基于风速升降特征的短期风电功率预测

为提高短期风电功率预测精度,提出了基于风速升降特征的短期风电功率预测方法。该方法分析风速上升或下降对风力发电的影响,根据风速升降特征,为风速添加标记值,增加训练样本维度,从而提高功率预测精度。用上海某风电场2014年9月至2015年9月数据对算法进行验证,并对比最小二乘支持向量机(LSSVM)、极限学习机(ELM)、遗传BP神经网络(GA-BP)三种方法的预测结果。实验结果表明,在风电功率预测中引入风速升降特征能够明显提高了模型的预测精度,适合风电场的短期功率预测。...

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 44; no. 19; pp. 56 - 62
Main Author 叶小岭 陈浩 郭晓杰 邓华 王雅晨
Format Journal Article
LanguageChinese
Published 南京信息工程大学信息与控制学院,江苏 南京 210044 2016
南京信息工程大学气象灾害预报预警与评估协同创新中心,江苏 南京 210044%南京信息工程大学信息与控制学院,江苏 南京,210044
Subjects
Online AccessGet full text
ISSN1674-3415
DOI10.7667/PSPC151812

Cover

More Information
Summary:为提高短期风电功率预测精度,提出了基于风速升降特征的短期风电功率预测方法。该方法分析风速上升或下降对风力发电的影响,根据风速升降特征,为风速添加标记值,增加训练样本维度,从而提高功率预测精度。用上海某风电场2014年9月至2015年9月数据对算法进行验证,并对比最小二乘支持向量机(LSSVM)、极限学习机(ELM)、遗传BP神经网络(GA-BP)三种方法的预测结果。实验结果表明,在风电功率预测中引入风速升降特征能够明显提高了模型的预测精度,适合风电场的短期功率预测。
Bibliography:In order to improve the accuracy of short-term wind power prediction, a short-term wind power prediction method based on UP-DOWN-features of wind speed is presented. By analyzing the change of output power caused by UP-DOWN-features, wind speed is labeled by the features in every moment to increase the training dimensions and then the prediction accuracy is improved. The data from a wind farm in Shanghai from September 2014 to September 2015 is used. By comparing the prediction results of Least Squares Support Vector Machine(LSSVM), Extreme Learning Machine(ELM), Genetic Algorithms-BP Neural Networks(GA-BP), the prediction accuracy of the model which has added the UP-DOWN-features will be enhanced, and experiments show that it is suitable for short-term wind power prediction.
short-term wind power prediction; UP-DOWN-features; LSSVM; ELM; GA-BP
YE Xiaoling1 2, CHEN Hao1, GUO Xiaojie1, DENG Hua1,2, WANG Yachen1(1. Nanjing University of Information Science & Technology, Nanjing 210044, China; 2. Collaborative Inn
ISSN:1674-3415
DOI:10.7667/PSPC151812