High-yield cycloamylose production from sweet potato starch using Pseudomonas isoamylase and Thermus aquaticus 4-α-glucanotransferase
An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from Pseudomonas sp.) and 4-α-glucanotransferase (from Thermus aquaticus , TAαGT). Starch was debranched by isoamylase for 8 h and subsequently reacted with TAαG...
Saved in:
Published in | Food science and biotechnology Vol. 25; no. 5; pp. 1413 - 1419 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Society of Food Science and Technology
01.10.2016
Springer Nature B.V 한국식품과학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1226-7708 2092-6456 2092-6456 |
DOI | 10.1007/s10068-016-0220-6 |
Cover
Abstract | An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from
Pseudomonas
sp.) and 4-α-glucanotransferase (from
Thermus aquaticus
, TAαGT). Starch was debranched by isoamylase for 8 h and subsequently reacted with TAαGT for 12 h. The yield and purity of CA products were determined using HPSEC and MALDI-TOFMS, respectively. Consequently, the maximum yield was 48.56%, exhibiting the highest CA production efficiency ever reported from starch. The CA products showed a wide range of the degree of polymerization (DP) with the minimum DP of 5. CA was also produced by simultaneous treatment of isoamylase and TAαGT. The yield was 3.31%, and the final products were contaminated by multiple branched and linear molecules. This result suggests that a former reaction condition (the sequential addition of isoamylase and TAαGT) is preferable for producing CA from sweet potato starch. |
---|---|
AbstractList | An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from
sp.) and 4-α-glucanotransferase (from
, TAαGT). Starch was debranched by isoamylase for 8 h and subsequently reacted with TAαGT for 12 h. The yield and purity of CA products were determined using HPSEC and MALDI-TOFMS, respectively. Consequently, the maximum yield was 48.56%, exhibiting the highest CA production efficiency ever reported from starch. The CA products showed a wide range of the degree of polymerization (DP) with the minimum DP of 5. CA was also produced by simultaneous treatment of isoamylase and TAαGT. The yield was 3.31%, and the final products were contaminated by multiple branched and linear molecules. This result suggests that a former reaction condition (the sequential addition of isoamylase and TAαGT) is preferable for producing CA from sweet potato starch. An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from Pseudomonas sp.) and 4-α-glucanotransferase (from Thermus aquaticus, TAαGT). Starch was debranched by isoamylase for 8 h and subsequently reacted with TAαGT for 12 h. The yield and purity of CA products were determined using HPSEC and MALDI-TOFMS, respectively. Consequently, the maximum yield was 48.56%, exhibiting the highest CA production efficiency ever reported from starch. The CA products showed a wide range of the degree of polymerization (DP) with the minimum DP of 5. CA was also produced by simultaneous treatment of isoamylase and TAαGT. The yield was 3.31%, and the final products were contaminated by multiple branched and linear molecules. This result suggests that a former reaction condition (the sequential addition of isoamylase and TAαGT) is preferable for producing CA from sweet potato starch. An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from Pseudomonas sp.) and 4-α-glucanotransferase (from Thermus aquaticus , TAαGT). Starch was debranched by isoamylase for 8 h and subsequently reacted with TAαGT for 12 h. The yield and purity of CA products were determined using HPSEC and MALDI-TOFMS, respectively. Consequently, the maximum yield was 48.56%, exhibiting the highest CA production efficiency ever reported from starch. The CA products showed a wide range of the degree of polymerization (DP) with the minimum DP of 5. CA was also produced by simultaneous treatment of isoamylase and TAαGT. The yield was 3.31%, and the final products were contaminated by multiple branched and linear molecules. This result suggests that a former reaction condition (the sequential addition of isoamylase and TAαGT) is preferable for producing CA from sweet potato starch. An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from Pseudomonas sp.) and 4-α-glucanotransferase (from Thermus aquaticus, TAαGT). Starch was debranched by isoamylase for 8 h and subsequently reacted with TAαGT for 12 h. The yield and purity of CA products were determined using HPSEC and MALDI-TOFMS, respectively. Consequently, the maximum yield was 48.56%, exhibiting the highest CA production efficiency ever reported from starch. The CA products showed a wide range of the degree of polymerization (DP) with the minimum DP of 5. CA was also produced by simultaneous treatment of isoamylase