A Fuzzy Locally Adaptive Bayesian Segmentation Approach for Volume Determination in PET

Accurate volume estimation in positron emission tomography (PET) is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive Bayesian (FLAB) segmentation for automatic lesion volume delineation. FLAB was compared with a threshold approach as...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 28; no. 6; pp. 881 - 893
Main Authors Hatt, M., Cheze le Rest, C., Turzo, A., Roux, C., Visvikis, D.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
1558-0062
DOI10.1109/TMI.2008.2012036

Cover

More Information
Summary:Accurate volume estimation in positron emission tomography (PET) is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive Bayesian (FLAB) segmentation for automatic lesion volume delineation. FLAB was compared with a threshold approach as well as the previously proposed fuzzy hidden Markov chains (FHMC) and the fuzzy C-Means (FCM) algorithms. The performance of the algorithms was assessed on acquired datasets of the IEC phantom, covering a range of spherical lesion sizes (10-37 mm), contrast ratios (4:1 and 8:1), noise levels (1, 2, and 5 min acquisitions), and voxel sizes (8 and 64 mm 3 ). In addition, the performance of the FLAB model was assessed on realistic nonuniform and nonspherical volumes simulated from patient lesions. Results show that FLAB performs better than the other methodologies, particularly for smaller objects. The volume error was 5%-15% for the different sphere sizes (down to 13 mm), contrast and image qualities considered, with a high reproducibility (variation < 4%). By comparison, the thresholding results were greatly dependent on image contrast and noise, whereas FCM results were less dependent on noise but consistently failed to segment lesions < 2 cm. In addition, FLAB performed consistently better for lesions < 2 cm in comparison to the FHMC algorithm. Finally the FLAB model provided errors less than 10% for nonspherical lesions with inhomogeneous activity distributions. Future developments will concentrate on an extension of FLAB in order to allow the segmentation of separate activity distribution regions within the same functional volume as well as a robustness study with respect to different scanners and reconstruction algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0278-0062
1558-254X
1558-254X
1558-0062
DOI:10.1109/TMI.2008.2012036