AtPUB19, a U-Box E3 Ubiquitin Ligase, Negatively Regulates Abscisic Acid and Drought Responses in Arabidopsis thaliana

Ubiquitination is an important protein post-translational modification, which is involved in various cellular processes in higher plants, and U-box E3 ligases play important roles in diverse functions in eukaryotes. Here, we describe the functions of Arabidopsis thaliana PUB19 (AtPUB19), which we de...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant Vol. 4; no. 6; pp. 938 - 946
Main Authors Liu, Yong-Chang, Wu, Yao-Rong, Huang, Xia-He, Sun, Jie, Xie, Qi
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 01.11.2011
Oxford University Press
Cell Press
Subjects
Online AccessGet full text
ISSN1674-2052
1752-9867
1752-9867
DOI10.1093/mp/ssr030

Cover

More Information
Summary:Ubiquitination is an important protein post-translational modification, which is involved in various cellular processes in higher plants, and U-box E3 ligases play important roles in diverse functions in eukaryotes. Here, we describe the functions of Arabidopsis thaliana PUB19 (AtPUB19), which we demonstrated in an in vitro assay to encode a U-box type E3 ubiquitin ligase. AtPUB19 was up-regulated by drought, salt, cold, and abscisic acid (ABA). Down-regulation of AtPUB19 led to hypersensitivity to ABA, enhanced ABA-induced stomatal closing, and enhanced drought tolerance, while AtPUB19 overexpression resulted in the reverse phenotypes. Molecular analysis showed that the expression levels of a number of ABA and stress marker genes were altered in both AtPUB19 overexpressing and atpub19-1 mutant plants. In summary, our data show that AtPUB19 negatively regulates ABA and drought responses in A. thaliana.
Bibliography:31-2013/Q
Ubiquitination is an important protein post-translational modification, which is involved in various cellular processes in higher plants, and U-box E3 ligases play important roles in diverse functions in eukaryotes. Here, we describe the functions ofArabidopsis thaliana PUB19 (AtPUB19), which we demonstrated in an in vitro assay to encode a U-box type E3 ubiquitin ligase. AtPUB19 was up-regulated by drought, salt, cold, and abscisic acid (ABA). Down-regulation of AtPUB19 led to hypersensitivity to ABA, enhanced ABA-induced stomatal closing, and enhanced drought tolerance, while AtPUB19 overexpression resulted in the reverse phenotypes. Molecular analysis showed that the expression levels of a number of ABA and stress marker genes were altered in both AtPUB19 overexpressing and atpub19-1 mutant plants. In summary, our data show that AtPUB19 negatively regulates ABA and drought responses in A. thaliana.
U-box; ABA; drought stress; Arabidopsis.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ISSN:1674-2052
1752-9867
1752-9867
DOI:10.1093/mp/ssr030