and TAαGT. The yield was 3.31%, and the final products were contaminated by multiple branched and linear molecules. This result suggests that a former reaction condition (the sequential addition of isoamylase and TAαGT) is preferable for producing CA from sweet potato starch. KCI Citation Count: 11 An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from Pseudomonas sp.) and 4- alpha -glucanotransferase (from Thermus aquaticus, TA alpha GT). Starch was debranched by isoamylase for 8 h and subsequently reacted with TA alpha GT for 12 h. The yield and purity of CA products were determined using HPSEC and MALDI-TOFMS, respectively. Consequently, the maximum yield was 48.56%, exhibiting the highest CA production efficiency ever reported from starch. The CA products showed a wide range of the degree of polymerization (DP) with the minimum DP of 5. CA was also produced by simultaneous treatment of isoamylase and TA alpha GT. The yield was 3.31%, and the final products were contaminated by multiple branched and linear molecules. This result suggests that a former reaction condition (the sequential addition of isoamylase and TA alpha GT) is preferable for producing CA from sweet potato starch. An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from Pseudomonas sp.) and 4-α-glucanotransferase (from Thermus aquaticus, TAαGT). Starch was debranched by isoamylase for 8 h and subsequently reacted with TAαGT for 12 h. The yield and purity of CA products were determined using HPSEC and MALDI-TOFMS, respectively. Consequently, the maximum yield was 48.56%, exhibiting the highest CA production efficiency ever reported from starch. The CA products showed a wide range of the degree of polymerization (DP) with the minimum DP of 5. CA was also produced by simultaneous treatment of isoamylase and TAαGT. The yield was 3.31%, and the final products were contaminated by multiple branched and linear molecules. This result suggests that a former reaction condition (the sequential addition of isoamylase and TAαGT) is preferable for producing CA from sweet potato starch.An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from Pseudomonas sp.) and 4-α-glucanotransferase (from Thermus aquaticus, TAαGT). Starch was debranched by isoamylase for 8 h and subsequently reacted with TAαGT for 12 h. The yield and purity of CA products were determined using HPSEC and MALDI-TOFMS, respectively. Consequently, the maximum yield was 48.56%, exhibiting the highest CA production efficiency ever reported from starch. The CA products showed a wide range of the degree of polymerization (DP) with the minimum DP of 5. CA was also produced by simultaneous treatment of isoamylase and TAαGT. The yield was 3.31%, and the final products were contaminated by multiple branched and linear molecules. This result suggests that a former reaction condition (the sequential addition of isoamylase and TAαGT) is preferable for producing CA from sweet potato starch. |
Author | Park, Jiyoung Kim, Yong-Ro Chu, Sun Han, Sang-Ik Hong, Jung Sun Rho, Shin-Joung Kim, Young-Wan |
Author_xml | – sequence: 1 givenname: Sun surname: Chu fullname: Chu, Sun organization: Center for Food and Bioconvergence, Department of Biosystems and Biomaterials Science and Engineering, Seoul National University – sequence: 2 givenname: Jung Sun surname: Hong fullname: Hong, Jung Sun organization: Center for Food and Bioconvergence, Department of Biosystems and Biomaterials Science and Engineering, Seoul National University – sequence: 3 givenname: Shin-Joung surname: Rho fullname: Rho, Shin-Joung organization: Center for Food and Bioconvergence, Department of Biosystems and Biomaterials Science and Engineering, Seoul National University – sequence: 4 givenname: Jiyoung surname: Park fullname: Park, Jiyoung organization: Department of Central Area Crop Science, NICS – sequence: 5 givenname: Sang-Ik surname: Han fullname: Han, Sang-Ik organization: Department of functional Crop, Functional Crop Resource Development Division, NICS, RDA – sequence: 6 givenname: Young-Wan surname: Kim fullname: Kim, Young-Wan organization: Department of Food and Biotechnology, Korea University – sequence: 7 givenname: Yong-Ro surname: Kim fullname: Kim, Yong-Ro email: yongro@snu.ac.kr organization: Center for Food and Bioconvergence, Department of Biosystems and Biomaterials Science and Engineering, Seoul National University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30263424$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002158956$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNqNkstu1DAUhiNURC_wAGxQJDawMBw7viQbpKoCWqkSCA1ry-OczLhN7KmdUM0L8D68CM-EpzNAqQRlY1vy95_bfw6LPR88FsVTCq8ogHqd8ilrAlQSYAyIfFAcMGgYkVzIveKAMiaJUlDvF4cpXWSYMsUfFfsVMFlxxg-Kr6dusSRrh31b2rXtgxnWfUhYrmJoJzu64MsuhqFM14hjuQqjGUOZRhPtspyS84vyY8KpDUPwJpUu3QQwOYDxbTlbYhymVJqryYzO5hcn37-RRT9Z48MYjU8dxkw_Lh52pk_4ZHcfFZ_fvZ2dnJLzD-_PTo7PiRUKRmKxEtjUtoOmo8Bt7gh5x4yoKiawRQq1UZTN89Mgzg1IyVtQIITphEJeHRUvt3F97PSldToYd3Mvgr6M-vjT7EznGdEaVGbZlp38yqyvTd_rVXSDiWtNQW8M0FsDdDZAbwzQMovebEWraT5ga9HnLn8LN-n-_PFumZN_0RJ4w-Smwhe7ADFcTZhGPbhkse-NxzAlzSjlClhVqftRyNUBE839KK3rulGCcpHR53fQizBFn13ZUFBzXjWQqWe3-_zV4M_NygDdAjaGlCJ2_zU8dUdjXd63vIN5VK7_p3LnVcpZ_ALjraL_KvoBJ20D9Q |
CitedBy_id | crossref_primary_10_3390_molecules27041446 crossref_primary_10_1016_j_lwt_2021_112502 crossref_primary_10_1002_cche_10102 crossref_primary_10_1002_star_202100192 crossref_primary_10_1016_j_scitotenv_2022_159181 crossref_primary_10_1016_j_scitotenv_2021_146029 crossref_primary_10_1016_j_carbpol_2023_120722 crossref_primary_10_1016_j_lwt_2021_110867 crossref_primary_10_1016_j_foodhyd_2024_110874 crossref_primary_10_1016_j_lwt_2020_109474 crossref_primary_10_1016_j_bcab_2022_102509 crossref_primary_10_1111_ijfs_13590 crossref_primary_10_1016_j_biotechadv_2021_107786 crossref_primary_10_1016_j_ijbiomac_2021_10_082 crossref_primary_10_1016_j_tifs_2022_11_025 crossref_primary_10_1002_mas_21651 |
Cites_doi | 10.1038/227680a0 10.1074/jbc.271.6.2902 10.1111/j.1432-1033.1992.tb17023.x 10.1016/j.carbpol.2006.05.018 10.1016/S0021-9673(99)00643-3 10.1002/star.19810330504 10.21273/HORTTECH.21.6.703 10.1021/jf2002238 10.1021/bm049881i 10.1016/S0014-5793(00)02258-4 10.1016/0003-2697(76)90527-3 10.1021/ac60147a030 10.1007/s10847-006-9055-8 10.1016/j.carbpol.2010.02.036 10.5458/jag1972.20.99 10.1016/j.carbpol.2013.10.065 10.1007/s12272-012-0412-4 10.1016/j.foodhyd.2013.03.005 10.1021/ma00191a064 10.1016/S0008-6215(00)80592-3 10.1006/jcrs.1997.0164 10.1007/s00253-012-4292-9 10.1021/bm901109z 10.1002/star.19860381006 10.1007/s12272-011-0306-x |
ContentType | Journal Article |
Copyright | The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2016 Copyright Springer Science & Business Media 2016 |
Copyright_xml | – notice: The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2016 – notice: Copyright Springer Science & Business Media 2016 |
DBID | AAYXX CITATION NPM 7QL 7QO 8FD C1K FR3 P64 7S9 L.6 7X8 5PM ADTOC UNPAY ACYCR |
DOI | 10.1007/s10068-016-0220-6 |
DatabaseName | CrossRef PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Korean Citation Index |
DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | PubMed AGRICOLA Engineering Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 2092-6456 |
EndPage | 1419 |
ExternalDocumentID | oai_kci_go_kr_ARTI_1271807 oai:pubmedcentral.nih.gov:6049264 PMC6049264 30263424 10_1007_s10068_016_0220_6 |
Genre | Journal Article |
GroupedDBID | -EM .UV 06D 0R~ 0VY 1N0 203 29H 2KG 2VQ 30V 4.4 406 408 40D 5GY 67Z 96X 9ZL AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AOIJS AXYYD AYJHY BGNMA CAG COF CSCUP DBRKI DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GW5 H13 HF~ HG6 HMJXF HRMNR HYE HZ~ I0C IKXTQ IWAJR IXD J-C J0Z JBSCW JZLTJ KOV KVFHK LLZTM M1Z M4Y MZR NPVJJ NQJWS NU0 O9- O9J OK1 P2P P9N PT4 R9I RLLFE ROL RPM RSV S1Z S27 S3B SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TDB TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7U Z7V Z7W ZMTXR ZZE ~A9 62Y 85H AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION NPM 7QL 7QO 8FD C1K FR3 P64 7S9 L.6 7X8 5PM ADTOC UNPAY ACYCR |
ID | FETCH-LOGICAL-c570t-ce35e98cf09f104c006e4f2a53325ede108a712bedeaeeba0664d07055af57e43 |
IEDL.DBID | AGYKE |
ISSN | 1226-7708 2092-6456 |
IngestDate | Sun Mar 09 07:51:13 EDT 2025 Wed Aug 20 00:16:57 EDT 2025 Tue Sep 30 16:33:34 EDT 2025 Wed Oct 01 14:21:40 EDT 2025 Fri Sep 05 17:18:57 EDT 2025 Thu Sep 04 20:22:59 EDT 2025 Wed Sep 17 13:51:42 EDT 2025 Wed Feb 19 02:42:39 EST 2025 Wed Oct 01 05:02:53 EDT 2025 Thu Apr 24 23:10:46 EDT 2025 Fri Feb 21 02:38:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | starch modification enzymatic conversion normal starch transglycosylation debranching enzyme |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c570t-ce35e98cf09f104c006e4f2a53325ede108a712bedeaeeba0664d07055af57e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 G704-000139.2016.25.5.030 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6049264 |
PMID | 30263424 |
PQID | 1880844390 |
PQPubID | 2043650 |
PageCount | 7 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_1271807 unpaywall_primary_10_1007_s10068_016_0220_6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6049264 proquest_miscellaneous_2114702337 proquest_miscellaneous_2000602597 proquest_miscellaneous_1888975145 proquest_journals_1880844390 pubmed_primary_30263424 crossref_primary_10_1007_s10068_016_0220_6 crossref_citationtrail_10_1007_s10068_016_0220_6 springer_journals_10_1007_s10068_016_0220_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-10-01 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Korea (South) – name: Heidelberg |
