission tomography image using adaptative region growing cluster analysis
  publication-title: IEEE NSS-MIC Conf Rec
– ident: ref16
  doi: 10.1006/gmip.1997.0431
– ident: ref27
  doi: 10.1109/NSSMIC.2008.4774243
– volume: 45
  start-page: 103p
  year: 2004
  ident: ref14
  article-title: characterisation of suv accuracy in fdg pet using 3-d ramla and the philips allegro pet scanner
  publication-title: J Nucl Med
– ident: ref26
  doi: 10.1088/0031-9155/51/4/013
– volume: 34
  year: 1986
  ident: ref18
  article-title: l'algorithme sem: un algorithme d'apprentissage probabiliste pour la reconnaissance de mlanges de densits
  publication-title: Revue de Statistique Applique
– ident: ref2
  doi: 10.1007/s00259-004-1566-1
– ident: ref6
  doi: 10.1109/23.775604
– ident: ref13
  doi: 10.1109/83.624951
– volume: 49
  start-page: 388
  year: 2008
  ident: ref28
  article-title: partial volume correction in pet based on functional volumes
  publication-title: J Nucl Med
– volume: 2082
  start-page: 468
  year: 2001
  ident: ref10
  article-title: markov random field model for segmentation of pet images
  publication-title: Lecture Notes on Computer Science
  doi: 10.1007/3-540-45729-1_50
– ident: ref12
  doi: 10.1109/83.772242
– volume: 46
  start-page: 1342
  year: 2005
  ident: ref4
  article-title: comparison of different methods for delineation of 18f-fdg pet-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer
  publication-title: J Nucl Med
– ident: ref11
  doi: 10.1088/0031-9155/52/12/010
– volume: 39
  start-page: 1
  year: 1977
  ident: ref19
  article-title: maximum likelihood from incomplete data via the em algorithm
  publication-title: J R Stat Soc B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 1
  start-page: 281
  year: 1967
  ident: ref20
  article-title: some methods for classification and analysis of multivariate observations
  publication-title: Proc 5th Berkeley Symp Math Stat Probabil
– ident: ref21
  doi: 10.1080/01969727308546046
– volume: 45
  start-page: 425
  year: 2004
  ident: ref23
  article-title: performance assessment of the philips gemini pet/ct scanner
  publication-title: J Nucl Med
– ident: ref24
  doi: 10.1109/23.910837
– volume: 1
  year: 1970
  ident: ref17
  publication-title: Distributions in Statistics Continuous Univariate Distributions
– ident: ref25
  doi: 10.1007/s002590000421
– ident: ref1
  doi: 10.1259/bjr/35628509
– ident: ref7
  doi: 10.1109/NSSMIC.2003.1352428
– ident: ref15
  doi: 10.1109/83.557353
– ident: ref3
  doi: 10.1002/(SICI)1097-0142(19971215)80:12+<2505::AID-CNCR24>3.3.CO;2-B
– ident: ref5
  doi: 10.1109/23.656454
– volume: 20
  start-page: 255
  year: 2003
  ident: ref9
  article-title: modles de markov en traitement d'images
  publication-title: Traitement du Signal
– year: 1990
  ident: ref22
  article-title: iec emission phantom appendix performance evaluation of positron emission tomographs
  publication-title: Med Public Health Res Programme Eur Commun
SSID ssj0014509
Score 2.4539418
Snippet Accurate volume estimation in positron emission tomography (PET) is crucial for different oncology applications. The objective of our study was to develop a...
[...] the FLAB model provided errors less than 10% for nonspherical lesions with inhomogeneous activity distributions.
Accurate volume estimation in PET is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive...
