Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae
•Thermal decomposition characteristics of microalgae Chlorella pyrenoidosa and Spirulina platensis.•Characteristic parameters of TG–DTG curves of the samples were calculated.•Apparent activation energies for decomposition of the two microalgae were determined.•Reaction mechanisms for decomposition o...
Saved in:
Published in | Bioresource technology Vol. 150; pp. 139 - 148 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.12.2013
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0960-8524 1873-2976 1873-2976 |
DOI | 10.1016/j.biortech.2013.09.137 |
Cover
Abstract | •Thermal decomposition characteristics of microalgae Chlorella pyrenoidosa and Spirulina platensis.•Characteristic parameters of TG–DTG curves of the samples were calculated.•Apparent activation energies for decomposition of the two microalgae were determined.•Reaction mechanisms for decomposition of the two microalgae were evaluated.
The thermal decomposition behavior of two microalgae, Chlorella pyrenoidosa (CP) and Spirulina platensis (SP), were investigated on a thermogravimetric analyzer under non-isothermal conditions. Iso-conversional Vyazovkin approach was used to calculate the kinetic parameters, and the universal integral method was applied to evaluate the most probable mechanisms for thermal degradation of the two feedstocks. The differential equations deduced from the models were compared with experimental data. For the range of conversion fraction investigated (20–80%), the thermal decomposition process of CP could be described by the reaction order model (F3), which can be calculated by the integral equation of G(α)=[(1−α)−2−1]/2. And the apparent activation energy was in the range of 58.85–114.5kJ/mol. As for SP, it can be described by the reaction order model (F2), which can be calculated by the integral equation of G(α)=(1−α)−1−1, and the range of apparent activation energy was 74.35–140.1kJ/mol. |
---|---|
AbstractList | The thermal decomposition behavior of two microalgae, Chlorella pyrenoidosa (CP) and Spirulina platensis (SP), were investigated on a thermogravimetric analyzer under non-isothermal conditions. Iso-conversional Vyazovkin approach was used to calculate the kinetic parameters, and the universal integral method was applied to evaluate the most probable mechanisms for thermal degradation of the two feedstocks. The differential equations deduced from the models were compared with experimental data. For the range of conversion fraction investigated (20-80%), the thermal decomposition process of CP could be described by the reaction order model (F3), which can be calculated by the integral equation of G( alpha ) = [(1 - alpha )-2 - 1]/2. And the apparent activation energy was in the range of 58.85-114.5 kJ/mol. As for SP, it can be described by the reaction order model (F2), which can be calculated by the integral equation of G( alpha ) = (1 - alpha )-1 - 1, and the range of apparent activation energy was 74.35-140.1 kJ/mol. The thermal decomposition behavior of two microalgae, Chlorella pyrenoidosa (CP) and Spirulina platensis (SP), were investigated on a thermogravimetric analyzer under non-isothermal conditions. Iso-conversional Vyazovkin approach was used to calculate the kinetic parameters, and the universal integral method was applied to evaluate the most probable mechanisms for thermal degradation of the two feedstocks. The differential equations deduced from the models were compared with experimental data. For the range of conversion fraction investigated (20–80%), the thermal decomposition process of CP could be described by the reaction order model (F3), which can be calculated by the integral equation of G(α)=[(1−α)−2−1]/2. And the apparent activation energy was in the range of 58.85–114.5kJ/mol. As for SP, it can be described by the reaction order model (F2), which can be calculated by the integral equation of G(α)=(1−α)−1−1, and the range of apparent activation energy was 74.35–140.1kJ/mol. •Thermal decomposition characteristics of microalgae Chlorella pyrenoidosa and Spirulina platensis.•Characteristic parameters of TG–DTG curves of the samples were calculated.•Apparent activation energies for decomposition of the two microalgae were determined.•Reaction mechanisms for decomposition of the two microalgae were evaluated. The thermal decomposition behavior of two microalgae, Chlorella pyrenoidosa (CP) and Spirulina platensis (SP), were investigated on a thermogravimetric analyzer under non-isothermal conditions. Iso-conversional Vyazovkin approach was used to calculate the kinetic parameters, and the universal integral method was applied to evaluate the most probable mechanisms for thermal degradation of the two feedstocks. The differential equations deduced from the models were compared with experimental data. For the range of conversion fraction investigated (20–80%), the thermal decomposition process of CP could be described by the reaction order model (F3), which can be calculated by the integral equation of G(α)=[(1−α)−2−1]/2. And the apparent activation energy was in the range of 58.85–114.5kJ/mol. As for SP, it can be described by the reaction order model (F2), which can be calculated by the integral equation of G(α)=(1−α)−1−1, and the range of apparent activation energy was 74.35–140.1kJ/mol. The thermal decomposition behavior of two microalgae, Chlorella pyrenoidosa (CP) and Spirulina platensis (SP), were investigated on a thermogravimetric analyzer under non-isothermal conditions. Iso-conversional Vyazovkin approach was used to calculate the kinetic parameters, and the universal integral method was applied to evaluate the most probable mechanisms for thermal degradation of the two feedstocks. The differential equations deduced from the models were compared with experimental data. For the range of conversion fraction investigated (20-80%), the thermal decomposition process of CP could be described by the reaction order model (F3), which can be calculated by the integral equation of G(α) = [(1 - α)(-2) - 1]/2. And the apparent activation energy was in the range of 58.85-114.5 kJ/mol. As for SP, it can be described by the reaction order model (F2), which can be calculated by the integral equation of G(α) = (1 - α)(-1) - 1, and the range of apparent activation energy was 74.35-140.1 kJ/mol. The thermal decomposition behavior of two microalgae, Chlorella pyrenoidosa (CP) and Spirulina platensis (SP), were investigated on a thermogravimetric analyzer under non-isothermal conditions. Iso-conversional Vyazovkin approach was used to calculate the kinetic parameters, and the universal integral method was applied to evaluate the most probable mechanisms for thermal degradation of the two feedstocks. The differential equations deduced from the models were compared with experimental data. For the range of conversion fraction investigated (20-80%), the thermal decomposition process of CP could be described by the reaction order model (F3), which can be calculated by the integral equation of G(α) = [(1 - α)(-2) - 1]/2. And the apparent activation energy was in the range of 58.85-114.5 kJ/mol. As for SP, it can be described by the reaction order model (F2), which can be calculated by the integral equation of G(α) = (1 - α)(-1) - 1, and the range of apparent activation energy was 74.35-140.1 kJ/mol.The thermal decomposition behavior of two microalgae, Chlorella pyrenoidosa (CP) and Spirulina platensis (SP), were investigated on a thermogravimetric analyzer under non-isothermal conditions. Iso-conversional Vyazovkin approach was used to calculate the kinetic parameters, and the universal integral method was applied to evaluate the most probable mechanisms for thermal degradation of the two feedstocks. The differential equations deduced from the models were compared with experimental data. For the range of conversion fraction investigated (20-80%), the thermal decomposition process of CP could be described by the reaction order model (F3), which can be calculated by the integral equation of G(α) = [(1 - α)(-2) - 1]/2. And the apparent activation energy was in the range of 58.85-114.5 kJ/mol. As for SP, it can be described by the reaction order model (F2), which can be calculated by the integral equation of G(α) = (1 - α)(-1) - 1, and the range of apparent activation energy was 74.35-140.1 kJ/mol. |