PublicationTitle | Food science and biotechnology |
PublicationTitleAbbrev | Food Sci Biotechnol |
PublicationTitleAlternate | Food Sci Biotechnol |
PublicationYear | 2016 |
Publisher | The Korean Society of Food Science and Technology Springer Nature B.V 한국식품과학회 |
Publisher_xml | – name: The Korean Society of Food Science and Technology – name: Springer Nature B.V – name: 한국식품과학회 |
References | LaemmliUKCleavage of structural proteins during the assembly of the head of bacteriophage T4Nature19702276806851:CAS:528:DC%2BD3MXlsFags7s%3D10.1038/227680a0 SundararajanPRaoVConformational studies on cycloamylosesCarbohyd. Res.1970133513581:CAS:528:DyaE3cXltFSjsb4%3D10.1016/S0008-6215(00)80592-3 MillerGLUse of dinitrosalicylic acid reagent for determination of reducing sugarAnal. Chem.1959314264281:CAS:528:DyaG1MXmtFKiuw%3D%3D10.1021/ac60147a030 KimJHWangRLeeWHParkCSLeeSYooSHOne-pot synthesis of cycloamyloses from sucrose by dual enzyme treatment: Combined reaction of amylosucrase and 4-a-glucanotransferaseJ. Agr. Food Chem.201159504450511:CAS:528:DC%2BC3MXktFGjsb4%3D10.1021/jf2002238 JulianoBPerezCBlakeneyACastilloTKongsereeNLaigneletBLapisEMurtyVPauleCWebbBInternational cooperative testing on the amylose content of milled riceStarch-Stärke1981331571621:CAS:528:DyaL3MXksVSqsbY%3D10.1002/star.19810330504 TakedaYTokunagaNTakedaCHizukuriSPhysicochemical properties of sweet potato starchesStarch-Stärke1986383453501:CAS:528:DyaL2sXjvF2k10.1002/star.19860381006 WoolfeJASweet potato: An untapped food resource1992New York, NY, USACambridge University Press112 BaekHHKwonSYRhoSJLeeWSYangHJHahJMChoiHGKimYRYongCSEnhanced solubility and bioavailability of flurbiprofen by cycloamyloseArch. Pharm. Res.2011343913971:CAS:528:DC%2BC3MXls1Cqt74%3D10.1007/s12272-011-0306-x BradfordMMA rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnal. Biochem.1976722482541:CAS:528:DyaE28XksVehtrY%3D10.1016/0003-2697(76)90527-3 YamamotoKSawadaSOnogakiTProperties of rice starch prepared by alkali method with various conditionsJ. Jpn. Soc Starch Sci.197320991041:CAS:528:DyaE2MXltlers78%3D10.5458/jag1972.20.99 GidleyMJMolecular mechanisms underlying amylose aggregation and gelationMacromolecules1989223513581:CAS:528:DyaL1MXlsl2gsA%3D%3D10.1021/ma00191a064 CaiLShiYCRongLHsiaoBSDebranching and crystallization of waxy maize starch in relation to enzyme digestibilityCarbohyd. Polym.2010813853931:CAS:528:DC%2BC3cXlsFCitrs%3D10.1016/j.carbpol.2010.02.036 LieblWFeilRGabelsbergerJKellermannJSchleiferKHPurification and characterization of a novel thermostable 4-a-glucanotransferase of Thermotoga maritima cloned in Escherichia coliEur. J. Biochem.199220781881:CAS:528:DyaK38XltVKqsLc%3D10.1111/j.1432-1033.1992.tb17023.x MachidaSOgawaSXiaohuaSTakahaTFujiiKHayashiKCycloamylose as an efficient artificial chaperone for protein refoldingFEBS Lett.20004861311351:CAS:528:DC%2BD3cXoslGhsrk%3D10.1016/S0014-5793(00)02258-4 FujiiKMinagawaHTeradaYTakahaTKurikiTShimadaJKanekoHProtein engineering of amylomaltase from Thermus aquaticus with random and saturation mutagenesisBiologia200560971021:CAS:528:DC%2BD28XhvVCrtrY%3D ToitaSMorimotoNAkiyoshiKFunctional cycloamylose as a polysaccharidebased biomaterial: application in a gene delivery systemBiomacromolecules20091139740110.1021/bm901109z CaseSCapitaniTWhaleyJShiYTrzaskoPJeffcoatRGoldfarbHPhysical properties and gelation behavior of a low-amylopectin maize starch and other high-amylose maize starchesJ. Cereal Sci.1998273013141:CAS:528:DyaK1cXktFyhsLg%3D10.1006/jcrs.1997.0164 PohuAPlanchotVPutauxJColonnaP B ASplit crystallization during debranching of maltodextrins at high concentration by isoamylaseBiomacromolecules20045179217981:CAS:528:DC%2BD2cXlt1Sju7g%3D10.1021/bm049881i TairaHNagaseHEndoTUedaHIsolation, Purification and Characterization of Large-Ring Cyclodextrins (CD36~~CD39)J. Incl. Phenom. Macro.20065623281:CAS:528:DC%2BD28XhtFSit77F10.1007/s10847-006-9055-8 GeorgeNAPecotaKVBowenBDSchultheisJRYenchoGCRoot piece planting in sweetpotato—A synthesis of previous research and directions for the futureHortTechnology201121703711 LeeBHOhDKYooSHCharacterization of 4-á-glucanotransferase from Synechocystis spPCC 6803 and its application to various corn starches. New Biotechnol.2009262936 ParkJHKimHJKimYHChaHKimYWKimTJKimYRParkKHThe action mode of Thermus aquaticus YT-1 4-á-glucanotransferase and its chimeric enzymes introduced with starch-binding domain on amylose and amylopectinCarbohyd. Polym.2007671641731:CAS:528:DC%2BD28Xht1CmtbzO10.1016/j.carbpol.2006.05.018 YanaseMTakataHTakahaTKurikiTSmithSMOkadaSCyclization reaction catalyzed by glycogen debranching enzyme (EC 2.41.25/EC 3.2. 