SourceID unpaywall
pubmedcentral
hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 881
SubjectTerms Algorithms
Bayes Theorem
Bayesian methods
Bioengineering
Computer Simulation
Fuzzy Logic
Hidden Markov models
Humans
IEC
Image Processing, Computer-Assisted
Image Processing, Computer-Assisted - methods
Image quality
Imaging phantoms
Lesions
Life Sciences
Markov Chains
Neoplasms
Neoplasms - diagnostic imaging
Noise
Noise level
Normal Distribution
Nuclear medicine
Oncology
Positron emission tomography
positron emission tomography (PET)
Positron-Emission Tomography - methods
Reproducibility of Results
segmentation
Studies
volume determination
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF7RVOJx4NHyMOWxBziAlHadtXfXRwONAmqqSiSQnqz1ek0jEjeiMSj59cz4kcYKAXH2ZOXMzux-45n5hpBXjFvM_7G2lkiqneigrQDmtrUBjCQVV9Zg73D_VPSG3qeRP7omSVpP37ssOBr0P5b1jh1s8uRih-wKH0B3i-wOT8_C8-ILCnLEsmJ0KFyOsO--N6oTkrDEfDpuLNG4gHYusPyxmKvyJ4i5WSl5K89mevFLTyZr11D3HunVzTxl9cn3w3weH5rlJrfjv_7hfXK3gqI0LG3nAblhsz1yZ42gcI_c7Fep933yNaTdfLlc0BO8_SYLGiZ6hmclfacXFlsx6Wf7bVq1MmU0rMjKKaBi-qU4A-mHuvamkBhn9Ox48JAMu8eD9712NZWhbXzZmUPkqjUACxPIWCaGJVyYlGmrUsMsN6kQMnVZHCuAHjx1eSotS5RCokFAG26S8EeklV1m9gmhgcutCRI4rFnspZ1UpR1hlNSukCKF69UhR_VWRaaiLMfJGZOoCF1YEIH2ykGalfYc8mb1i1lJ1_EX2dew-ysx5NnuhSfROAPfnyJnKsQdLvsJb7GP9rES9KQHoFc55KC2l6jy-6tI-dLzMYpzyMvVU3BYzMLozF7mVxHE2AJQK98uwT0FKFt1tksIyZFgXjqEbpFAmkIPp5I55HFpwtf6CDAIwOVlw7gbmmg-ycYXBfM4KATgIWjk7coNNtQM_tZQ89P_ET4gt8t0HX7mekZa8x-5fQ6obx6_qDz-N5mzSrs
  priority: 102
  providerName: Unpaywall
Title A Fuzzy Locally Adaptive Bayesian Segmentation Approach for Volume Determination in PET
URI https://ieeexplore.ieee.org/document/4749328
https://www.ncbi.nlm.nih.gov/pubmed/19150782
https://www.proquest.com/docview/857452425
https://www.proquest.com/docview/21064563
https://www.proquest.com/docview/34865682
https://www.proquest.com/docview/67314557
https://www.proquest.com/docview/867747316
https://inserm.hal.science/inserm-00372910
https://pubmed.ncbi.nlm.nih.gov/PMC2912931
http://doi.org/10.1109/TMI.2008.2012036
UnpaywallVersion submittedVersion
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB41ReJx4NHyMIWyBziASLL2Ot710UCjgpqqEgm0J2u9XtOIxIloAkp-PTO2YxraIG6WPJbsmdnZbz0z3wC85MJS_o83tSRS7VSHTYUwt6kNYiSphLKGeod7x8HhwP902jndgrd1L4y1tig-sy26LHL56cTM6VdZ25c-wg3VgIZUQdmrVWcM_E5ZzuERYywPvFVKkoftfu9jWTTpUaeoKKYWhQSElLe2GzXOqRayGLJyHd68WjZ5a55P9eKXHo0u7Unde9BbfU1ZivK9NZ8lLbP8i-jxfz_3PtytwCmLSm96AFs234E7lygLd-Bmr0rG78LXiHXny-WCHdF-OFqwKNVTip7snV5Yas5kn-23cdXclLOooi9niJPZlyIqsg-rapxCYpizk4P-Qxh0D_rvD5vVnIam6UhvhmdZrRFqmFAmMjU8FYHJuLYqM9wKkwWBzFyeJAr1LTJXZNLyVCmiHkT84aapeATb-SS3T4CFrrAmTDF888TPvExlXmCU1G4ggww3XAfaK3vFpiIxp1kao7g4zPAwRmOXozUrYzvwun5iWhJ4_EP2FbpALUbM24fRUTzMMRqMiUUVTyIu_4lvsUvWqgUrQzmwt3KauIoEF7HqSL9D5zoHXtR3cQlTXkbndjK_iPHUHSCOFZslhK8Qdytvs0QgBVHOSwfYBgkiLvRpTpkDj0s__qOPajU4INc8fE0T63fy4XnBRY4KQcCIGnlTr4Urap6Nh2tqfnq9-vbgdpmqo19cz2B79mNunyPimyX7xVLfhxuD45Po7Dcj3VA5
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9NADLe2ITF44GPjIwzYPcADiLaXXJK7PBZY1UE7IdHB3qLL5cIq2rRiLaj967GTNKxsRbxFiiMlts_3u9j-GeAFF5byf7yhJZFqpzpqKIS5DW0QI0kllDXUO9w_Cbun_oez4GwL3tS9MNbaovjMNumyyOWnEzOnX2UtX_oIN9Q23Ah83w_Kbq06Z-AHZUGHR5yxPPRWSUketQb947Js0qNeUVHMLYoICilvbT_aPqdqyGLMynWI82rh5O48n-rFLz0aXdqVOnehv_qeshjle3M-S5pm-RfV4_9-8D24U8FT1i796T5s2XwPbl8iLdyDm_0qHb8PX9usM18uF6xHO-JowdqpnlL8ZG_1wlJ7Jvtsv42r9qactSsCc4ZImX0p4iJ7v6rHKSSGOft0NHgAp52jwbtuo5rU0DCB9GZ4mtUawYaJZCJTw1MRmoxrqzLDrTBZGMrM5UmiUN8ic0UmLU-VIvJBRCBumoqHsJNPcvsYWOQKa6IUAzhP_MzLVOaFRknthjLMcMt1oLWyV2wqGnOapjGKi-MMj2I0djlcszK2A6_qJ6Ylhcc_ZF-iC9RixL3dbffiYY7xYEw8qngWcflPfIt9slYtWBnKgYOV08RVLLiIVSD9gE52DhzWd3ERU2ZG53Yyv4jx3B0ikhWbJYSvEHkrb7NEKAWRzksH2AYJoi70aVKZA49KP_6jj2o1OCDXPHxNE-t38uF5wUaOCkHIiBp5Xa-FK2qejYdran5yvfoOYbc76Pfi3vHJxwO4VSbu6IfXU9iZ_ZjbZ4j_ZsnzYtn_Bj0aUdY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF7RVOJx4NHyMOWxBziAlHadtXfXRwONAmqqSiSQnqz1ek0jEjeiMSj59cz4kcYKAXH2ZOXMzux-45n5hpBXjFvM_7G2lkiqneigrQDmtrUBjCQVV9Zg73D_VPSG3qeRP7omSVpP37ssOBr0P5b1jh1s8uRih-wKH0B3i-wOT8_C8-ILCnLEsmJ0KFyOsO--N6oTkrDEfDpuLNG4gHYusPyxmKvyJ4i5WSl5K89mevFLTyZr11D3HunVzTxl9cn3w3weH5rlJrfjv_7hfXK3gqI0LG3nAblhsz1yZ42gcI_c7Fep933yNaTdfLlc0BO8_SYLGiZ6hmclfacXFlsx6Wf7bVq1MmU0rMjKKaBi-qU4A-mHuvamkBhn9Ox48JAMu8eD9712NZWhbXzZmUPkqjUACxPIWCaGJVyYlGmrUsMsN6kQMnVZHCuAHjx1eSotS5RCokFAG26S8EeklV1m9gmhgcutCRI4rFnspZ1UpR1hlNSukCKF69UhR_VWRaaiLMfJGZOoCF1YEIH2ykGalfYc8mb1i1lJ1_EX2dew-ysx5NnuhSfROAPfnyJnKsQdLvsJb7GP9rES9KQHoFc55KC2l6jy-6tI-dLzMYpzyMvVU3BYzMLozF7mVxHE2AJQK98uwT0FKFt1tksIyZFgXjqEbpFAmkIPp5I55HFpwtf6CDAIwOVlw7gbmmg-ycYXBfM4KATgIWjk7coNNtQM_tZQ89P_ET4gt8t0HX7mekZa8x-5fQ6obx6_qDz-N5mzSrs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fuzzy+Locally+Adaptive+Bayesian+Segmentation+Approach+for+Volume+Determination+in+PET&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Hatt%2C+M&rft.au=Cheze+le+Rest%2C+C&rft.au=Turzo%2C+A&rft.au=Roux%2C+C&rft.date=2009-06-01&rft.issn=0278-0062&rft.volume=28&rft.issue=6&rft_id=info:doi/10.1109%2FTMI.2008.2012036&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon