Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae

•Thermal decomposition characteristics of microalgae Chlorella pyrenoidosa and Spirulina platensis.•Characteristic parameters of TG–DTG curves of the samples were calculated.•Apparent activation energies for decomposition of the two microalgae were determined.•Reaction mechanisms for decomposition o...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 150; pp. 139 - 148
Main Authors Gai, Chao, Zhang, Yuanhui, Chen, Wan-Ting, Zhang, Peng, Dong, Yuping
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.12.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0960-8524
1873-2976
1873-2976
DOI10.1016/j.biortech.2013.09.137

Cover

Abstract •Thermal decomposition characteristics of microalgae Chlorella pyrenoidosa and Spirulina platensis.•Characteristic parameters of TG–DTG curves of the samples were calculated.•Apparent activation energies for decomposition of the two microalgae were determined.•Reaction mechanisms for decomposition of the two microalgae were evaluated. The thermal decomposition behavior of two microalgae, Chlorella pyrenoidosa (CP) and Spirulina platensis (SP), were investigated on a thermogravimetric analyzer under non-isothermal conditions. Iso-conversional Vyazovkin approach was used to calculate the kinetic parameters, and the universal integral method was applied to evaluate the most probable mechanisms for thermal degradation of the two feedstocks. The differential equations deduced from the models were compared with experimental data. For the range of conversion fraction investigated (20–80%), the thermal decomposition process of CP could be described by the reaction order model (F3), which can be calculated by the integral equation of G(α)=[(1−α)−2−1]/2. And the apparent activation energy was in the range of 58.85–114.5kJ/mol. As for SP, it can be described by the reaction order model (F2), which can be calculated by the integral equation of G(α)=(1−α)−1−1, and the range of apparent activation energy was 74.35–140.1kJ/mol.
AbstractList The thermal decomposition behavior of two microalgae, Chlorella pyrenoidosa (CP) and Spirulina platensis (SP), were investigated on a thermogravimetric analyzer under non-isothermal conditions. Iso-conversional Vyazovkin approach was used to calculate the kinetic parameters, and the universal integral method was applied to evaluate the most probable mechanisms for thermal degradation of the two feedstocks. The differential equations deduced from the models were compared with experimental data. For the range of conversion fraction investigated (20-80%), the thermal decomposition process of CP could be described by the reaction order model (F3), which can be calculated by the integral equation of G( alpha ) = [(1 - alpha )-2 - 1]/2. And the apparent activation energy was in the range of 58.85-114.5 kJ/mol. As for SP, it can be described by the reaction order model (F2), which can be calculated by the integral equation of G( alpha ) = (1 - alpha )-1 - 1, and the range of apparent activation energy was 74.35-140.1 kJ/mol.
The thermal decomposition behavior of two microalgae, Chlorella pyrenoidosa (CP) and Spirulina platensis (SP), were investigated on a thermogravimetric analyzer under non-isothermal conditions. Iso-conversional Vyazovkin approach was used to calculate the kinetic parameters, and the universal integral method was applied to evaluate the most probable mechanisms for thermal degradation of the two feedstocks. The differential equations deduced from the models were compared with experimental data. For the range of conversion fraction investigated (20–80%), the thermal decomposition process of CP could be described by the reaction order model (F3), which can be calculated by the integral equation of G(α)=[(1−α)−2−1]/2. And the apparent activation energy was in the range of 58.85–114.5kJ/mol. As for SP, it can be described by the reaction order model (F2), which can be calculated by the integral equation of G(α)=(1−α)−1−1, and the range of apparent activation energy was 74.35–140.1kJ/mol.
•Thermal decomposition characteristics of microalgae Chlorella pyrenoidosa and Spirulina platensis.•Characteristic parameters of TG–DTG curves of the samples were calculated.•Apparent activation energies for decomposition of the two microalgae were determined.•Reaction mechanisms for decomposition of the two microalgae were evaluated. The thermal decomposition behavior of two microalgae, Chlorella pyrenoidosa (CP) and Spirulina platensis (SP), were investigated on a thermogravimetric analyzer under non-isothermal conditions. Iso-conversional Vyazovkin approach was used to calculate the kinetic parameters, and the universal integral method was applied to evaluate the most probable mechanisms for thermal degradation of the two feedstocks. The differential equations deduced from the models were compared with experimental data. For the range of conversion fraction investigated (20–80%), the thermal decomposition process of CP could be described by the reaction order model (F3), which can be calculated by the integral equation of G(α)=[(1−α)−2−1]/2. And the apparent activation energy was in the range of 58.85–114.5kJ/mol. As for SP, it can be described by the reaction order model (F2), which can be calculated by the integral equation of G(α)=(1−α)−1−1, and the range of apparent activation energy was 74.35–140.1kJ/mol.
The thermal decomposition behavior of two microalgae, Chlorella pyrenoidosa (CP) and Spirulina platensis (SP), were investigated on a thermogravimetric analyzer under non-isothermal conditions. Iso-conversional Vyazovkin approach was used to calculate the kinetic parameters, and the universal integral method was applied to evaluate the most probable mechanisms for thermal degradation of the two feedstocks. The differential equations deduced from the models were compared with experimental data. For the range of conversion fraction investigated (20-80%), the thermal decomposition process of CP could be described by the reaction order model (F3), which can be calculated by the integral equation of G(α) = [(1 - α)(-2) - 1]/2. And the apparent activation energy was in the range of 58.85-114.5 kJ/mol. As for SP, it can be described by the reaction order model (F2), which can be calculated by the integral equation of G(α) = (1 - α)(-1) - 1, and the range of apparent activation energy was 74.35-140.1 kJ/mol.
The thermal decomposition behavior of two microalgae, Chlorella pyrenoidosa (CP) and Spirulina platensis (SP), were investigated on a thermogravimetric analyzer under non-isothermal conditions. Iso-conversional Vyazovkin approach was used to calculate the kinetic parameters, and the universal integral method was applied to evaluate the most probable mechanisms for thermal degradation of the two feedstocks. The differential equations deduced from the models were compared with experimental data. For the range of conversion fraction investigated (20-80%), the thermal decomposition process of CP could be described by the reaction order model (F3), which can be calculated by the integral equation of G(α) = [(1 - α)(-2) - 1]/2. And the apparent activation energy was in the range of 58.85-114.5 kJ/mol. As for SP, it can be described by the reaction order model (F2), which can be calculated by the integral equation of G(α) = (1 - α)(-1) - 1, and the range of apparent activation energy was 74.35-140.1 kJ/mol.The thermal decomposition behavior of two microalgae, Chlorella pyrenoidosa (CP) and Spirulina platensis (SP), were investigated on a thermogravimetric analyzer under non-isothermal conditions. Iso-conversional Vyazovkin approach was used to calculate the kinetic parameters, and the universal integral method was applied to evaluate the most probable mechanisms for thermal degradation of the two feedstocks. The differential equations deduced from the models were compared with experimental data. For the range of conversion fraction investigated (20-80%), the thermal decomposition process of CP could be described by the reaction order model (F3), which can be calculated by the integral equation of G(α) = [(1 - α)(-2) - 1]/2. And the apparent activation energy was in the range of 58.85-114.5 kJ/mol. As for SP, it can be described by the reaction order model (F2), which can be calculated by the integral equation of G(α) = (1 - α)(-1) - 1, and the range of apparent activation energy was 74.35-140.1 kJ/mol.
Author Chen, Wan-Ting
Zhang, Peng
Zhang, Yuanhui
Gai, Chao
Dong, Yuping
Author_xml – sequence: 1
  givenname: Chao
  surname: Gai
  fullname: Gai, Chao
  organization: Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Department of Mechanical Engineering, Shandong University, Jinan 250061, PR China
– sequence: 2
  givenname: Yuanhui
  surname: Zhang
  fullname: Zhang, Yuanhui
  email: yzhang1@illinois.edu
  organization: Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
– sequence: 3
  givenname: Wan-Ting
  surname: Chen
  fullname: Chen, Wan-Ting
  organization: Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
– sequence: 4
  givenname: Peng
  orcidid: 0000-0003-4988-1876
  surname: Zhang
  fullname: Zhang, Peng
  organization: Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
– sequence: 5
  givenname: Yuping
  surname: Dong
  fullname: Dong, Yuping
  organization: Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Department of Mechanical Engineering, Shandong University, Jinan 250061, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28058989$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24161552$$D View this record in MEDLINE/PubMed
BookMark eNqNks1qGzEYRUVJaZy0rxBmU-hmppJGv9BFS-gfBLpJ1-IbzWdb7szIleSEvH3HsU2hG3clLc65At17RS6mOCEhN4w2jDL1ftN0IaaCft1wytqG2oa1-gVZMKPbmlutLsiCWkVrI7m4JFc5byilLdP8FbnkgikmJV-Q1f0a0xhXCR7CiCUFX8HUV7_ChOX5DsNTDrmKy6rsSRiqHn0ctzGHEuJU-TUk8AVTyLPwDA7xsR7CNvTVGHyKMKwAX5OXSxgyvjme1-Tnl8_3t9_qux9fv99-uqu9VG2pQShtqIXWCwu6BdXLjvmOg1LeYK-MVcCklrrzlDPRccnQLNveUMo0Gt9ek3eH3G2Kv3eYixtD9jgMMGHcZcc0tdq0TMjzqGRKS2kFP48KSyXXzPxHqlBCUmq4mtGbI7rrRuzdNoUR0pM7tTMDb48AZA_DMsHkQ_7LGSqNNXbmPhy4-bdzTrh0PhTY11MShMEx6vajcRt3Go3bj8ZR6-bRzLr6Rz-9cFb8eBBxbvQhYHLZB5w89iGhL66P4VzEH3e034E
CitedBy_id crossref_primary_10_1016_j_biortech_2017_06_087
crossref_primary_10_1016_j_biortech_2015_09_059
crossref_primary_10_1016_j_energy_2016_12_040
crossref_primary_10_1007_s13399_014_0145_3
crossref_primary_10_1016_j_biortech_2018_01_149
crossref_primary_10_1007_s13399_024_05768_y
crossref_primary_10_1007_s12649_021_01497_9
crossref_primary_10_1177_0734242X15574590
crossref_primary_10_1016_j_matpr_2023_05_362
crossref_primary_10_1039_C5RA25065J
crossref_primary_10_1016_j_enconman_2016_10_077
crossref_primary_10_1016_j_biortech_2014_10_109
crossref_primary_10_1016_j_biortech_2016_07_042
crossref_primary_10_1016_j_enconman_2018_01_036
crossref_primary_10_1016_j_clcb_2022_100005
crossref_primary_10_1007_s40095_019_00323_2
crossref_primary_10_3389_fmars_2022_1047284
crossref_primary_10_1016_j_cjche_2014_07_005
crossref_primary_10_1021_acs_iecr_6b00490
crossref_primary_10_2139_ssrn_3863036
crossref_primary_10_3390_polym15193934
crossref_primary_10_1016_j_algal_2018_101399
crossref_primary_10_1007_s11630_023_1797_8
crossref_primary_10_1016_j_algal_2022_102782
crossref_primary_10_1016_j_renene_2019_07_135
crossref_primary_10_1016_j_renene_2019_07_096
crossref_primary_10_1021_acsomega_0c06001
crossref_primary_10_1016_j_envres_2021_112300
crossref_primary_10_1016_j_energy_2021_120752
crossref_primary_10_3390_en16104140
crossref_primary_10_1016_j_ijhydene_2020_02_052
crossref_primary_10_1016_j_joei_2020_10_010
crossref_primary_10_1515_ijcre_2014_0185
crossref_primary_10_1002_jctb_6702
crossref_primary_10_1016_j_renene_2024_120928
crossref_primary_10_1007_s13399_023_04175_z
crossref_primary_10_1016_j_matpr_2022_05_538
crossref_primary_10_1016_j_algal_2023_103043
crossref_primary_10_1016_j_algal_2018_03_005
crossref_primary_10_3390_en14185789
crossref_primary_10_32604_EE_2021_016082
crossref_primary_10_1016_j_biortech_2017_07_144
crossref_primary_10_1016_j_biortech_2015_03_081
crossref_primary_10_1007_s10973_020_10330_9
crossref_primary_10_1016_j_biortech_2018_02_126
crossref_primary_10_1016_j_biortech_2017_02_119
crossref_primary_10_1016_j_biortech_2019_121385
crossref_primary_10_1007_s13399_024_06242_5
crossref_primary_10_1016_j_joei_2025_102026
crossref_primary_10_1016_j_renene_2020_11_039
crossref_primary_10_1021_acs_iecr_9b00648
crossref_primary_10_1016_j_energy_2016_07_107
crossref_primary_10_1016_j_enconman_2015_09_038
crossref_primary_10_1016_j_ijbiomac_2024_133148
crossref_primary_10_1016_j_biortech_2023_129567
crossref_primary_10_1038_s41598_019_42696_8
crossref_primary_10_3390_en14061703
crossref_primary_10_1016_j_biortech_2014_08_064
crossref_primary_10_1016_j_biortech_2021_126258
crossref_primary_10_1016_j_biombioe_2020_105946
crossref_primary_10_1016_j_biortech_2014_10_077
crossref_primary_10_1021_ef501386g
crossref_primary_10_1016_j_algal_2016_06_005
crossref_primary_10_3390_en14113013
crossref_primary_10_1016_j_biortech_2014_06_111
crossref_primary_10_1016_j_biortech_2014_10_118
crossref_primary_10_1016_j_energy_2021_120133
crossref_primary_10_3390_app10238706
crossref_primary_10_1016_j_indcrop_2020_112555
crossref_primary_10_1016_j_jece_2022_107514
crossref_primary_10_1007_s12649_016_9568_3
crossref_primary_10_1007_s13399_022_02723_7
crossref_primary_10_1016_j_algal_2025_103919
crossref_primary_10_1007_s10973_021_10616_6
crossref_primary_10_1016_j_biortech_2017_06_041
crossref_primary_10_1007_s12155_020_10185_w
crossref_primary_10_1007_s11356_017_9009_2
crossref_primary_10_1007_s11630_019_1140_6
crossref_primary_10_1016_j_tca_2018_01_001
crossref_primary_10_1016_j_energy_2019_02_079
crossref_primary_10_1016_j_biortech_2015_01_066
crossref_primary_10_1016_j_algal_2021_102601
crossref_primary_10_1016_j_algal_2021_102325
crossref_primary_10_1016_j_biortech_2014_11_061
crossref_primary_10_1016_j_fuel_2015_08_030
crossref_primary_10_1016_j_enconman_2020_113165
crossref_primary_10_1016_j_algal_2015_08_003
crossref_primary_10_1016_j_ceramint_2019_09_015
crossref_primary_10_1016_j_ijhydene_2015_04_098
crossref_primary_10_1016_j_grets_2024_100077
crossref_primary_10_1016_j_enconman_2020_113609
crossref_primary_10_1016_j_renene_2023_02_015
crossref_primary_10_1007_s13399_019_00469_3
crossref_primary_10_1016_j_envres_2022_113532
crossref_primary_10_1016_j_algal_2014_08_010
crossref_primary_10_1016_j_renene_2020_05_069
crossref_primary_10_1016_j_biortech_2015_08_069
crossref_primary_10_1016_j_enconman_2015_05_029
crossref_primary_10_1016_j_algal_2020_102031
crossref_primary_10_1016_j_energy_2015_04_078
crossref_primary_10_1016_j_heliyon_2023_e17236
crossref_primary_10_1016_j_biortech_2019_121971
crossref_primary_10_1080_17597269_2019_1642642
crossref_primary_10_1007_s10068_015_0212_y
crossref_primary_10_3390_en12183509
crossref_primary_10_1016_j_algal_2019_101601
crossref_primary_10_1016_j_biortech_2021_125992
crossref_primary_10_1016_j_algal_2024_103885
crossref_primary_10_1016_j_jclepro_2018_10_040
crossref_primary_10_1039_C9SE00114J
crossref_primary_10_1007_s40430_018_1356_5
crossref_primary_10_1007_s10811_021_02437_9
crossref_primary_10_1016_j_jaap_2017_08_007
crossref_primary_10_1016_j_enconman_2015_02_056
crossref_primary_10_1016_j_energy_2022_124388
crossref_primary_10_1016_j_carbpol_2018_07_095
crossref_primary_10_1016_j_energy_2019_116030
crossref_primary_10_1016_j_fuel_2017_11_046
crossref_primary_10_1007_s10973_017_6734_1
crossref_primary_10_1016_j_algal_2018_04_007
crossref_primary_10_1016_j_algal_2016_11_011
crossref_primary_10_1016_j_rser_2015_05_076
crossref_primary_10_1007_s10973_015_5126_7
crossref_primary_10_1007_s10973_017_6617_5
crossref_primary_10_1016_j_biortech_2016_09_022
crossref_primary_10_1016_j_biortech_2014_07_077
crossref_primary_10_1021_acs_energyfuels_6b03468
crossref_primary_10_1039_D0TC03781H
crossref_primary_10_1080_15567036_2020_1834645
crossref_primary_10_1016_S1872_5805_22_60597_3
crossref_primary_10_1021_acs_energyfuels_9b03156
crossref_primary_10_1016_j_biortech_2024_131171
crossref_primary_10_1016_j_jece_2021_107011
crossref_primary_10_1016_j_cej_2021_133536
crossref_primary_10_1016_j_jiec_2022_12_003
crossref_primary_10_1021_acs_est_5b00652
crossref_primary_10_1016_j_biortech_2014_07_076
crossref_primary_10_1016_j_jhazmat_2018_11_026
crossref_primary_10_1016_j_fuel_2024_131156
crossref_primary_10_1016_j_jece_2018_10_025
Cites_doi 10.1016/S0378-3820(99)00064-8
10.1016/j.biortech.2013.04.121
10.1007/BF01225712
10.1016/j.chemosphere.2006.01.002
10.1016/S0040-6031(00)00443-3
10.1039/c1ee01541a
10.1016/j.biortech.2009.08.020
10.1016/j.biortech.2011.01.031
10.1016/0016-2361(95)00001-L
10.1016/j.apenergy.2012.08.039
10.1021/ie202799e
10.1023/A:1008153831875
10.1039/c2ee22784c
10.1016/j.biortech.2012.11.045
10.1016/j.biortech.2011.02.060
10.1016/j.biombioe.2011.01.011
10.1016/j.biortech.2013.03.191
10.1016/j.biortech.2009.03.002
10.1021/bm0056310
10.1016/S0960-8524(01)00072-4
10.1080/10408399109527556
10.1016/j.biotechadv.2006.11.002
10.1080/014423598230108
10.1016/j.jaap.2011.01.004
10.1016/j.tca.2011.12.007
10.1016/j.biombioe.2012.12.038
10.1016/0165-2370(91)80036-8
10.1016/j.biortech.2013.01.076
10.1016/j.apenergy.2011.12.056
10.1002/(SICI)1096-987X(199702)18:3<393::AID-JCC9>3.0.CO;2-P
10.1016/j.biombioe.2007.11.004
10.1016/j.biombioe.2012.11.011
10.1016/j.biortech.2012.10.043
10.1016/j.biortech.2012.01.001
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2015 INIST-CNRS
Copyright © 2013 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright © 2013 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
7QO
8FD
F1W
FR3
H95
H98
L.G
M7N
P64
7SU
7TB
C1K
KR7
DOI 10.1016/j.biortech.2013.09.137
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Biotechnology Research Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Environmental Sciences and Pollution Management
Civil Engineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Civil Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 148
ExternalDocumentID 24161552
28058989
10_1016_j_biortech_2013_09_137
S0960852413015794
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ACLOT
~HD
7S9
L.6
7QO
8FD
F1W
FR3
H95
H98
L.G
M7N
P64
7SU
7TB
C1K
KR7
ID FETCH-LOGICAL-c563t-a467809a3c49a73a6d5b1cb2a66c8ed6896a15757bc0214b251e8f3d80017e8c3
IEDL.DBID AIKHN
ISSN 0960-8524
1873-2976
IngestDate Sun Sep 28 09:53:35 EDT 2025
Sun Sep 28 07:17:07 EDT 2025
Fri Sep 05 04:25:09 EDT 2025
Sun Sep 28 12:34:36 EDT 2025
Mon Jul 21 05:55:53 EDT 2025
Wed Apr 02 07:25:08 EDT 2025
Thu Apr 24 23:07:01 EDT 2025
Tue Jul 01 02:06:19 EDT 2025
Fri Feb 23 02:34:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Chlorella
Spirulina
Kinetic
Thermogravimetric
Apparent activation energy
Thermal characteristic
Thermal decomposition
Algae
Thermogravimetry
Lipids
Chlorophyceae
Chlorophyta
Cyanobacteria
Bacteria
Alga
Kinetics
Microorganism
Activation energy
Language English
License CC BY 4.0
Copyright © 2013 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-a467809a3c49a73a6d5b1cb2a66c8ed6896a15757bc0214b251e8f3d80017e8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4988-1876
PMID 24161552
PQID 1464500826
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1709783145
proquest_miscellaneous_1516755942
proquest_miscellaneous_1490527185
proquest_miscellaneous_1464500826
pubmed_primary_24161552
pascalfrancis_primary_28058989
crossref_citationtrail_10_1016_j_biortech_2013_09_137
crossref_primary_10_1016_j_biortech_2013_09_137
elsevier_sciencedirect_doi_10_1016_j_biortech_2013_09_137
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Wang, Li, Zhu, Xiao (b0150) 2013; 129
Anastasakis, Ross (b0015) 2011; 102
Kay (b0065) 1991; 30
Fang, Jia, Yin (b0050) 2013; 48
Vyazovkin, Wight (b0140) 1998; 17
Zhang, Chen, Zhang, Luo, Zhang (b0170) 2013; 133
Aboyade, Carrier, Meyer, Knoetze, Görgens (b0005) 2012; 530
Brandenberger, Matzenberger, Vogel, Ludwig (b0025) 2013; 51
Zou, Wu, Yang, Li, Tong (b0175) 2010; 101
Becker (b0020) 2007; 25
Slopiecka, Bartocci, Fantozzi (b0120) 2012; 97
Olafsson, Bryan (b0090) 1970; 5
Brown, Maciejewski, Vyazovkin, Nomen, Sempere, Burnham (b0035) 2000; 355
Jaber, Probert (b0055) 2000; 63
Vinu, Broadbelt (b0135) 2012; 5
Yang, Jiang (b0160) 2009; 100
Liu, Lim, Wang, Yan, Mahakhant (b0085) 2012; 51
Agrawal, Chakraborty (b0010) 2013; 128
Sanchez-Silva, López-González, Villaseňor, Sánchez, Valverde (b0115) 2012; 109
Bridgwater (b0030) 1995; 74
Yu, Zhang, Schideman, Funk, Wang (b0165) 2011; 4
Persenaire, Alexandre, Degée, Dubois (b0105) 2001; 2
Rizzo, Prussi, Bettucci, Libelli, Chiaramonti (b0110) 2013; 102
Kumar, Wang, Jones, Hanna (b0070) 2008; 32
White, James Catallo, Legendre (b0155) 2011; 91
Julien, Chornet, Tiwan, Overend (b0060) 1991; 19
Thipkhunthod, Meeyoo, Rangsunvigit, Kitiyanan, Siemanond, Rirksomboon (b0125) 2006; 64
Vyazovkin (b0145) 1997; 18
Li, Zhao, Fu, Shao, Qin (b0080) 2013; 140
United States Environmental Protection Agency (EPA), 2012. Renewable Fuel Standard (RFS), http://www.epa.gov/otaq/fuels/renewablefuels/index.htm, (accessed 2.03.2012.).
Damartzis, Vamvuka, Sfakiotakis, Zabaniotou (b0045) 2011; 102
Peng, Wu, Tu (b0095) 2001; 13
Peng, Wu, Tu, Zhao (b0100) 2001; 80
Li, Chen, Zhang, Ye, Xing (b0075) 2011; 35
Chutia, Kataki, Bhaskar (b0040) 2013; 139
Vyazovkin (10.1016/j.biortech.2013.09.137_b0140) 1998; 17
Persenaire (10.1016/j.biortech.2013.09.137_b0105) 2001; 2
Slopiecka (10.1016/j.biortech.2013.09.137_b0120) 2012; 97
10.1016/j.biortech.2013.09.137_b0130
Wang (10.1016/j.biortech.2013.09.137_b0150) 2013; 129
Vinu (10.1016/j.biortech.2013.09.137_b0135) 2012; 5
Bridgwater (10.1016/j.biortech.2013.09.137_b0030) 1995; 74
White (10.1016/j.biortech.2013.09.137_b0155) 2011; 91
Liu (10.1016/j.biortech.2013.09.137_b0085) 2012; 51
Julien (10.1016/j.biortech.2013.09.137_b0060) 1991; 19
Olafsson (10.1016/j.biortech.2013.09.137_b0090) 1970; 5
Thipkhunthod (10.1016/j.biortech.2013.09.137_b0125) 2006; 64
Brandenberger (10.1016/j.biortech.2013.09.137_b0025) 2013; 51
Zou (10.1016/j.biortech.2013.09.137_b0175) 2010; 101
Kumar (10.1016/j.biortech.2013.09.137_b0070) 2008; 32
Brown (10.1016/j.biortech.2013.09.137_b0035) 2000; 355
Yu (10.1016/j.biortech.2013.09.137_b0165) 2011; 4
Fang (10.1016/j.biortech.2013.09.137_b0050) 2013; 48
Chutia (10.1016/j.biortech.2013.09.137_b0040) 2013; 139
Vyazovkin (10.1016/j.biortech.2013.09.137_b0145) 1997; 18
Damartzis (10.1016/j.biortech.2013.09.137_b0045) 2011; 102
Yang (10.1016/j.biortech.2013.09.137_b0160) 2009; 100
Kay (10.1016/j.biortech.2013.09.137_b0065) 1991; 30
Li (10.1016/j.biortech.2013.09.137_b0080) 2013; 140
Aboyade (10.1016/j.biortech.2013.09.137_b0005) 2012; 530
Rizzo (10.1016/j.biortech.2013.09.137_b0110) 2013; 102
Zhang (10.1016/j.biortech.2013.09.137_b0170) 2013; 133
Becker (10.1016/j.biortech.2013.09.137_b0020) 2007; 25
Peng (10.1016/j.biortech.2013.09.137_b0100) 2001; 80
Agrawal (10.1016/j.biortech.2013.09.137_b0010) 2013; 128
Anastasakis (10.1016/j.biortech.2013.09.137_b0015) 2011; 102
Li (10.1016/j.biortech.2013.09.137_b0075) 2011; 35
Peng (10.1016/j.biortech.2013.09.137_b0095) 2001; 13
Sanchez-Silva (10.1016/j.biortech.2013.09.137_b0115) 2012; 109
Jaber (10.1016/j.biortech.2013.09.137_b0055) 2000; 63
References_xml – volume: 17
  start-page: 407
  year: 1998
  end-page: 433
  ident: b0140
  article-title: Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids
  publication-title: Int. Rev. Phys. Chem.
– volume: 101
  start-page: 359
  year: 2010
  end-page: 397
  ident: b0175
  article-title: Pyrolysis characteristics and kinetics of the marine microalgae
  publication-title: Bioresour. Technol.
– volume: 80
  start-page: 1
  year: 2001
  end-page: 7
  ident: b0100
  article-title: Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis
  publication-title: Bioresour. Technol.
– volume: 13
  start-page: 5
  year: 2001
  end-page: 12
  ident: b0095
  article-title: Pyrolytic characteristics of heterotrophic chlorella protothecoides for renewable bio-fuel production
  publication-title: J. Appl. Phycol.
– volume: 109
  start-page: 163
  year: 2012
  end-page: 172
  ident: b0115
  article-title: Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis
  publication-title: Bioresour. Technol.
– volume: 128
  start-page: 72
  year: 2013
  end-page: 80
  ident: b0010
  article-title: A kinetic study of pyrolysis and combustion of microalgae
  publication-title: Bioresour. Technol.
– volume: 139
  start-page: 66
  year: 2013
  end-page: 72
  ident: b0040
  article-title: Thermogravimetric and decomposition kinetic studies of
  publication-title: Bioresour. Technol.
– volume: 102
  start-page: 6230
  year: 2011
  end-page: 6238
  ident: b0045
  article-title: Thermal degradation studies and kinetic modeling of cardoon (
  publication-title: Bioresour. Technol.
– volume: 32
  start-page: 460
  year: 2008
  end-page: 467
  ident: b0070
  article-title: Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock
  publication-title: Biomass Bioenergy
– volume: 48
  start-page: 43
  year: 2013
  end-page: 50
  ident: b0050
  article-title: A weighted average global process model based on two-stage kinetic scheme for biomass combustion
  publication-title: Biomass Bioenergy
– volume: 4
  start-page: 4587
  year: 2011
  end-page: 4595
  ident: b0165
  article-title: Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae
  publication-title: Energy Environ. Sci.
– volume: 51
  start-page: 10320
  year: 2012
  end-page: 10326
  ident: b0085
  article-title: Investigation on pyrolysis of microalgae
  publication-title: Ind. Eng. Chem. Res.
– volume: 97
  start-page: 491
  year: 2012
  end-page: 497
  ident: b0120
  article-title: Thermogravimetric analysis and kinetic study of poplar wood pyrolysis
  publication-title: Appl. Energy
– volume: 530
  start-page: 95
  year: 2012
  end-page: 106
  ident: b0005
  article-title: Model fitting kinetic analysis and characterisation of the devolatilization of coal blends with corn and sugarcane residues
  publication-title: Thermochim. Acta
– volume: 19
  start-page: 81
  year: 1991
  end-page: 104
  ident: b0060
  article-title: Vacuum pyrolysis of cellulose: Fourier transform infrared characterization of solid residues, product distribution and correlations
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 133
  start-page: 389
  year: 2013
  end-page: 397
  ident: b0170
  article-title: Hydrothermal liquefaction of
  publication-title: Bioresour. Technol.
– volume: 102
  start-page: 4876
  year: 2011
  end-page: 4883
  ident: b0015
  article-title: Hydrothermal liquefaction of the brown macro-alga
  publication-title: Bioresour. Technol.
– volume: 51
  start-page: 26
  year: 2013
  end-page: 34
  ident: b0025
  article-title: Production synthetic natural gas from microalgae via supercritical water gasification: a techno-economic sensitivity analysis
  publication-title: Biomass Bioenergy
– volume: 100
  start-page: 3663
  year: 2009
  end-page: 3668
  ident: b0160
  article-title: Kinetic studies of overlapping pyrolysis reactions in industrial waste activated sludge
  publication-title: Bioresour. Technol.
– volume: 74
  start-page: 631
  year: 1995
  end-page: 653
  ident: b0030
  article-title: The technical and economic feasibility of biomass gasification for power generation
  publication-title: Fuel
– volume: 5
  start-page: 9808
  year: 2012
  end-page: 9826
  ident: b0135
  article-title: A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition
  publication-title: Energy Environ. Sci.
– volume: 63
  start-page: 57
  year: 2000
  end-page: 70
  ident: b0055
  article-title: Non-isothermal thermogravimetry and decomposition kinetics of two Jordanian oil shales under different processing conditions
  publication-title: Fuel Process. Technol.
– volume: 18
  start-page: 393
  year: 1997
  end-page: 402
  ident: b0145
  article-title: Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature
  publication-title: J. Comput. Chem.
– volume: 91
  start-page: 1
  year: 2011
  end-page: 33
  ident: b0155
  article-title: Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 35
  start-page: 1765
  year: 2011
  end-page: 1772
  ident: b0075
  article-title: Pyrolytic characteristics and kinetic studies of three kinds of red algae
  publication-title: Biomass Bioenergy
– volume: 355
  start-page: 125
  year: 2000
  end-page: 143
  ident: b0035
  article-title: Computational aspects of kinetic analysis. Part A: the ICTAC kinetics project-data, methods, and results
  publication-title: Thermochim. Acta
– volume: 129
  start-page: 1
  year: 2013
  end-page: 6
  ident: b0150
  article-title: Nitrogen removal of ramie stalk treated by acid wastewater combined with
  publication-title: Bioresour. Technol.
– volume: 140
  start-page: 152
  year: 2013
  end-page: 157
  ident: b0080
  article-title: Thermogravimetric and kinetic analysis of
  publication-title: Bioresour. Technol.
– volume: 102
  start-page: 24
  year: 2013
  end-page: 31
  ident: b0110
  article-title: Characterization of microalga chlorella as a fuel and its thermogravimetric behavior
  publication-title: Appl. Energy
– volume: 30
  start-page: 555
  year: 1991
  end-page: 573
  ident: b0065
  article-title: Microalgae as food and supplement
  publication-title: Crit. Rev. Food Sci.
– volume: 2
  start-page: 288
  year: 2001
  end-page: 294
  ident: b0105
  article-title: Mechanisms and kinetics of thermal degradation of Poly(ε-caprolactone)
  publication-title: Biomacromolecules
– volume: 64
  start-page: 955
  year: 2006
  end-page: 962
  ident: b0125
  article-title: Pyrolytic characteristics of sewage sludge
  publication-title: Chemosphere
– reference: United States Environmental Protection Agency (EPA), 2012. Renewable Fuel Standard (RFS), http://www.epa.gov/otaq/fuels/renewablefuels/index.htm, (accessed 2.03.2012.).
– volume: 25
  start-page: 207
  year: 2007
  end-page: 210
  ident: b0020
  article-title: Micro-algae as a source of protein
  publication-title: Biotechnol. Adv.
– volume: 5
  start-page: 871
  year: 1970
  end-page: 878
  ident: b0090
  article-title: Evaluation of thermal dcomposition temperatures of amion acids by differential enthalpie analysis
  publication-title: Mikrochim. Acta
– volume: 63
  start-page: 57
  year: 2000
  ident: 10.1016/j.biortech.2013.09.137_b0055
  article-title: Non-isothermal thermogravimetry and decomposition kinetics of two Jordanian oil shales under different processing conditions
  publication-title: Fuel Process. Technol.
