High-yield cycloamylose production from sweet potato starch using Pseudomonas isoamylase and Thermus aquaticus 4-α-glucanotransferase

An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from Pseudomonas sp.) and 4-α-glucanotransferase (from Thermus aquaticus , TAαGT). Starch was debranched by isoamylase for 8 h and subsequently reacted with TAαG...

Full description

Saved in:
Bibliographic Details
Published inFood science and biotechnology Vol. 25; no. 5; pp. 1413 - 1419
Main Authors Chu, Sun, Hong, Jung Sun, Rho, Shin-Joung, Park, Jiyoung, Han, Sang-Ik, Kim, Young-Wan, Kim, Yong-Ro
Format Journal Article
LanguageEnglish
Published Seoul The Korean Society of Food Science and Technology 01.10.2016
Springer Nature B.V
한국식품과학회
Subjects
Online AccessGet full text
ISSN1226-7708
2092-6456
2092-6456
DOI10.1007/s10068-016-0220-6

Cover

Abstract An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from Pseudomonas sp.) and 4-α-glucanotransferase (from Thermus aquaticus , TAαGT). Starch was debranched by isoamylase for 8 h and subsequently reacted with TAαGT for 12 h. The yield and purity of CA products were determined using HPSEC and MALDI-TOFMS, respectively. Consequently, the maximum yield was 48.56%, exhibiting the highest CA production efficiency ever reported from starch. The CA products showed a wide range of the degree of polymerization (DP) with the minimum DP of 5. CA was also produced by simultaneous treatment of isoamylase and TAαGT. The yield was 3.31%, and the final products were contaminated by multiple branched and linear molecules. This result suggests that a former reaction condition (the sequential addition of isoamylase and TAαGT) is preferable for producing CA from sweet potato starch.
AbstractList An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from sp.) and 4-α-glucanotransferase (from , TAαGT). Starch was debranched by isoamylase for 8 h and subsequently reacted with TAαGT for 12 h. The yield and purity of CA products were determined using HPSEC and MALDI-TOFMS, respectively. Consequently, the maximum yield was 48.56%, exhibiting the highest CA production efficiency ever reported from starch. The CA products showed a wide range of the degree of polymerization (DP) with the minimum DP of 5. CA was also produced by simultaneous treatment of isoamylase and TAαGT. The yield was 3.31%, and the final products were contaminated by multiple branched and linear molecules. This result suggests that a former reaction condition (the sequential addition of isoamylase and TAαGT) is preferable for producing CA from sweet potato starch.
An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from Pseudomonas sp.) and 4-α-glucanotransferase (from Thermus aquaticus, TAαGT). Starch was debranched by isoamylase for 8 h and subsequently reacted with TAαGT for 12 h. The yield and purity of CA products were determined using HPSEC and MALDI-TOFMS, respectively. Consequently, the maximum yield was 48.56%, exhibiting the highest CA production efficiency ever reported from starch. The CA products showed a wide range of the degree of polymerization (DP) with the minimum DP of 5. CA was also produced by simultaneous treatment of isoamylase and TAαGT. The yield was 3.31%, and the final products were contaminated by multiple branched and linear molecules. This result suggests that a former reaction condition (the sequential addition of isoamylase and TAαGT) is preferable for producing CA from sweet potato starch.
An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from Pseudomonas sp.) and 4-α-glucanotransferase (from Thermus aquaticus , TAαGT). Starch was debranched by isoamylase for 8 h and subsequently reacted with TAαGT for 12 h. The yield and purity of CA products were determined using HPSEC and MALDI-TOFMS, respectively. Consequently, the maximum yield was 48.56%, exhibiting the highest CA production efficiency ever reported from starch. The CA products showed a wide range of the degree of polymerization (DP) with the minimum DP of 5. CA was also produced by simultaneous treatment of isoamylase and TAαGT. The yield was 3.31%, and the final products were contaminated by multiple branched and linear molecules. This result suggests that a former reaction condition (the sequential addition of isoamylase and TAαGT) is preferable for producing CA from sweet potato starch.
An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from Pseudomonas sp.) and 4-α-glucanotransferase (from Thermus aquaticus, TAαGT). Starch was debranched by isoamylase for 8 h and subsequently reacted with TAαGT for 12 h. The yield and purity of CA products were determined using HPSEC and MALDI-TOFMS, respectively. Consequently, the maximum yield was 48.56%, exhibiting the highest CA production efficiency ever reported from starch. The CA products showed a wide range of the degree of polymerization (DP) with the minimum DP of 5. CA was also produced by simultaneous treatment of isoamylase and TAαGT. The yield was 3.31%, and the final products were contaminated by multiple branched and linear molecules. This result suggests that a former reaction condition (the sequential addition of isoamylase and TAαGT) is preferable for producing CA from sweet potato starch. KCI Citation Count: 11
An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from Pseudomonas sp.) and 4- alpha -glucanotransferase (from Thermus aquaticus, TA alpha GT). Starch was debranched by isoamylase for 8 h and subsequently reacted with TA alpha GT for 12 h. The yield and purity of CA products were determined using HPSEC and MALDI-TOFMS, respectively. Consequently, the maximum yield was 48.56%, exhibiting the highest CA production efficiency ever reported from starch. The CA products showed a wide range of the degree of polymerization (DP) with the minimum DP of 5. CA was also produced by simultaneous treatment of isoamylase and TA alpha GT. The yield was 3.31%, and the final products were contaminated by multiple branched and linear molecules. This result suggests that a former reaction condition (the sequential addition of isoamylase and TA alpha GT) is preferable for producing CA from sweet potato starch.
An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from Pseudomonas sp.) and 4-α-glucanotransferase (from Thermus aquaticus, TAαGT). Starch was debranched by isoamylase for 8 h and subsequently reacted with TAαGT for 12 h. The yield and purity of CA products were determined using HPSEC and MALDI-TOFMS, respectively. Consequently, the maximum yield was 48.56%, exhibiting the highest CA production efficiency ever reported from starch. The CA products showed a wide range of the degree of polymerization (DP) with the minimum DP of 5. CA was also produced by simultaneous treatment of isoamylase and TAαGT. The yield was 3.31%, and the final products were contaminated by multiple branched and linear molecules. This result suggests that a former reaction condition (the sequential addition of isoamylase and TAαGT) is preferable for producing CA from sweet potato starch.An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from Pseudomonas sp.) and 4-α-glucanotransferase (from Thermus aquaticus, TAαGT). Starch was debranched by isoamylase for 8 h and subsequently reacted with TAαGT for 12 h. The yield and purity of CA products were determined using HPSEC and MALDI-TOFMS, respectively. Consequently, the maximum yield was 48.56%, exhibiting the highest CA production efficiency ever reported from starch. The CA products showed a wide range of the degree of polymerization (DP) with the minimum DP of 5. CA was also produced by simultaneous treatment of isoamylase and TAαGT. The yield was 3.31%, and the final products were contaminated by multiple branched and linear molecules. This result suggests that a former reaction condition (the sequential addition of isoamylase and TAαGT) is preferable for producing CA from sweet potato starch.
Author Park, Jiyoung
Kim, Yong-Ro
Chu, Sun
Han, Sang-Ik
Hong, Jung Sun
Rho, Shin-Joung
Kim, Young-Wan
Author_xml – sequence: 1
  givenname: Sun
  surname: Chu
  fullname: Chu, Sun
  organization: Center for Food and Bioconvergence, Department of Biosystems and Biomaterials Science and Engineering, Seoul National University
– sequence: 2
  givenname: Jung Sun
  surname: Hong
  fullname: Hong, Jung Sun
  organization: Center for Food and Bioconvergence, Department of Biosystems and Biomaterials Science and Engineering, Seoul National University
– sequence: 3
  givenname: Shin-Joung
  surname: Rho
  fullname: Rho, Shin-Joung
  organization: Center for Food and Bioconvergence, Department of Biosystems and Biomaterials Science and Engineering, Seoul National University
– sequence: 4
  givenname: Jiyoung
  surname: Park
  fullname: Park, Jiyoung
  organization: Department of Central Area Crop Science, NICS
– sequence: 5
  givenname: Sang-Ik
  surname: Han
  fullname: Han, Sang-Ik
  organization: Department of functional Crop, Functional Crop Resource Development Division, NICS, RDA
– sequence: 6
  givenname: Young-Wan
  surname: Kim
  fullname: Kim, Young-Wan
  organization: Department of Food and Biotechnology, Korea University
– sequence: 7
  givenname: Yong-Ro
  surname: Kim
  fullname: Kim, Yong-Ro
  email: yongro@snu.ac.kr
  organization: Center for Food and Bioconvergence, Department of Biosystems and Biomaterials Science and Engineering, Seoul National University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30263424$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002158956$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqNkstu1DAUhiNURC_wAGxQJDawMBw7viQbpKoCWqkSCA1ry-OczLhN7KmdUM0L8D68CM-EpzNAqQRlY1vy95_bfw6LPR88FsVTCq8ogHqd8ilrAlQSYAyIfFAcMGgYkVzIveKAMiaJUlDvF4cpXWSYMsUfFfsVMFlxxg-Kr6dusSRrh31b2rXtgxnWfUhYrmJoJzu64MsuhqFM14hjuQqjGUOZRhPtspyS84vyY8KpDUPwJpUu3QQwOYDxbTlbYhymVJqryYzO5hcn37-RRT9Z48MYjU8dxkw_Lh52pk_4ZHcfFZ_fvZ2dnJLzD-_PTo7PiRUKRmKxEtjUtoOmo8Bt7gh5x4yoKiawRQq1UZTN89Mgzg1IyVtQIITphEJeHRUvt3F97PSldToYd3Mvgr6M-vjT7EznGdEaVGbZlp38yqyvTd_rVXSDiWtNQW8M0FsDdDZAbwzQMovebEWraT5ga9HnLn8LN-n-_PFumZN_0RJ4w-Smwhe7ADFcTZhGPbhkse-NxzAlzSjlClhVqftRyNUBE839KK3rulGCcpHR53fQizBFn13ZUFBzXjWQqWe3-_zV4M_NygDdAjaGlCJ2_zU8dUdjXd63vIN5VK7_p3LnVcpZ_ALjraL_KvoBJ20D9Q
CitedBy_id crossref_primary_10_3390_molecules27041446
crossref_primary_10_1016_j_lwt_2021_112502
crossref_primary_10_1002_cche_10102
crossref_primary_10_1002_star_202100192
crossref_primary_10_1016_j_scitotenv_2022_159181
crossref_primary_10_1016_j_scitotenv_2021_146029
crossref_primary_10_1016_j_carbpol_2023_120722
crossref_primary_10_1016_j_lwt_2021_110867
crossref_primary_10_1016_j_foodhyd_2024_110874
crossref_primary_10_1016_j_lwt_2020_109474
crossref_primary_10_1016_j_bcab_2022_102509
crossref_primary_10_1111_ijfs_13590
crossref_primary_10_1016_j_biotechadv_2021_107786
crossref_primary_10_1016_j_ijbiomac_2021_10_082
crossref_primary_10_1016_j_tifs_2022_11_025
crossref_primary_10_1002_mas_21651
Cites_doi 10.1038/227680a0
10.1074/jbc.271.6.2902
10.1111/j.1432-1033.1992.tb17023.x
10.1016/j.carbpol.2006.05.018
10.1016/S0021-9673(99)00643-3
10.1002/star.19810330504
10.21273/HORTTECH.21.6.703
10.1021/jf2002238
10.1021/bm049881i
10.1016/S0014-5793(00)02258-4
10.1016/0003-2697(76)90527-3
10.1021/ac60147a030
