Single-cell RNA sequencing of nc886, a non-coding RNA transcribed by RNA polymerase III, with a primer spike-in strategy

Single-cell RNA sequencing (scRNA-seq) has emerged as a versatile tool in biology, enabling comprehensive genomic-level characterization of individual cells. Currently, most scRNA-seq methods generate barcoded cDNAs by capturing the polyA tails of mRNAs, which exclude many non-coding RNAs (ncRNAs),...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 8; p. e0301562
Main Authors Shin, Gyeong-Jin, Choi, Byung-Han, Eum, Hye Hyeon, Jo, Areum, Kim, Nayoung, Kang, Huiram, Hong, Dongwan, Jang, Jiyoung Joan, Lee, Hwi-Ho, Lee, Yeon-Su, Lee, Yong Sun, Lee, Hae-Ock
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 27.08.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0301562

Cover

More Information
Summary:Single-cell RNA sequencing (scRNA-seq) has emerged as a versatile tool in biology, enabling comprehensive genomic-level characterization of individual cells. Currently, most scRNA-seq methods generate barcoded cDNAs by capturing the polyA tails of mRNAs, which exclude many non-coding RNAs (ncRNAs), especially those transcribed by RNA polymerase III (Pol III). Although previously thought to be expressed constitutively, Pol III-transcribed ncRNAs are expressed variably in healthy and disease states and play important roles therein, necessitating their profiling at the single-cell level. In this study, we developed a measurement protocol for nc886 as a model case and initial step for scRNA-seq for Pol III-transcribed ncRNAs. Specifically, we spiked in an oligo-tagged nc886-specific primer during the polyA tail capture process for the 5’scRNA-seq. We then produced sequencing libraries for standard 5’ gene expression and oligo-tagged nc886 separately, to accommodate different cDNA sizes and ensure undisturbed transcriptome analysis. We applied this protocol in three cell lines that express high, low, and zero levels of nc886. Our results show that the identification of oligo tags exhibited limited target specificity, and sequencing reads of nc886 enabled the correction of non-specific priming. These findings suggest that gene-specific primers (GSPs) can be employed to capture RNAs lacking a polyA tail, with subsequent sequence verification ensuring accurate gene expression counting. Moreover, we embarked on an analysis of differentially expressed genes in cell line sub-clusters with differential nc886 expression, demonstrating variations in gene expression phenotypes. Collectively, the primer spike-in strategy allows combined analysis of ncRNAs and gene expression phenotype.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0301562