  doi: 10.1016/S0378-3820(99)00064-8
– volume: 140
  start-page: 152
  year: 2013
  ident: 10.1016/j.biortech.2013.09.137_b0080
  article-title: Thermogravimetric and kinetic analysis of Spirulina wastes under nitrogen and air atmospheres
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.04.121
– volume: 5
  start-page: 871
  year: 1970
  ident: 10.1016/j.biortech.2013.09.137_b0090
  article-title: Evaluation of thermal dcomposition temperatures of amion acids by differential enthalpie analysis
  publication-title: Mikrochim. Acta
  doi: 10.1007/BF01225712
– volume: 64
  start-page: 955
  year: 2006
  ident: 10.1016/j.biortech.2013.09.137_b0125
  article-title: Pyrolytic characteristics of sewage sludge
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.01.002
– volume: 355
  start-page: 125
  year: 2000
  ident: 10.1016/j.biortech.2013.09.137_b0035
  article-title: Computational aspects of kinetic analysis. Part A: the ICTAC kinetics project-data, methods, and results
  publication-title: Thermochim. Acta
  doi: 10.1016/S0040-6031(00)00443-3
– volume: 4
  start-page: 4587
  year: 2011
  ident: 10.1016/j.biortech.2013.09.137_b0165
  article-title: Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01541a
– volume: 101
  start-page: 359
  year: 2010
  ident: 10.1016/j.biortech.2013.09.137_b0175
  article-title: Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.08.020
– volume: 102
  start-page: 4876
  year: 2011
  ident: 10.1016/j.biortech.2013.09.137_b0015
  article-title: Hydrothermal liquefaction of the brown macro-alga Laminaria Saccharina: effect of reaction conditions on product distribution and composition
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.01.031
– volume: 74
  start-page: 631
  year: 1995
  ident: 10.1016/j.biortech.2013.09.137_b0030
  article-title: The technical and economic feasibility of biomass gasification for power generation
  publication-title: Fuel
  doi: 10.1016/0016-2361(95)00001-L
– volume: 102
  start-page: 24
  year: 2013
  ident: 10.1016/j.biortech.2013.09.137_b0110
  article-title: Characterization of microalga chlorella as a fuel and its thermogravimetric behavior
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.08.039
– volume: 51
  start-page: 10320
  year: 2012
  ident: 10.1016/j.biortech.2013.09.137_b0085
  article-title: Investigation on pyrolysis of microalgae Botryococcus braunii and Hapalosiphon sp.
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie202799e
– volume: 13
  start-page: 5
  year: 2001
  ident: 10.1016/j.biortech.2013.09.137_b0095
  article-title: Pyrolytic characteristics of heterotrophic chlorella protothecoides for renewable bio-fuel production
  publication-title: J. Appl. Phycol.
  doi: 10.1023/A:1008153831875
– volume: 5
  start-page: 9808
  year: 2012
  ident: 10.1016/j.biortech.2013.09.137_b0135
  article-title: A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22784c
– volume: 129
  start-page: 1
  year: 2013
  ident: 10.1016/j.biortech.2013.09.137_b0150
  article-title: Nitrogen removal of ramie stalk treated by acid wastewater combined with Clostridium thermocellum and the kinetic study of pyrolysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.11.045
– ident: 10.1016/j.biortech.2013.09.137_b0130
– volume: 102
  start-page: 6230
  year: 2011
  ident: 10.1016/j.biortech.2013.09.137_b0045
  article-title: Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA)
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.02.060
– volume: 35
  start-page: 1765
  year: 2011
  ident: 10.1016/j.biortech.2013.09.137_b0075
  article-title: Pyrolytic characteristics and kinetic studies of three kinds of red algae
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2011.01.011
– volume: 139
  start-page: 66
  year: 2013
  ident: 10.1016/j.biortech.2013.09.137_b0040
  article-title: Thermogravimetric and decomposition kinetic studies of Mesua ferrea L. deoiled cake
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.03.191
– volume: 100
  start-page: 3663
  year: 2009
  ident: 10.1016/j.biortech.2013.09.137_b0160
  article-title: Kinetic studies of overlapping pyrolysis reactions in industrial waste activated sludge
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.03.002
– volume: 2
  start-page: 288
  year: 2001
  ident: 10.1016/j.biortech.2013.09.137_b0105
  article-title: Mechanisms and kinetics of thermal degradation of Poly(ε-caprolactone)
  publication-title: Biomacromolecules
  doi: 10.1021/bm0056310
– volume: 80
  start-page: 1
  year: 2001
  ident: 10.1016/j.biortech.2013.09.137_b0100
  article-title: Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(01)00072-4
– volume: 30
  start-page: 555
  year: 1991
  ident: 10.1016/j.biortech.2013.09.137_b0065
  article-title: Microalgae as food and supplement
  publication-title: Crit. Rev. Food Sci.
  doi: 10.1080/10408399109527556
– volume: 25
  start-page: 207
  year: 2007
  ident: 10.1016/j.biortech.2013.09.137_b0020
  article-title: Micro-algae as a source of protein
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2006.11.002
– volume: 17
  start-page: 407
  year: 1998
  ident: 10.1016/j.biortech.2013.09.137_b0140
  article-title: Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/014423598230108
– volume: 91
  start-page: 1
  year: 2011
  ident: 10.1016/j.biortech.2013.09.137_b0155
  article-title: Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2011.01.004
– volume: 530
  start-page: 95
  year: 2012
  ident: 10.1016/j.biortech.2013.09.137_b0005
  article-title: Model fitting kinetic analysis and characterisation of the devolatilization of coal blends with corn and sugarcane residues
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2011.12.007
– volume: 51
  start-page: 26
  year: 2013
  ident: 10.1016/j.biortech.2013.09.137_b0025
  article-title: Production synthetic natural gas from microalgae via supercritical water gasification: a techno-economic sensitivity analysis
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2012.12.038
– volume: 19
  start-page: 81
  year: 1991
  ident: 10.1016/j.biortech.2013.09.137_b0060
  article-title: Vacuum pyrolysis of cellulose: Fourier transform infrared characterization of solid residues, product distribution and correlations
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/0165-2370(91)80036-8
– volume: 133
  start-page: 389
  year: 2013
  ident: 10.1016/j.biortech.2013.09.137_b0170
  article-title: Hydrothermal liquefaction of Chlorella pyrenoidosa in sub- and supercritical ethanol with heterogeneous catalysts
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.01.076
– volume: 97
  start-page: 491
  year: 2012
  ident: 10.1016/j.biortech.2013.09.137_b0120
  article-title: Thermogravimetric analysis and kinetic study of poplar wood pyrolysis
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.12.056
– volume: 18
  start-page: 393
  year: 1997
  ident: 10.1016/j.biortech.2013.09.137_b0145
  article-title: Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(199702)18:3<393::AID-JCC9>3.0.CO;2-P
– volume: 32
  start-page: 460
  year: 2008
  ident: 10.1016/j.biortech.2013.09.137_b0070
  article-title: Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2007.11.004
– volume: 48
  start-page: 43
  year: 2013
  ident: 10.1016/j.biortech.2013.09.137_b0050
  article-title: A weighted average global process model based on two-stage kinetic scheme for biomass combustion
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2012.11.011
– volume: 128
  start-page: 72
  year: 2013
  ident: 10.1016/j.biortech.2013.09.137_b0010
  article-title: A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.10.043
– volume: 109
  start-page: 163
  year: 2012
  ident: 10.1016/j.biortech.2013.09.137_b0115
  article-title: Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.01.001
SSID ssj0003172
Score 2.502952
Snippet •Thermal decomposition characteristics of microalgae Chlorella pyrenoidosa and Spirulina platensis.•Characteristic parameters of TG–DTG curves of the samples...
The thermal decomposition behavior of two microalgae, Chlorella pyrenoidosa (CP) and Spirulina platensis (SP), were investigated on a thermogravimetric...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 139
SubjectTerms Activation energy
Analyzers
Apparent activation energy
Arthrospira platensis
Biological and medical sciences
chemistry
Chlorella
Chlorella - chemistry
Chlorella pyrenoidosa
Conversion
Differential equations
Fundamental and applied biological sciences. Psychology
Hot Temperature
Integral equations
Kinetic
Kinetics
Lipids
Lipids - chemistry
Mathematical models
methods
microalgae
Microalgae - chemistry
Regression Analysis
Spirulina
Spirulina - chemistry
Spirulina platensis
Thermal decomposition
Thermal degradation
Thermogravimetric
thermogravimetry
Thermogravimetry - methods
Title Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae
URI https://dx.doi.org/10.1016/j.biortech.2013.09.137
https://www.ncbi.nlm.nih.gov/pubmed/24161552
https://www.proquest.com/docview/1464500826
https://www.proquest.com/docview/1490527185
https://www.proquest.com/docview/1516755942
https://www.proquest.com/docview/1709783145
Volume 150
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB616QEQQlBeKRAZiasb79q72T1GUasAoheo1Ju1L1cuiROlKdz47cz4ERqpTQ_c_Jj1rmbGM7Oa2fkAPhGyqOZWxElW2DgL3MWa4y5FMyu9VtKnNYrCtzM5Pc--XIiLPZh0Z2GorLK1_Y1Nr611-2TYcnO4LMvhdwq-lajzQkygWu3DAUdvr3pwMP78dXq2McjoIutkAtLHNODWQeGrY1tSUWudl2AptTxlBIl-t496ujTXyLmigby4PyatfdPpc3jWBpXRuFn3C9gL1SE8GV-u2sYa4RAeTTpkN3xzqwnhS7hETVnNqUrrVzknfC0XmcpHP5FiXV83XUuiRRFRsDjHiXygSvS23Cty2z2fiXC2-B3PymXpozkV_NF5kfAKzk9PfkymcQu_EDsh03Vs0IaqRJvUZdqMUiO9sMxZbqR0KniptDTIeDGyjhqvWYyUgipSr8jzBeXS19CrFlV4C5GziQ2MOY8bvIy5Quki8W7E0cJZx5Tqg-gYnru2NzlBZMzyrgjtKu8ElZOg8kTnKKg-DDfjlk13jgdH6E6e-Zae5ehCHhw72FKAzZRcETij0n342GlEjiKl1IupwuLmmjZYmaBwS-6i0YngGCuIHTSC4Q5P6IzvoBnVZ3NYht9506jlv5VmdSKaH_0HG97BY7pranreQ2-9ugkfMDJb2wHsH_9hg_b_-wtp9Tl4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa69NAVw7B1j2aPzgN29WLZkiIdg2BFura5rAV6E6yHC7d5IU23vz_Sj6wBtvSwm2FRlkDSJAVS_AC-ELKoTq2IE17YmIfUxTrFU4pmVnqtpM8qFIXzsRxd8u9X4moHhu1dGCqrbGx_bdMra9286TXc7C3KsveDgm8lqrwQE6hWT2CXE6h1B3YHJ6ej8dogo4uskglIH9OEBxeFb77akopaq7wEy6jlKSNI9L_7qGeL_A45V9SQF_-OSSvfdPwCnjdBZTSo9_0SdsLsAPYH18umsUY4gL1hi-yGIw-aEL6Ca9SU5ZSqtH6WU8LXclE-89EtUqyq57prSTQvIgoWp7iQD1SJ3pR7RW6z5zMRTua_4km5KH00pYI_ui8SXsPl8beL4Shu4BdiJ2S2inO0oSrReea4zvtZLr2wzNk0l9Kp4KXSMkfGi7511HjNYqQUVJF5RZ4vKJe9gc5sPguHEDmb2MCY83jA48wVSheJd_0ULZx1TKkuiJbhxjW9yQkiY2LaIrQb0wrKkKBMog0Kqgu99bxF3Z3j0Rm6lafZ0DODLuTRuUcbCrBeMlUEzqh0Fz63GmFQpJR6yWdhfn9HBywuKNyS22h0IlKMFcQWGsHwhCc0T7fQ9Ku7OYzjd97Wavlnp7xKRKfv_oMNn2BvdHF-Zs5Oxqfv4SmN1PU9H6CzWt6HjxilrexR8xf-BsaYO14
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermogravimetric+and+kinetic+analysis+of+thermal+decomposition+characteristics+of+low-lipid+microalgae&rft.jtitle=Bioresource+technology&rft.au=Gai%2C+Chao&rft.au=Zhang%2C+Yuanhui&rft.au=Chen%2C+Wan-Ting&rft.au=Zhang%2C+Peng&rft.date=2013-12-01&rft.issn=0960-8524&rft.volume=150&rft.spage=139&rft.epage=148&rft_id=info:doi/10.1016%2Fj.biortech.2013.09.137&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon