二维线性与非线性海面的宽带散射特性仿真及分析
该文基于加权曲率近似方法(Weighted Curvature Approximation,WCA),实现了对2维线性与非线性海面的宽带电磁散射信号的仿真,并通过大量的蒙特卡洛仿真研究了距离高分辨率条件下各距离单元内海杂波统计特性,特别是尖峰特性。研究结果表明,当雷达分辨率提高、雷达入射视线方向由侧风转向逆风、海面风速增加时,海杂波强度概率密度曲线(Probability Density Function,PDF)的长拖尾现象将更加明显。同时,非线性海面的宽带散射回波信号中出现尖峰现象的概率更高。此外,对海杂波统计分布曲线的拟合结果表明,与传统的K分布和Weibull分布相比,Pareto分布...
        Saved in:
      
    
          | Published in | 雷达学报 Vol. 4; no. 3; pp. 343 - 350 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            北京航空航天大学北京 100191
    
        2015
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2095-283X | 
| DOI | 10.12000/JR15053 | 
Cover
| Summary: | 该文基于加权曲率近似方法(Weighted Curvature Approximation,WCA),实现了对2维线性与非线性海面的宽带电磁散射信号的仿真,并通过大量的蒙特卡洛仿真研究了距离高分辨率条件下各距离单元内海杂波统计特性,特别是尖峰特性。研究结果表明,当雷达分辨率提高、雷达入射视线方向由侧风转向逆风、海面风速增加时,海杂波强度概率密度曲线(Probability Density Function,PDF)的长拖尾现象将更加明显。同时,非线性海面的宽带散射回波信号中出现尖峰现象的概率更高。此外,对海杂波统计分布曲线的拟合结果表明,与传统的K分布和Weibull分布相比,Pareto分布在较小擦地角条件下能够更好描述海杂波强度的统计特性。 | 
|---|---|
| Bibliography: | 10-1030/TN 2-D sea surfaces; Wide-band scattering; Statistical characteristics; Weighted Curvature Approximation (WCA); Pareto distribution In this paper, the wideband backscattering fields of two-Dimensional (2-D) linear and nonlinear sea surfaces are numerically simulated employing the Weighted Curvature Approximation (WCA) method. A large number of Monte Carlo trials are performed to investigate the statistical characteristics of the rang-resolved sea clutter, especially for the sea spike phenomenon. Simulation results demonstrate that the long tail of the sea clutter intensity Probability Density Function (PDF) tends to be more evident with finer radar resolution, higher wind speed, and when the radar sight changes from the crosswind direction to the upwind direction. Meanwhile, it is found that the nonlinear sea surfaces are more likely to have sea spikes. In addition, the Pareto distribution is demonstrated to describe the statistics of the sea clutter intensities better than the K- distribution and Weibu  | 
| ISSN: | 2095-283X | 
| DOI: | 10.12000/JR15053 |