10.1007/s10847-006-9055-8
10.1016/j.carbpol.2010.02.036
10.5458/jag1972.20.99
10.1016/j.carbpol.2013.10.065
10.1007/s12272-012-0412-4
10.1016/j.foodhyd.2013.03.005
10.1021/ma00191a064
10.1016/S0008-6215(00)80592-3
10.1006/jcrs.1997.0164
10.1007/s00253-012-4292-9
10.1021/bm901109z
10.1002/star.19860381006
10.1007/s12272-011-0306-x
ContentType Journal Article
Copyright The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2016
Copyright Springer Science & Business Media 2016
Copyright_xml – notice: The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2016
– notice: Copyright Springer Science & Business Media 2016
DBID AAYXX
CITATION
NPM
7QL
7QO
8FD
C1K
FR3
P64
7S9
L.6
7X8
5PM
ADTOC
UNPAY
ACYCR
DOI 10.1007/s10068-016-0220-6
DatabaseName CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Korean Citation Index
DatabaseTitle CrossRef
PubMed
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList PubMed




AGRICOLA
Engineering Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 2092-6456
EndPage 1419
ExternalDocumentID oai_kci_go_kr_ARTI_1271807
oai:pubmedcentral.nih.gov:6049264
PMC6049264
30263424
10_1007_s10068_016_0220_6
Genre Journal Article
GroupedDBID -EM
.UV
06D
0R~
0VY
1N0
203
29H
2KG
2VQ
30V
4.4
406
408
40D
5GY
67Z
96X
9ZL
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AOIJS
AXYYD
AYJHY
BGNMA
CAG
COF
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GW5
H13
HF~
HG6
HMJXF
HRMNR
HYE
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
J0Z
JBSCW
JZLTJ
KOV
KVFHK
LLZTM
M1Z
M4Y
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P2P
P9N
PT4
R9I
RLLFE
ROL
RPM
RSV
S1Z
S27
S3B
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TDB
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7U
Z7V
Z7W
ZMTXR
ZZE
~A9
62Y
85H
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
NPM
7QL
7QO
8FD
C1K
FR3
P64
7S9
L.6
7X8
5PM
ADTOC
UNPAY
ACYCR
ID FETCH-LOGICAL-c570t-ce35e98cf09f104c006e4f2a53325ede108a712bedeaeeba0664d07055af57e43
IEDL.DBID AGYKE
ISSN 1226-7708
2092-6456
IngestDate Sun Mar 09 07:51:13 EDT 2025
Wed Aug 20 00:16:57 EDT 2025
Tue Sep 30 16:33:34 EDT 2025
Wed Oct 01 14:21:40 EDT 2025
Fri Sep 05 17:18:57 EDT 2025
Thu Sep 04 20:22:59 EDT 2025
Wed Sep 17 13:51:42 EDT 2025
Wed Feb 19 02:42:39 EST 2025
Wed Oct 01 05:02:53 EDT 2025
Thu Apr 24 23:10:46 EDT 2025
Fri Feb 21 02:38:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords starch modification
enzymatic conversion
normal starch
transglycosylation
debranching enzyme
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c570t-ce35e98cf09f104c006e4f2a53325ede108a712bedeaeeba0664d07055af57e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
G704-000139.2016.25.5.030
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6049264
PMID 30263424
PQID 1880844390
PQPubID 2043650
PageCount 7
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_1271807
unpaywall_primary_10_1007_s10068_016_0220_6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6049264
proquest_miscellaneous_2114702337
proquest_miscellaneous_2000602597
proquest_miscellaneous_1888975145
proquest_journals_1880844390
pubmed_primary_30263424
crossref_primary_10_1007_s10068_016_0220_6
crossref_citationtrail_10_1007_s10068_016_0220_6
springer_journals_10_1007_s10068_016_0220_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Korea (South)
– name: Heidelberg
PublicationTitle Food science and biotechnology
PublicationTitleAbbrev Food Sci Biotechnol
PublicationTitleAlternate Food Sci Biotechnol
PublicationYear 2016
Publisher The Korean Society of Food Science and Technology
Springer Nature B.V
한국식품과학회
Publisher_xml – name: The Korean Society of Food Science and Technology
– name: Springer Nature B.V
– name: 한국식품과학회
References LaemmliUKCleavage of structural proteins during the assembly of the head of bacteriophage T4Nature19702276806851:CAS:528:DC%2BD3MXlsFags7s%3D10.1038/227680a0
SundararajanPRaoVConformational studies on cycloamylosesCarbohyd. Res.1970133513581:CAS:528:DyaE3cXltFSjsb4%3D10.1016/S0008-6215(00)80592-3
MillerGLUse of dinitrosalicylic acid reagent for determination of reducing sugarAnal. Chem.1959314264281:CAS:528:DyaG1MXmtFKiuw%3D%3D10.1021/ac60147a030
KimJHWangRLeeWHParkCSLeeSYooSHOne-pot synthesis of cycloamyloses from sucrose by dual enzyme treatment: Combined reaction of amylosucrase and 4-a-glucanotransferaseJ. Agr. Food Chem.201159504450511:CAS:528:DC%2BC3MXktFGjsb4%3D10.1021/jf2002238
JulianoBPerezCBlakeneyACastilloTKongsereeNLaigneletBLapisEMurtyVPauleCWebbBInternational cooperative testing on the amylose content of milled riceStarch-Stärke1981331571621:CAS:528:DyaL3MXksVSqsbY%3D10.1002/star.19810330504
TakedaYTokunagaNTakedaCHizukuriSPhysicochemical properties of sweet potato starchesStarch-Stärke1986383453501:CAS:528:DyaL2sXjvF2k10.1002/star.19860381006
WoolfeJASweet potato: An untapped food resource1992New York, NY, USACambridge University Press112
BaekHHKwonSYRhoSJLeeWSYangHJHahJMChoiHGKimYRYongCSEnhanced solubility and bioavailability of flurbiprofen by cycloamyloseArch. Pharm. Res.2011343913971:CAS:528:DC%2BC3MXls1Cqt74%3D10.1007/s12272-011-0306-x
BradfordMMA rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnal. Biochem.1976722482541:CAS:528:DyaE28XksVehtrY%3D10.1016/0003-2697(76)90527-3
YamamotoKSawadaSOnogakiTProperties of rice starch prepared by alkali method with various conditionsJ. Jpn. Soc Starch Sci.197320991041:CAS:528:DyaE2MXltlers78%3D10.5458/jag1972.20.99
GidleyMJMolecular mechanisms underlying amylose aggregation and gelationMacromolecules1989223513581:CAS:528:DyaL1MXlsl2gsA%3D%3D10.1021/ma00191a064
CaiLShiYCRongLHsiaoBSDebranching and crystallization of waxy maize starch in relation to enzyme digestibilityCarbohyd. Polym.2010813853931:CAS:528:DC%2BC3cXlsFCitrs%3D10.1016/j.carbpol.2010.02.036
LieblWFeilRGabelsbergerJKellermannJSchleiferKHPurification and characterization of a novel thermostable 4-a-glucanotransferase of Thermotoga maritima cloned in Escherichia coliEur. J. Biochem.199220781881:CAS:528:DyaK38XltVKqsLc%3D10.1111/j.1432-1033.1992.tb17023.x
MachidaSOgawaSXiaohuaSTakahaTFujiiKHayashiKCycloamylose as an efficient artificial chaperone for protein refoldingFEBS Lett.20004861311351:CAS:528:DC%2BD3cXoslGhsrk%3D10.1016/S0014-5793(00)02258-4
FujiiKMinagawaHTeradaYTakahaTKurikiTShimadaJKanekoHProtein engineering of amylomaltase from Thermus aquaticus with random and saturation mutagenesisBiologia200560971021:CAS:528:DC%2BD28XhvVCrtrY%3D
ToitaSMorimotoNAkiyoshiKFunctional cycloamylose as a polysaccharidebased biomaterial: application in a gene delivery systemBiomacromolecules20091139740110.1021/bm901109z
CaseSCapitaniTWhaleyJShiYTrzaskoPJeffcoatRGoldfarbHPhysical properties and gelation behavior of a low-amylopectin maize starch and other high-amylose maize starchesJ. Cereal Sci.1998273013141:CAS:528:DyaK1cXktFyhsLg%3D10.1006/jcrs.1997.0164
PohuAPlanchotVPutauxJColonnaP B ASplit crystallization during debranching of maltodextrins at high concentration by isoamylaseBiomacromolecules20045179217981:CAS:528:DC%2BD2cXlt1Sju7g%3D10.1021/bm049881i
TairaHNagaseHEndoTUedaHIsolation, Purification and Characterization of Large-Ring Cyclodextrins (CD36~~CD39)J. Incl. Phenom. Macro.20065623281:CAS:528:DC%2BD28XhtFSit77F10.1007/s10847-006-9055-8
GeorgeNAPecotaKVBowenBDSchultheisJRYenchoGCRoot piece planting in sweetpotato—A synthesis of previous research and directions for the futureHortTechnology201121703711
LeeBHOhDKYooSHCharacterization of 4-á-glucanotransferase from Synechocystis spPCC 6803 and its application to various corn starches. New Biotechnol.2009262936
ParkJHKimHJKimYHChaHKimYWKimTJKimYRParkKHThe action mode of Thermus aquaticus YT-1 4-á-glucanotransferase and its chimeric enzymes introduced with starch-binding domain on amylose and amylopectinCarbohyd. Polym.2007671641731:CAS:528:DC%2BD28Xht1CmtbzO10.1016/j.carbpol.2006.05.018
YanaseMTakataHTakahaTKurikiTSmithSMOkadaSCyclization reaction catalyzed by glycogen debranching enzyme (EC 2.41.25/EC 3.2. 1.33) and its potential for cycloamylose production. Appl. Environ. Microb.200268423342391:CAS:528:DC%2BD38XmvVeqtbY%3D
DuanXChenSChenJWuJEnhancing the cyclodextrin production by synchronous utilization of isoamylase and a-CGTaseAppl. Microbiol. Biot.201397346734741:CAS:528:DC%2BC3sXlt1ajtL0%3D10.1007/s00253-012-4292-9
XuYZhouXBaiYWangJWuCXuXJinZCycloamylose production from amylomaize by isoamylase and Thermus aquaticus 4-a-glucanotransferaseCarbohyd. Polym.201410266731:CAS:528:DC%2BC2cXitFagtrk%3D10.1016/j.carbpol.2013.10.065
AbegundeOKMuTHChenJWDengFMPhysicochemical characterization of sweet potato starches popularly used in Chinese starch industryFood Hydrocolloid.2013331691771:CAS:528:DC%2BC3sXpsV2nurs%3D10.1016/j.foodhyd.2013.03.005
TakahaTYanaseMTakataHOkadaSSmithSMPotato D-enzyme catalyzes the cyclization of amylose to produce cycloamylose, a novel cyclic glucanJ. Biol. Chem.1996271290229081:CAS:528:DyaK28XhtVWqtLs%3D10.1074/jbc.271.6.2902
BaekHHKimDHKwonSYRhoSJKimDWChoiHGKimYRYongCSDevelopment of novel ibuprofen-loaded solid dispersion with enhanced bioavailability using cycloamyloseArch. Pharm. Res.2012356836891:CAS:528:DC%2BC38XmsVGktrc%3D10.1007/s12272-012-0412-4
KoizumiKSanbeHKubotaYTeradaYTakahaTIsolation and characterization of cyclic a-(1-4)-glucans having degrees of polymerization 9–31 and their quantitative analysis by high-performance anion-exchange chromatography with pulsed amperometric detectionJ. Chromatogr. A19998524074161:CAS:528:DyaK1MXltVCnt7s%3D10.1016/S0021-9673(99)00643-3
W Liebl (220_CR18) 1992; 207
L Cai (220_CR22) 2010; 81
X Duan (220_CR24) 2013; 97
GL Miller (220_CR19) 1959; 31
Y Takeda (220_CR29) 1986; 38
S Case (220_CR13) 1998; 27
OK Abegunde (220_CR21) 2013; 33
Y Xu (220_CR11) 2014; 102
JH Kim (220_CR7) 2011; 59
MJ Gidley (220_CR12) 1989; 22
JA Woolfe (220_CR1) 1992
B Juliano (220_CR20) 1981; 33
S Machida (220_CR3) 2000; 486
K Fujii (220_CR25) 2005; 60
K Koizumi (220_CR26) 1999; 852
JH Park (220_CR15) 2007; 67
BH Lee (220_CR8) 2009; 26
NA George (220_CR2) 2011; 21
H Taira (220_CR27) 2006; 56
M Yanase (220_CR10) 2002; 68
UK Laemmli (220_CR16) 1970; 227
K Yamamoto (220_CR14) 1973; 20
HH Baek (220_CR5) 2012; 35
T Takaha (220_CR9) 1996; 271
A Pohu (220_CR23) 2004; 5
S Toita (220_CR4) 2009; 11
MM Bradford (220_CR17) 1976; 72
HH Baek (220_CR6) 2011; 34
P Sundararajan (220_CR28) 1970; 13
References_xml – reference: YanaseMTakataHTakahaTKurikiTSmithSMOkadaSCyclization reaction catalyzed by glycogen debranching enzyme (EC 2.41.25/EC 3.2. 1.33) and its potential for cycloamylose production. Appl. Environ. Microb.200268423342391:CAS:528:DC%2BD38XmvVeqtbY%3D
– reference: AbegundeOKMuTHChenJWDengFMPhysicochemical characterization of sweet potato starches popularly used in Chinese starch industryFood Hydrocolloid.2013331691771:CAS:528:DC%2BC3sXpsV2nurs%3D10.1016/j.foodhyd.2013.03.005
– reference: FujiiKMinagawaHTeradaYTakahaTKurikiTShimadaJKanekoHProtein engineering of amylomaltase from Thermus aquaticus with random and saturation mutagenesisBiologia200560971021:CAS:528:DC%2BD28XhvVCrtrY%3D
– reference: YamamotoKSawadaSOnogakiTProperties of rice starch prepared by alkali method with various conditionsJ. Jpn. Soc Starch Sci.197320991041:CAS:528:DyaE2MXltlers78%3D10.5458/jag1972.20.99
– reference: GeorgeNAPecotaKVBowenBDSchultheisJRYenchoGCRoot piece planting in sweetpotato—A synthesis of previous research and directions for the futureHortTechnology201121703711
– reference: ToitaSMorimotoNAkiyoshiKFunctional cycloamylose as a polysaccharidebased biomaterial: application in a gene delivery systemBiomacromolecules20091139740110.1021/bm901109z
– reference: JulianoBPerezCBlakeneyACastilloTKongsereeNLaigneletBLapisEMurtyVPauleCWebbBInternational cooperative testing on the amylose content of milled riceStarch-Stärke1981331571621:CAS:528:DyaL3MXksVSqsbY%3D10.1002/star.19810330504
– reference: CaseSCapitaniTWhaleyJShiYTrzaskoPJeffcoatRGoldfarbHPhysical properties and gelation behavior of a low-amylopectin maize starch and other high-amylose maize starchesJ. Cereal Sci.1998273013141:CAS:528:DyaK1cXktFyhsLg%3D10.1006/jcrs.1997.0164
– reference: CaiLShiYCRongLHsiaoBSDebranching and crystallization of waxy maize starch in relation to enzyme digestibilityCarbohyd. Polym.2010813853931:CAS:528:DC%2BC3cXlsFCitrs%3D10.1016/j.carbpol.2010.02.036
– reference: WoolfeJASweet potato: An untapped food resource1992New York, NY, USACambridge University Press112
– reference: PohuAPlanchotVPutauxJColonnaP B ASplit crystallization during debranching of maltodextrins at high concentration by isoamylaseBiomacromolecules20045179217981:CAS:528:DC%2BD2cXlt1Sju7g%3D10.1021/bm049881i
– reference: TakedaYTokunagaNTakedaCHizukuriSPhysicochemical properties of sweet potato starchesStarch-Stärke1986383453501:CAS:528:DyaL2sXjvF2k10.1002/star.19860381006
– reference: ParkJHKimHJKimYHChaHKimYWKimTJKimYRParkKHThe action mode of Thermus aquaticus YT-1 4-á-glucanotransferase and its chimeric enzymes introduced with starch-binding domain on amylose and amylopectinCarbohyd. Polym.2007671641731:CAS:528:DC%2BD28Xht1CmtbzO10.1016/j.carbpol.2006.05.018
– reference: GidleyMJMolecular mechanisms underlying amylose aggregation and gelationMacromolecules1989223513581:CAS:528:DyaL1MXlsl2gsA%3D%3D10.1021/ma00191a064
– reference: BaekHHKwonSYRhoSJLeeWSYangHJHahJMChoiHGKimYRYongCSEnhanced solubility and bioavailability of flurbiprofen by cycloamyloseArch. Pharm. Res.2011343913971:CAS:528:DC%2BC3MXls1Cqt74%3D10.1007/s12272-011-0306-x
– reference: MachidaSOgawaSXiaohuaSTakahaTFujiiKHayashiKCycloamylose as an efficient artificial chaperone for protein refoldingFEBS Lett.20004861311351:CAS:528:DC%2BD3cXoslGhsrk%3D10.1016/S0014-5793(00)02258-4
– reference: TairaHNagaseHEndoTUedaHIsolation, Purification and Characterization of Large-Ring Cyclodextrins (CD36~~CD39)J. Incl. Phenom. Macro.20065623281:CAS:528:DC%2BD28XhtFSit77F10.1007/s10847-006-9055-8
– reference: KoizumiKSanbeHKubotaYTeradaYTakahaTIsolation and characterization of cyclic a-(1-4)-glucans having degrees of polymerization 9–31 and their quantitative analysis by high-performance anion-exchange chromatography with pulsed amperometric detectionJ. Chromatogr. A19998524074161:CAS:528:DyaK1MXltVCnt7s%3D10.1016/S0021-9673(99)00643-3
– reference: MillerGLUse of dinitrosalicylic acid reagent for determination of reducing sugarAnal. Chem.1959314264281:CAS:528:DyaG1MXmtFKiuw%3D%3D10.1021/ac60147a030
– reference: LaemmliUKCleavage of structural proteins during the assembly of the head of bacteriophage T4Nature19702276806851:CAS:528:DC%2BD3MXlsFags7s%3D10.1038/227680a0
– reference: DuanXChenSChenJWuJEnhancing the cyclodextrin production by synchronous utilization of isoamylase and a-CGTaseAppl. Microbiol. Biot.201397346734741:CAS:528:DC%2BC3sXlt1ajtL0%3D10.1007/s00253-012-4292-9
– reference: LeeBHOhDKYooSHCharacterization of 4-á-glucanotransferase from Synechocystis spPCC 6803 and its application to various corn starches. New Biotechnol.2009262936
– reference: LieblWFeilRGabelsbergerJKellermannJSchleiferKHPurification and characterization of a novel thermostable 4-a-glucanotransferase of Thermotoga maritima cloned in Escherichia coliEur. J. Biochem.199220781881:CAS:528:DyaK38XltVKqsLc%3D10.1111/j.1432-1033.1992.tb17023.x
– reference: SundararajanPRaoVConformational studies on cycloamylosesCarbohyd. Res.1970133513581:CAS:528:DyaE3cXltFSjsb4%3D10.1016/S0008-6215(00)80592-3
– reference: BradfordMMA rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnal. Biochem.1976722482541:CAS:528:DyaE28XksVehtrY%3D10.1016/0003-2697(76)90527-3
– reference: TakahaTYanaseMTakataHOkadaSSmithSMPotato D-enzyme catalyzes the cyclization of amylose to produce cycloamylose, a novel cyclic glucanJ. Biol. Chem.1996271290229081:CAS:528:DyaK28XhtVWqtLs%3D10.1074/jbc.271.6.2902
– reference: KimJHWangRLeeWHParkCSLeeSYooSHOne-pot synthesis of cycloamyloses from sucrose by dual enzyme treatment: Combined reaction of amylosucrase and 4-a-glucanotransferaseJ. Agr. Food Chem.201159504450511:CAS:528:DC%2BC3MXktFGjsb4%3D10.1021/jf2002238
– reference: BaekHHKimDHKwonSYRhoSJKimDWChoiHGKimYRYongCSDevelopment of novel ibuprofen-loaded solid dispersion with enhanced bioavailability using cycloamyloseArch. Pharm. Res.2012356836891:CAS:528:DC%2BC38XmsVGktrc%3D10.1007/s12272-012-0412-4
– reference: XuYZhouXBaiYWangJWuCXuXJinZCycloamylose production from amylomaize by isoamylase and Thermus aquaticus 4-a-glucanotransferaseCarbohyd. Polym.201410266731:CAS:528:DC%2BC2cXitFagtrk%3D10.1016/j.carbpol.2013.10.065
– volume: 227
  start-page: 680
  year: 1970
  ident: 220_CR16
  publication-title: Nature
  doi: 10.1038/227680a0
– volume: 271
  start-page: 2902
  year: 1996
  ident: 220_CR9
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.6.2902
– volume: 207
  start-page: 81
  year: 1992
  ident: 220_CR18
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1992.tb17023.x
– volume: 67
  start-page: 164
  year: 2007
  ident: 220_CR15
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2006.05.018
– volume: 852
  start-page: 407
  year: 1999
  ident: 220_CR26
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(99)00643-3
– volume: 33
  start-page: 157
  year: 1981
  ident: 220_CR20
  publication-title: Starch-Stärke
  doi: 10.1002/star.19810330504
– volume: 21
  start-page: 703
  year: 2011
  ident: 220_CR2
  publication-title: HortTechnology
  doi: 10.21273/HORTTECH.21.6.703
– volume: 59
  start-page: 5044
  year: 2011
  ident: 220_CR7
  publication-title: J. Agr. Food Chem.
  doi: 10.1021/jf2002238
– volume: 5
  start-page: 1792
  year: 2004
  ident: 220_CR23
  publication-title: Biomacromolecules
  doi: 10.1021/bm049881i
– volume: 60
  start-page: 97
  year: 2005
  ident: 220_CR25
  publication-title: Biologia
– volume: 486
  start-page: 131
  year: 2000
  ident: 220_CR3
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(00)02258-4
– volume: 72
  start-page: 248
  year: 1976
  ident: 220_CR17
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(76)90527-3
– volume: 31
  start-page: 426
  year: 1959
  ident: 220_CR19
  publication-title: Anal. Chem.
  doi: 10.1021/ac60147a030
– volume: 56
  start-page: 23
  year: 2006
  ident: 220_CR27
  publication-title: J. Incl. Phenom. Macro.
  doi: 10.1007/s10847-006-9055-8
– volume: 81
  start-page: 385
  year: 2010
  ident: 220_CR22
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2010.02.036
– volume: 68
  start-page: 4233
  year: 2002
  ident: 220_CR10
  publication-title: 1.25/EC 3.2. 1.33) and its potential for cycloamylose production. Appl. Environ. Microb.
– start-page: 1
  volume-title: Sweet potato: An untapped food resource
  year: 1992
  ident: 220_CR1
– volume: 20
  start-page: 99
  year: 1973
  ident: 220_CR14
  publication-title: J. Jpn. Soc Starch Sci.
  doi: 10.5458/jag1972.20.99
– volume: 102
  start-page: 66
  year: 2014
  ident: 220_CR11
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2013.10.065
– volume: 35
  start-page: 683
  year: 2012
  ident: 220_CR5
  publication-title: Arch. Pharm. Res.
  doi: 10.1007/s12272-012-0412-4
– volume: 26
  start-page: 29
  year: 2009
  ident: 220_CR8
  publication-title: PCC 6803 and its application to various corn starches. New Biotechnol.
– volume: 33
  start-page: 169
  year: 2013
  ident: 220_CR21
  publication-title: Food Hydrocolloid.
  doi: 10.1016/j.foodhyd.2013.03.005
– volume: 22
  start-page: 351
  year: 1989
  ident: 220_CR12
  publication-title: Macromolecules
  doi: 10.1021/ma00191a064
– volume: 13
  start-page: 351
  year: 1970
  ident: 220_CR28
  publication-title: Carbohyd. Res.
  doi: 10.1016/S0008-6215(00)80592-3
– volume: 27
  start-page: 301
  year: 1998
  ident: 220_CR13
  publication-title: J. Cereal Sci.
  doi: 10.1006/jcrs.1997.0164
– volume: 97
  start-page: 3467
  year: 2013
  ident: 220_CR24
  publication-title: Appl. Microbiol. Biot.
  doi: 10.1007/s00253-012-4292-9
– volume: 11
  start-page: 397
  year: 2009
  ident: 220_CR4
  publication-title: Biomacromolecules
  doi: 10.1021/bm901109z
– volume: 38
  start-page: 345
  year: 1986
  ident: 220_CR29
  publication-title: Starch-Stärke
  doi: 10.1002/star.19860381006
– volume: 34
  start-page: 391
  year: 2011
  ident: 220_CR6
  publication-title: Arch. Pharm. Res.
  doi: 10.1007/s12272-011-0306-x
SSID ssj0061274
Score 2.1607776
Snippet An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from Pseudomonas...
An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from sp.) and...
An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from Pseudomonas...
SourceID nrf
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1413
SubjectTerms 4-alpha-glucanotransferase
Chemistry
Chemistry and Materials Science
Cycloamylose
Degree of polymerization
Food Science
Isoamylase
Nutrition
Polymerization
Potatoes
Pseudomonas
Solanum tuberosum
Starch
sweet potato starch
Sweet potatoes
Thermus aquaticus
식품과학
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtNAEB216QP0gfvFUNCCeKJyurHXXvuxQlQFiapCRCpP1nq9LlESO8S2qvAB_A8_wjcx4xsJ0KI-xcpOIo13ZveM9sxZgFcIQlTs-r4dmti3RZI6tkqNtGUYh0no4A4SUKPwhxP_eCzen3lnWzDqemFq0r6OJ8NsNh9mky81t3Ix1wcdT-zA56RxJ7Zhx6czpQHsjE9ODz9TYYVQAtFicwsdDx3bR3TQnWQ27XLcJ-oW0W6patrYi7azZfovmPk3W7I_Mt2FG1W2UKsLNZut7UpHt-Fj509DRpkOqzIe6m9_SD1ey-E7cKvFqOywGboLWya7B7tryoX34TvxQ-wV0d-YXulZruZY-ReGLRoFWZxtRp0rrLgwpmSLHDFtzhCJYlox4tqfs9PCVEmOWaAKNinqP8AdlaksYRi7y3lVMPWVhMg1Pgn754-aXq-yvKyxtlmi9QMYH7399ObYbq90sLUneWlr43omDHTKwxQLQY0TYkTqKASdjmcSM-KBkiMnxkdlTKwQEImEk-KPSj1phPsQBlmemcfAYtcducqX0lNa4LKtuApSIfEL6jZ2Ywt4N7mRbvXO6dqNWfRbqZniISKOG8VD5Fvwuv_JohH7uMr4JUZMNNWTiCS66fM8j6bLCAuRd9HIwU2fSwv2uoCK2sWhiEgCLxCIBLkFL_phTGs6q1GZyavaJgglolnvcpu6ywoxayivsMF6VyIuc9HmURPHvWsu1t-ucIQFciPCewPya3MEA7SWIG9j0oL9LhfW3Lv8je336fL_9_vkWtZP4aZDiV3TLPdgUC4r8wzhYhk_bxeIX7ysZxQ
  priority: 102
  providerName: Unpaywall
Title High-yield cycloamylose production from sweet potato starch using Pseudomonas isoamylase and Thermus aquaticus 4-α-glucanotransferase
URI https://link.springer.com/article/10.1007/s10068-016-0220-6
https://www.ncbi.nlm.nih.gov/pubmed/30263424
https://www.proquest.com/docview/1880844390
https://www.proquest.com/docview/1888975145
https://www.proquest.com/docview/2000602597
https://www.proquest.com/docview/2114702337
https://pubmed.ncbi.nlm.nih.gov/PMC6049264
https://www.ncbi.nlm.nih.gov/pmc/articles/6049264
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002158956
UnpaywallVersion submittedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Food Science and Biotechnology, 2016, 25(5), , pp.1413-1419
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2092-6456
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061274
  issn: 1226-7708
  databaseCode: AFBBN
  dateStart: 20100201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2092-6456
  dateEnd: 20241003
  omitProxy: true
  ssIdentifier: ssj0061274
  issn: 1226-7708
  databaseCode: RPM
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2092-6456
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061274
  issn: 1226-7708
  databaseCode: AGYKE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2092-6456
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061274
  issn: 1226-7708
  databaseCode: U2A
  dateStart: 20100201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbpwwELaazSHNoT_pH20auVVPjYgMGAzHVZQ0bdUoh6yUnCxjTLpaAtsFFG0foO_TF-kzdYYFutsmqXLZRTBYGns8_gbPfCbkHYAQFXtBYEcmDmyepK6tUiNsEcVRErmwgoRYKPzlODga8U9n_llbx1122e7dlmTjqZeK3ViAiVeYNIsxzxpZ9zE-GZD14YfzzwedA4Y1uyFfdgBZAHhkYbeZeV0jK8vRWj5Lr0Oa_yZM9rumm2SjzqdqfqWybGlhOnxITjuVFvkok726ivf097_YHu-o8yPyoAWqdLiwrMfknsm3yMZ-dz7cFtlcojJ8Qn5gwog9x3w4quc6K9TlPCtKQ6cLSlkYfoqlLLS8Mqai0wJAbkEBmsI8o5h8f0FPSlMnBUwLVdJx2TQASyxVeULBmGeXdUnVN2Qm13DF7V8_m3x7lRdVA77NDKSfktHhwen-kd2e8WBrX7DK1sbzTRTqlEUpRIYa9DU8dRWgUNc3iXFYqITjxnCpjIkVICSeMKQAUqkvDPeekUFe5OYFobHnOZ4KhPCV5uDHFVNhygXcwPJjL7YI64Za6pYAHc_hyOQf6mbsbolJb9jdMrDI-_6V6YL94zbht2A_cqLHEjm78f-ikJOZhMjkowSjdEImLLLdmZdsvUUpkRMv5AANmUXe9I9hOHHzRuWmqBuZMBIAb_2bZZqyKwCxkbhFBgJgAUDNA5nnC6vuVfMgIPe4yy0iVuy9F0C9Vp_k468NJ3nAkHkS3tztDHlJvZt7bLefPP_v35d3avsVue_ivGnyLrfJoJrV5jXgxyreaf3FTvNpD35H7hDujY5Phue_Aa-CauU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbtMwFLZYd1F2MWAw6BhgEFdMmZzEiZPLadro2I-46KRxZTmOM6p2SWkSTeUBeB9ehGfinDQJLWxDu2rUnFg69rH9Hfk7nwl5DyBERa7vW6GJfIvHiWOpxAhLhFEYhw7sIAEWCp-e-f1z_unCu6jruPOG7d4cSVYr9UKxG_OReIWkWcx5Vsgqt4OAd8jq3scvxwfNAgx7diW-bAOyAPDIguYw86ZGlrajlXSa3IQ0_yVMtqema6RbphM1u1bj8cLGdPiIDBqX5nyU0W5ZRLv6-19qj_f0-TFZr4Eq3ZtH1hPywKQbpLvf3A-3QdYWpAyfkh9IGLFmyIejeqbHmbqajbPc0MlcUhaGn2IpC82vjSnoJAOQm1GApjDPKJLvL-nn3JRxBtNC5XSYVw3AFktVGlMI5ulVmVP1DZXJNTxx69fPim-v0qyowLeZgvUzcn54MNjvW_UdD5b2BCssbVzPhIFOWJhAZqjBX8MTRwEKdTwTG5sFSthOBI_KmEgBQuIxQwkglXjCcHeTdNIsNS8IjVzXdpUvhKc0h3VcMRUkXMAfWH7sRj3CmqGWuhZAx3s4xvKPdDN2t0TSG3a39HvkQ_vJZK7-cZfxO4gfOdJDiZrd-HuZydFUQmZyJCEo7YCJHtluwkvWq0UuURMv4AANWY-8bV_DcOLhjUpNVlY2QSgA3nq321RlVwBiQ3GHDSTAAoCaCzbP51HduuZCQu5yh_eIWIr31gD9Wn6TDr9WmuQ-Q-VJ-HKnCeQF927vsZ128vy_f7fu1fYb0u0PTk_kydHZ8Uvy0ME5VHEwt0mnmJbmFWDJInpdrx2_AZI9ai0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwELVokSh9QFAuDRQwiCeqqE7ixMljVVi1XKo-sFLfLCdxyqpbJ81F1f4A_8OP8E3M5MauaIt42mgziWTPOHNGPnNMyDsAISr2gsCOdBzYPM1cW2Va2CKKozRyIYOE2Cj89Tg4nPJPp_5pf85pNbDdhy3JrqcBVZpMvVek2d5S4xsLkISFBFqsf9bIXQ6pGquvqbs_fIohe7cyzA5gDICRLBy2Na97xUpiWjNldh3m_Js6Oe6fbpKNxhRqcaXm86UUNXlIHvTYku53wfCI3NFmi2wcDEe6bZHNJfXBx-QHcjzsBVLYaLJI5rm6gOq90rToVGDBYxS7T2h1pXVNixxwaU4BTcLSoMiXP6MnlW7SHCJZVXRWtS-ArEiVSSnEX3nRVFRdoph4Alfc_vWzpcgrk9ctXtYlWD8h08nHbweHdn8sg534gtV2oj1fR2GSsSiDYi6BedQ8cxUAR9fXqXZYqITjxnCptI4VgBqeMlTtUZkvNPeeknWTG71NaOx5jqcCIXyVcPj0KqbCjAv4AzuGvdgibPCJTHrNcjw6Yy7_qC2jGyXy1NCNMrDI-_GRohPsuM34LThanicziTLb-HuWy_NSQjFxJCF6nJAJi-wMcSD7BV5JlLELOaA5ZpE3421wJ-63KKPzprUJIwGI1L_Zpu2UAtwZiVtsoGYVgK08sHnWhd84NA9qaI-73CJiJTBHAxzX6h0z-97KiAcMxSLhyd0hhJeGd_OM7Y5R_u_5ff5f735N7p18mMgvR8efX5D7Li7NljW5Q9brstEvAf3V8at2hf8G6o9Rsg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtNAEB216QP0gfvFUNCCeKJyurHXXvuxQlQFiapCRCpP1nq9LlESO8S2qvAB_A8_wjcx4xsJ0KI-xcpOIo13ZveM9sxZgFcIQlTs-r4dmti3RZI6tkqNtGUYh0no4A4SUKPwhxP_eCzen3lnWzDqemFq0r6OJ8NsNh9mky81t3Ix1wcdT-zA56RxJ7Zhx6czpQHsjE9ODz9TYYVQAtFicwsdDx3bR3TQnWQ27XLcJ-oW0W6patrYi7azZfovmPk3W7I_Mt2FG1W2UKsLNZut7UpHt-Fj509DRpkOqzIe6m9_SD1ey-E7cKvFqOywGboLWya7B7tryoX34TvxQ-wV0d-YXulZruZY-ReGLRoFWZxtRp0rrLgwpmSLHDFtzhCJYlox4tqfs9PCVEmOWaAKNinqP8AdlaksYRi7y3lVMPWVhMg1Pgn754-aXq-yvKyxtlmi9QMYH7399ObYbq90sLUneWlr43omDHTKwxQLQY0TYkTqKASdjmcSM-KBkiMnxkdlTKwQEImEk-KPSj1phPsQBlmemcfAYtcducqX0lNa4LKtuApSIfEL6jZ2Ywt4N7mRbvXO6dqNWfRbqZniISKOG8VD5Fvwuv_JohH7uMr4JUZMNNWTiCS66fM8j6bLCAuRd9HIwU2fSwv2uoCK2sWhiEgCLxCIBLkFL_phTGs6q1GZyavaJgglolnvcpu6ywoxayivsMF6VyIuc9HmURPHvWsu1t-ucIQFciPCewPya3MEA7SWIG9j0oL9LhfW3Lv8je336fL_9_vkWtZP4aZDiV3TLPdgUC4r8wzhYhk_bxeIX7ysZxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-yield+cycloamylose+production+from+sweet+potato+starch+using+Pseudomonas+isoamylase+and+Thermus+aquaticus+4-%CE%B1-glucanotransferase&rft.jtitle=Food+science+and+biotechnology&rft.au=Sun+Chu&rft.au=%ED%99%8D%EC%A0%95%EC%84%A0&rft.au=%EB%85%B8%EC%8B%A0%EC%A0%95&rft.au=%EB%B0%95%EC%A7%80%EC%98%81&rft.date=2016-10-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%8B%9D%ED%92%88%EA%B3%BC%ED%95%99%ED%9A%8C&rft.issn=1226-7708&rft.eissn=2092-6456&rft.spage=1413&rft.epage=1419&rft_id=info:doi/10.1007%2Fs10068-016-0220-6&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_1271807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7708&client=summon