1.33) and its potential for cycloamylose production. Appl. Environ. Microb.200268423342391:CAS:528:DC%2BD38XmvVeqtbY%3D DuanXChenSChenJWuJEnhancing the cyclodextrin production by synchronous utilization of isoamylase and a-CGTaseAppl. Microbiol. Biot.201397346734741:CAS:528:DC%2BC3sXlt1ajtL0%3D10.1007/s00253-012-4292-9 XuYZhouXBaiYWangJWuCXuXJinZCycloamylose production from amylomaize by isoamylase and Thermus aquaticus 4-a-glucanotransferaseCarbohyd. Polym.201410266731:CAS:528:DC%2BC2cXitFagtrk%3D10.1016/j.carbpol.2013.10.065 AbegundeOKMuTHChenJWDengFMPhysicochemical characterization of sweet potato starches popularly used in Chinese starch industryFood Hydrocolloid.2013331691771:CAS:528:DC%2BC3sXpsV2nurs%3D10.1016/j.foodhyd.2013.03.005 TakahaTYanaseMTakataHOkadaSSmithSMPotato D-enzyme catalyzes the cyclization of amylose to produce cycloamylose, a novel cyclic glucanJ. Biol. Chem.1996271290229081:CAS:528:DyaK28XhtVWqtLs%3D10.1074/jbc.271.6.2902 BaekHHKimDHKwonSYRhoSJKimDWChoiHGKimYRYongCSDevelopment of novel ibuprofen-loaded solid dispersion with enhanced bioavailability using cycloamyloseArch. Pharm. Res.2012356836891:CAS:528:DC%2BC38XmsVGktrc%3D10.1007/s12272-012-0412-4 KoizumiKSanbeHKubotaYTeradaYTakahaTIsolation and characterization of cyclic a-(1-4)-glucans having degrees of polymerization 9–31 and their quantitative analysis by high-performance anion-exchange chromatography with pulsed amperometric detectionJ. Chromatogr. A19998524074161:CAS:528:DyaK1MXltVCnt7s%3D10.1016/S0021-9673(99)00643-3 W Liebl (220_CR18) 1992; 207 L Cai (220_CR22) 2010; 81 X Duan (220_CR24) 2013; 97 GL Miller (220_CR19) 1959; 31 Y Takeda (220_CR29) 1986; 38 S Case (220_CR13) 1998; 27 OK Abegunde (220_CR21) 2013; 33 Y Xu (220_CR11) 2014; 102 JH Kim (220_CR7) 2011; 59 MJ Gidley (220_CR12) 1989; 22 JA Woolfe (220_CR1) 1992 B Juliano (220_CR20) 1981; 33 S Machida (220_CR3) 2000; 486 K Fujii (220_CR25) 2005; 60 K Koizumi (220_CR26) 1999; 852 JH Park (220_CR15) 2007; 67 BH Lee (220_CR8) 2009; 26 NA George (220_CR2) 2011; 21 H Taira (220_CR27) 2006; 56 M Yanase (220_CR10) 2002; 68 UK Laemmli (220_CR16) 1970; 227 K Yamamoto (220_CR14) 1973; 20 HH Baek (220_CR5) 2012; 35 T Takaha (220_CR9) 1996; 271 A Pohu (220_CR23) 2004; 5 S Toita (220_CR4) 2009; 11 MM Bradford (220_CR17) 1976; 72 HH Baek (220_CR6) 2011; 34 P Sundararajan (220_CR28) 1970; 13 |
References_xml | – reference: YanaseMTakataHTakahaTKurikiTSmithSMOkadaSCyclization reaction catalyzed by glycogen debranching enzyme (EC 2.41.25/EC 3.2. 1.33) and its potential for cycloamylose production. Appl. Environ. Microb.200268423342391:CAS:528:DC%2BD38XmvVeqtbY%3D – reference: AbegundeOKMuTHChenJWDengFMPhysicochemical characterization of sweet potato starches popularly used in Chinese starch industryFood Hydrocolloid.2013331691771:CAS:528:DC%2BC3sXpsV2nurs%3D10.1016/j.foodhyd.2013.03.005 – reference: FujiiKMinagawaHTeradaYTakahaTKurikiTShimadaJKanekoHProtein engineering of amylomaltase from Thermus aquaticus with random and saturation mutagenesisBiologia200560971021:CAS:528:DC%2BD28XhvVCrtrY%3D – reference: YamamotoKSawadaSOnogakiTProperties of rice starch prepared by alkali method with various conditionsJ. Jpn. Soc Starch Sci.197320991041:CAS:528:DyaE2MXltlers78%3D10.5458/jag1972.20.99 – reference: GeorgeNAPecotaKVBowenBDSchultheisJRYenchoGCRoot piece planting in sweetpotato—A synthesis of previous research and directions for the futureHortTechnology201121703711 – reference: ToitaSMorimotoNAkiyoshiKFunctional cycloamylose as a polysaccharidebased biomaterial: application in a gene delivery systemBiomacromolecules20091139740110.1021/bm901109z – reference: JulianoBPerezCBlakeneyACastilloTKongsereeNLaigneletBLapisEMurtyVPauleCWebbBInternational cooperative testing on the amylose content of milled riceStarch-Stärke1981331571621:CAS:528:DyaL3MXksVSqsbY%3D10.1002/star.19810330504 – reference: CaseSCapitaniTWhaleyJShiYTrzaskoPJeffcoatRGoldfarbHPhysical properties and gelation behavior of a low-amylopectin maize starch and other high-amylose maize starchesJ. Cereal Sci.1998273013141:CAS:528:DyaK1cXktFyhsLg%3D10.1006/jcrs.1997.0164 – reference: CaiLShiYCRongLHsiaoBSDebranching and crystallization of waxy maize starch in relation to enzyme digestibilityCarbohyd. Polym.2010813853931:CAS:528:DC%2BC3cXlsFCitrs%3D10.1016/j.carbpol.2010.02.036 – reference: WoolfeJASweet potato: An untapped food resource1992New York, NY, USACambridge University Press112 – reference: PohuAPlanchotVPutauxJColonnaP B ASplit crystallization during debranching of maltodextrins at high concentration by isoamylaseBiomacromolecules20045179217981:CAS:528:DC%2BD2cXlt1Sju7g%3D10.1021/bm049881i – reference: TakedaYTokunagaNTakedaCHizukuriSPhysicochemical properties of sweet potato starchesStarch-Stärke1986383453501:CAS:528:DyaL2sXjvF2k10.1002/star.19860381006 – reference: ParkJHKimHJKimYHChaHKimYWKimTJKimYRParkKHThe action mode of Thermus aquaticus YT-1 4-á-glucanotransferase and its chimeric enzymes introduced with starch-binding domain on amylose and amylopectinCarbohyd. Polym.2007671641731:CAS:528:DC%2BD28Xht1CmtbzO10.1016/j.carbpol.2006.05.018 – reference: GidleyMJMolecular mechanisms underlying amylose aggregation and gelationMacromolecules1989223513581:CAS:528:DyaL1MXlsl2gsA%3D%3D10.1021/ma00191a064 – reference: BaekHHKwonSYRhoSJLeeWSYangHJHahJMChoiHGKimYRYongCSEnhanced solubility and bioavailability of flurbiprofen by cycloamyloseArch. Pharm. Res.2011343913971:CAS:528:DC%2BC3MXls1Cqt74%3D10.1007/s12272-011-0306-x – reference: MachidaSOgawaSXiaohuaSTakahaTFujiiKHayashiKCycloamylose as an efficient artificial chaperone for protein refoldingFEBS Lett.20004861311351:CAS:528:DC%2BD3cXoslGhsrk%3D10.1016/S0014-5793(00)02258-4 – reference: TairaHNagaseHEndoTUedaHIsolation, Purification and Characterization of Large-Ring Cyclodextrins (CD36~~CD39)J. Incl. Phenom. Macro.20065623281:CAS:528:DC%2BD28XhtFSit77F10.1007/s10847-006-9055-8 – reference: KoizumiKSanbeHKubotaYTeradaYTakahaTIsolation and characterization of cyclic a-(1-4)-glucans having degrees of polymerization 9–31 and their quantitative analysis by high-performance anion-exchange chromatography with pulsed amperometric detectionJ. Chromatogr. A19998524074161:CAS:528:DyaK1MXltVCnt7s%3D10.1016/S0021-9673(99)00643-3 – reference: MillerGLUse of dinitrosalicylic acid reagent for determination of reducing sugarAnal. Chem.1959314264281:CAS:528:DyaG1MXmtFKiuw%3D%3D10.1021/ac60147a030 – reference: LaemmliUKCleavage of structural proteins during the assembly of the head of bacteriophage T4Nature19702276806851:CAS:528:DC%2BD3MXlsFags7s%3D10.1038/227680a0 – reference: DuanXChenSChenJWuJEnhancing the cyclodextrin production by synchronous utilization of isoamylase and a-CGTaseAppl. Microbiol. Biot.201397346734741:CAS:528:DC%2BC3sXlt1ajtL0%3D10.1007/s00253-012-4292-9 – reference: LeeBHOhDKYooSHCharacterization of 4-á-glucanotransferase from Synechocystis spPCC 6803 and its application to various corn starches. New Biotechnol.2009262936 – reference: LieblWFeilRGabelsbergerJKellermannJSchleiferKHPurification and characterization of a novel thermostable 4-a-glucanotransferase of Thermotoga maritima cloned in Escherichia coliEur. J. Biochem.199220781881:CAS:528:DyaK38XltVKqsLc%3D10.1111/j.1432-1033.1992.tb17023.x – reference: SundararajanPRaoVConformational studies on cycloamylosesCarbohyd. Res.1970133513581:CAS:528:DyaE3cXltFSjsb4%3D10.1016/S0008-6215(00)80592-3 – reference: BradfordMMA rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnal. Biochem.1976722482541:CAS:528:DyaE28XksVehtrY%3D10.1016/0003-2697(76)90527-3 – reference: TakahaTYanaseMTakataHOkadaSSmithSMPotato D-enzyme catalyzes the cyclization of amylose to produce cycloamylose, a novel cyclic glucanJ. Biol. Chem.1996271290229081:CAS:528:DyaK28XhtVWqtLs%3D10.1074/jbc.271.6.2902 – reference: KimJHWangRLeeWHParkCSLeeSYooSHOne-pot synthesis of cycloamyloses from sucrose by dual enzyme treatment: Combined reaction of amylosucrase and 4-a-glucanotransferaseJ. Agr. Food Chem.201159504450511:CAS:528:DC%2BC3MXktFGjsb4%3D10.1021/jf2002238 – reference: BaekHHKimDHKwonSYRhoSJKimDWChoiHGKimYRYongCSDevelopment of novel ibuprofen-loaded solid dispersion with enhanced bioavailability using cycloamyloseArch. Pharm. Res.2012356836891:CAS:528:DC%2BC38XmsVGktrc%3D10.1007/s12272-012-0412-4 – reference: XuYZhouXBaiYWangJWuCXuXJinZCycloamylose production from amylomaize by isoamylase and Thermus aquaticus 4-a-glucanotransferaseCarbohyd. Polym.201410266731:CAS:528:DC%2BC2cXitFagtrk%3D10.1016/j.carbpol.2013.10.065 – volume: 227 start-page: 680 year: 1970 ident: 220_CR16 publication-title: Nature doi: 10.1038/227680a0 – volume: 271 start-page: 2902 year: 1996 ident: 220_CR9 publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.6.2902 – volume: 207 start-page: 81 year: 1992 ident: 220_CR18 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1992.tb17023.x – volume: 67 start-page: 164 year: 2007 ident: 220_CR15 publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2006.05.018 – volume: 852 start-page: 407 year: 1999 ident: 220_CR26 publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(99)00643-3 – volume: 33 start-page: 157 year: 1981 ident: 220_CR20 publication-title: Starch-Stärke doi: 10.1002/star.19810330504 – volume: 21 start-page: 703 year: 2011 ident: 220_CR2 publication-title: HortTechnology doi: 10.21273/HORTTECH.21.6.703 – volume: 59 start-page: 5044 year: 2011 ident: 220_CR7 publication-title: J. Agr. Food Chem. doi: 10.1021/jf2002238 – volume: 5 start-page: 1792 year: 2004 ident: 220_CR23 publication-title: Biomacromolecules doi: 10.1021/bm049881i – volume: 60 start-page: 97 year: 2005 ident: 220_CR25 publication-title: Biologia – volume: 486 start-page: 131 year: 2000 ident: 220_CR3 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(00)02258-4 – volume: 72 start-page: 248 year: 1976 ident: 220_CR17 publication-title: Anal. Biochem. doi: 10.1016/0003-2697(76)90527-3 – volume: 31 start-page: 426 year: 1959 ident: 220_CR19 publication-title: Anal. Chem. doi: 10.1021/ac60147a030 – volume: 56 start-page: 23 year: 2006 ident: 220_CR27 publication-title: J. Incl. Phenom. Macro. doi: 10.1007/s10847-006-9055-8 – volume: 81 start-page: 385 year: 2010 ident: 220_CR22 publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2010.02.036 – volume: 68 start-page: 4233 year: 2002 ident: 220_CR10 publication-title: 1.25/EC 3.2. 1.33) and its potential for cycloamylose production. Appl. Environ. Microb. – start-page: 1 volume-title: Sweet potato: An untapped food resource year: 1992 ident: 220_CR1 – volume: 20 start-page: 99 year: 1973 ident: 220_CR14 publication-title: J. Jpn. Soc Starch Sci. doi: 10.5458/jag1972.20.99 – volume: 102 start-page: 66 year: 2014 ident: 220_CR11 publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2013.10.065 – volume: 35 start-page: 683 year: 2012 ident: 220_CR5 publication-title: Arch. Pharm. Res. doi: 10.1007/s12272-012-0412-4 – volume: 26 start-page: 29 year: 2009 ident: 220_CR8 publication-title: PCC 6803 and its application to various corn starches. New Biotechnol. – volume: 33 start-page: 169 year: 2013 ident: 220_CR21 publication-title: Food Hydrocolloid. doi: 10.1016/j.foodhyd.2013.03.005 – volume: 22 start-page: 351 year: 1989 ident: 220_CR12 publication-title: Macromolecules doi: 10.1021/ma00191a064 – volume: 13 start-page: 351 year: 1970 ident: 220_CR28 publication-title: Carbohyd. Res. doi: 10.1016/S0008-6215(00)80592-3 – volume: 27 start-page: 301 year: 1998 ident: 220_CR13 publication-title: J. Cereal Sci. doi: 10.1006/jcrs.1997.0164 – volume: 97 start-page: 3467 year: 2013 ident: 220_CR24 publication-title: Appl. Microbiol. Biot. doi: 10.1007/s00253-012-4292-9 – volume: 11 start-page: 397 year: 2009 ident: 220_CR4 publication-title: Biomacromolecules doi: 10.1021/bm901109z – volume: 38 start-page: 345 year: 1986 ident: 220_CR29 publication-title: Starch-Stärke doi: 10.1002/star.19860381006 – volume: 34 start-page: 391 year: 2011 ident: 220_CR6 publication-title: Arch. Pharm. Res. doi: 10.1007/s12272-011-0306-x |
SSID | ssj0061274 |
Score | 2.1607776 |
Snippet | An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from
Pseudomonas... An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from sp.) and... An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from Pseudomonas... |
SourceID | nrf unpaywall pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1413 |
SubjectTerms | 4-alpha-glucanotransferase Chemistry Chemistry and Materials Science Cycloamylose Degree of polymerization Food Science Isoamylase Nutrition Polymerization Potatoes Pseudomonas Solanum tuberosum Starch sweet potato starch Sweet potatoes Thermus aquaticus 식품과학 |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtNAEB216QP0gfvFUNCCeKJyurHXXvuxQlQFiapCRCpP1nq9LlESO8S2qvAB_A8_wjcx4xsJ0KI-xcpOIo13ZveM9sxZgFcIQlTs-r4dmti3RZI6tkqNtGUYh0no4A4SUKPwhxP_eCzen3lnWzDqemFq0r6OJ8NsNh9mky81t3Ix1wcdT-zA56RxJ7Zhx6czpQHsjE9ODz9TYYVQAtFicwsdDx3bR3TQnWQ27XLcJ-oW0W6patrYi7azZfovmPk3W7I_Mt2FG1W2UKsLNZut7UpHt-Fj509DRpkOqzIe6m9_SD1ey-E7cKvFqOywGboLWya7B7tryoX34TvxQ-wV0d-YXulZruZY-ReGLRoFWZxtRp0rrLgwpmSLHDFtzhCJYlox4tqfs9PCVEmOWaAKNinqP8AdlaksYRi7y3lVMPWVhMg1Pgn754-aXq-yvKyxtlmi9QMYH7399ObYbq90sLUneWlr43omDHTKwxQLQY0TYkTqKASdjmcSM-KBkiMnxkdlTKwQEImEk-KPSj1phPsQBlmemcfAYtcducqX0lNa4LKtuApSIfEL6jZ2Ywt4N7mRbvXO6dqNWfRbqZniISKOG8VD5Fvwuv_JohH7uMr4JUZMNNWTiCS66fM8j6bLCAuRd9HIwU2fSwv2uoCK2sWhiEgCLxCIBLkFL_phTGs6q1GZyavaJgglolnvcpu6ywoxayivsMF6VyIuc9HmURPHvWsu1t-ucIQFciPCewPya3MEA7SWIG9j0oL9LhfW3Lv8je336fL_9_vkWtZP4aZDiV3TLPdgUC4r8wzhYhk_bxeIX7ysZxQ priority: 102 providerName: Unpaywall |
Title | High-yield cycloamylose production from sweet potato starch using Pseudomonas isoamylase and Thermus aquaticus 4-α-glucanotransferase |
URI | https://link.springer.com/article/10.1007/s10068-016-0220-6 https://www.ncbi.nlm.nih.gov/pubmed/30263424 https://www.proquest.com/docview/1880844390 https://www.proquest.com/docview/1888975145 https://www.proquest.com/docview/2000602597 https://www.proquest.com/docview/2114702337 https://pubmed.ncbi.nlm.nih.gov/PMC6049264 https://www.ncbi.nlm.nih.gov/pmc/articles/6049264 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002158956 |
UnpaywallVersion | submittedVersion |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Food Science and Biotechnology, 2016, 25(5), , pp.1413-1419 |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2092-6456 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061274 issn: 1226-7708 databaseCode: AFBBN dateStart: 20100201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2092-6456 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0061274 issn: 1226-7708 databaseCode: RPM dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2092-6456 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061274 issn: 1226-7708 databaseCode: AGYKE dateStart: 20100101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2092-6456 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061274 issn: 1226-7708 databaseCode: U2A dateStart: 20100201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbpwwELaazSHNoT_pH20auVVPjYgMGAzHVZQ0bdUoh6yUnCxjTLpaAtsFFG0foO_TF-kzdYYFutsmqXLZRTBYGns8_gbPfCbkHYAQFXtBYEcmDmyepK6tUiNsEcVRErmwgoRYKPzlODga8U9n_llbx1122e7dlmTjqZeK3ViAiVeYNIsxzxpZ9zE-GZD14YfzzwedA4Y1uyFfdgBZAHhkYbeZeV0jK8vRWj5Lr0Oa_yZM9rumm2SjzqdqfqWybGlhOnxITjuVFvkok726ivf097_YHu-o8yPyoAWqdLiwrMfknsm3yMZ-dz7cFtlcojJ8Qn5gwog9x3w4quc6K9TlPCtKQ6cLSlkYfoqlLLS8Mqai0wJAbkEBmsI8o5h8f0FPSlMnBUwLVdJx2TQASyxVeULBmGeXdUnVN2Qm13DF7V8_m3x7lRdVA77NDKSfktHhwen-kd2e8WBrX7DK1sbzTRTqlEUpRIYa9DU8dRWgUNc3iXFYqITjxnCpjIkVICSeMKQAUqkvDPeekUFe5OYFobHnOZ4KhPCV5uDHFVNhygXcwPJjL7YI64Za6pYAHc_hyOQf6mbsbolJb9jdMrDI-_6V6YL94zbht2A_cqLHEjm78f-ikJOZhMjkowSjdEImLLLdmZdsvUUpkRMv5AANmUXe9I9hOHHzRuWmqBuZMBIAb_2bZZqyKwCxkbhFBgJgAUDNA5nnC6vuVfMgIPe4yy0iVuy9F0C9Vp_k468NJ3nAkHkS3tztDHlJvZt7bLefPP_v35d3avsVue_ivGnyLrfJoJrV5jXgxyreaf3FTvNpD35H7hDujY5Phue_Aa-CauU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbtMwFLZYd1F2MWAw6BhgEFdMmZzEiZPLadro2I-46KRxZTmOM6p2SWkSTeUBeB9ehGfinDQJLWxDu2rUnFg69rH9Hfk7nwl5DyBERa7vW6GJfIvHiWOpxAhLhFEYhw7sIAEWCp-e-f1z_unCu6jruPOG7d4cSVYr9UKxG_OReIWkWcx5Vsgqt4OAd8jq3scvxwfNAgx7diW-bAOyAPDIguYw86ZGlrajlXSa3IQ0_yVMtqema6RbphM1u1bj8cLGdPiIDBqX5nyU0W5ZRLv6-19qj_f0-TFZr4Eq3ZtH1hPywKQbpLvf3A-3QdYWpAyfkh9IGLFmyIejeqbHmbqajbPc0MlcUhaGn2IpC82vjSnoJAOQm1GApjDPKJLvL-nn3JRxBtNC5XSYVw3AFktVGlMI5ulVmVP1DZXJNTxx69fPim-v0qyowLeZgvUzcn54MNjvW_UdD5b2BCssbVzPhIFOWJhAZqjBX8MTRwEKdTwTG5sFSthOBI_KmEgBQuIxQwkglXjCcHeTdNIsNS8IjVzXdpUvhKc0h3VcMRUkXMAfWH7sRj3CmqGWuhZAx3s4xvKPdDN2t0TSG3a39HvkQ_vJZK7-cZfxO4gfOdJDiZrd-HuZydFUQmZyJCEo7YCJHtluwkvWq0UuURMv4AANWY-8bV_DcOLhjUpNVlY2QSgA3nq321RlVwBiQ3GHDSTAAoCaCzbP51HduuZCQu5yh_eIWIr31gD9Wn6TDr9WmuQ-Q-VJ-HKnCeQF927vsZ128vy_f7fu1fYb0u0PTk_kydHZ8Uvy0ME5VHEwt0mnmJbmFWDJInpdrx2_AZI9ai0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwELVokSh9QFAuDRQwiCeqqE7ixMljVVi1XKo-sFLfLCdxyqpbJ81F1f4A_8OP8E3M5MauaIt42mgziWTPOHNGPnNMyDsAISr2gsCOdBzYPM1cW2Va2CKKozRyIYOE2Cj89Tg4nPJPp_5pf85pNbDdhy3JrqcBVZpMvVek2d5S4xsLkISFBFqsf9bIXQ6pGquvqbs_fIohe7cyzA5gDICRLBy2Na97xUpiWjNldh3m_Js6Oe6fbpKNxhRqcaXm86UUNXlIHvTYku53wfCI3NFmi2wcDEe6bZHNJfXBx-QHcjzsBVLYaLJI5rm6gOq90rToVGDBYxS7T2h1pXVNixxwaU4BTcLSoMiXP6MnlW7SHCJZVXRWtS-ArEiVSSnEX3nRVFRdoph4Alfc_vWzpcgrk9ctXtYlWD8h08nHbweHdn8sg534gtV2oj1fR2GSsSiDYi6BedQ8cxUAR9fXqXZYqITjxnCptI4VgBqeMlTtUZkvNPeeknWTG71NaOx5jqcCIXyVcPj0KqbCjAv4AzuGvdgibPCJTHrNcjw6Yy7_qC2jGyXy1NCNMrDI-_GRohPsuM34LThanicziTLb-HuWy_NSQjFxJCF6nJAJi-wMcSD7BV5JlLELOaA5ZpE3421wJ-63KKPzprUJIwGI1L_Zpu2UAtwZiVtsoGYVgK08sHnWhd84NA9qaI-73CJiJTBHAxzX6h0z-97KiAcMxSLhyd0hhJeGd_OM7Y5R_u_5ff5f735N7p18mMgvR8efX5D7Li7NljW5Q9brstEvAf3V8at2hf8G6o9Rsg |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtNAEB216QP0gfvFUNCCeKJyurHXXvuxQlQFiapCRCpP1nq9LlESO8S2qvAB_A8_wjcx4xsJ0KI-xcpOIo13ZveM9sxZgFcIQlTs-r4dmti3RZI6tkqNtGUYh0no4A4SUKPwhxP_eCzen3lnWzDqemFq0r6OJ8NsNh9mky81t3Ix1wcdT-zA56RxJ7Zhx6czpQHsjE9ODz9TYYVQAtFicwsdDx3bR3TQnWQ27XLcJ-oW0W6patrYi7azZfovmPk3W7I_Mt2FG1W2UKsLNZut7UpHt-Fj509DRpkOqzIe6m9_SD1ey-E7cKvFqOywGboLWya7B7tryoX34TvxQ-wV0d-YXulZruZY-ReGLRoFWZxtRp0rrLgwpmSLHDFtzhCJYlox4tqfs9PCVEmOWaAKNinqP8AdlaksYRi7y3lVMPWVhMg1Pgn754-aXq-yvKyxtlmi9QMYH7399ObYbq90sLUneWlr43omDHTKwxQLQY0TYkTqKASdjmcSM-KBkiMnxkdlTKwQEImEk-KPSj1phPsQBlmemcfAYtcducqX0lNa4LKtuApSIfEL6jZ2Ywt4N7mRbvXO6dqNWfRbqZniISKOG8VD5Fvwuv_JohH7uMr4JUZMNNWTiCS66fM8j6bLCAuRd9HIwU2fSwv2uoCK2sWhiEgCLxCIBLkFL_phTGs6q1GZyavaJgglolnvcpu6ywoxayivsMF6VyIuc9HmURPHvWsu1t-ucIQFciPCewPya3MEA7SWIG9j0oL9LhfW3Lv8je336fL_9_vkWtZP4aZDiV3TLPdgUC4r8wzhYhk_bxeIX7ysZxQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-yield+cycloamylose+production+from+sweet+potato+starch+using+Pseudomonas+isoamylase+and+Thermus+aquaticus+4-%CE%B1-glucanotransferase&rft.jtitle=Food+science+and+biotechnology&rft.au=Sun+Chu&rft.au=%ED%99%8D%EC%A0%95%EC%84%A0&rft.au=%EB%85%B8%EC%8B%A0%EC%A0%95&rft.au=%EB%B0%95%EC%A7%80%EC%98%81&rft.date=2016-10-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%8B%9D%ED%92%88%EA%B3%BC%ED%95%99%ED%9A%8C&rft.issn=1226-7708&rft.eissn=2092-6456&rft.spage=1413&rft.epage=1419&rft_id=info:doi/10.1007%2Fs10068-016-0220-6&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_1271807 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7708&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7708&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7708&client=summon |