Author | Chen, Wan-Ting Zhang, Peng Zhang, Yuanhui Gai, Chao Dong, Yuping |
Author_xml | – sequence: 1 givenname: Chao surname: Gai fullname: Gai, Chao organization: Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Department of Mechanical Engineering, Shandong University, Jinan 250061, PR China – sequence: 2 givenname: Yuanhui surname: Zhang fullname: Zhang, Yuanhui email: yzhang1@illinois.edu organization: Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA – sequence: 3 givenname: Wan-Ting surname: Chen fullname: Chen, Wan-Ting organization: Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA – sequence: 4 givenname: Peng orcidid: 0000-0003-4988-1876 surname: Zhang fullname: Zhang, Peng organization: Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA – sequence: 5 givenname: Yuping surname: Dong fullname: Dong, Yuping organization: Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Department of Mechanical Engineering, Shandong University, Jinan 250061, PR China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28058989$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24161552$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1qGzEYRUVJaZy0rxBmU-hmppJGv9BFS-gfBLpJ1-IbzWdb7szIleSEvH3HsU2hG3clLc65At17RS6mOCEhN4w2jDL1ftN0IaaCft1wytqG2oa1-gVZMKPbmlutLsiCWkVrI7m4JFc5byilLdP8FbnkgikmJV-Q1f0a0xhXCR7CiCUFX8HUV7_ChOX5DsNTDrmKy6rsSRiqHn0ctzGHEuJU-TUk8AVTyLPwDA7xsR7CNvTVGHyKMKwAX5OXSxgyvjme1-Tnl8_3t9_qux9fv99-uqu9VG2pQShtqIXWCwu6BdXLjvmOg1LeYK-MVcCklrrzlDPRccnQLNveUMo0Gt9ek3eH3G2Kv3eYixtD9jgMMGHcZcc0tdq0TMjzqGRKS2kFP48KSyXXzPxHqlBCUmq4mtGbI7rrRuzdNoUR0pM7tTMDb48AZA_DMsHkQ_7LGSqNNXbmPhy4-bdzTrh0PhTY11MShMEx6vajcRt3Go3bj8ZR6-bRzLr6Rz-9cFb8eBBxbvQhYHLZB5w89iGhL66P4VzEH3e034E |
CitedBy_id | crossref_primary_10_1016_j_biortech_2017_06_087 crossref_primary_10_1016_j_biortech_2015_09_059 crossref_primary_10_1016_j_energy_2016_12_040 crossref_primary_10_1007_s13399_014_0145_3 crossref_primary_10_1016_j_biortech_2018_01_149 crossref_primary_10_1007_s13399_024_05768_y crossref_primary_10_1007_s12649_021_01497_9 crossref_primary_10_1177_0734242X15574590 crossref_primary_10_1016_j_matpr_2023_05_362 crossref_primary_10_1039_C5RA25065J crossref_primary_10_1016_j_enconman_2016_10_077 crossref_primary_10_1016_j_biortech_2014_10_109 crossref_primary_10_1016_j_biortech_2016_07_042 crossref_primary_10_1016_j_enconman_2018_01_036 crossref_primary_10_1016_j_clcb_2022_100005 crossref_primary_10_1007_s40095_019_00323_2 crossref_primary_10_3389_fmars_2022_1047284 crossref_primary_10_1016_j_cjche_2014_07_005 crossref_primary_10_1021_acs_iecr_6b00490 crossref_primary_10_2139_ssrn_3863036 crossref_primary_10_3390_polym15193934 crossref_primary_10_1016_j_algal_2018_101399 crossref_primary_10_1007_s11630_023_1797_8 crossref_primary_10_1016_j_algal_2022_102782 crossref_primary_10_1016_j_renene_2019_07_135 crossref_primary_10_1016_j_renene_2019_07_096 crossref_primary_10_1021_acsomega_0c06001 crossref_primary_10_1016_j_envres_2021_112300 crossref_primary_10_1016_j_energy_2021_120752 crossref_primary_10_3390_en16104140 crossref_primary_10_1016_j_ijhydene_2020_02_052 crossref_primary_10_1016_j_joei_2020_10_010 crossref_primary_10_1515_ijcre_2014_0185 crossref_primary_10_1002_jctb_6702 crossref_primary_10_1016_j_renene_2024_120928 crossref_primary_10_1007_s13399_023_04175_z crossref_primary_10_1016_j_matpr_2022_05_538 crossref_primary_10_1016_j_algal_2023_103043 crossref_primary_10_1016_j_algal_2018_03_005 crossref_primary_10_3390_en14185789 crossref_primary_10_32604_EE_2021_016082 crossref_primary_10_1016_j_biortech_2017_07_144 crossref_primary_10_1016_j_biortech_2015_03_081 crossref_primary_10_1007_s10973_020_10330_9 crossref_primary_10_1016_j_biortech_2018_02_126 crossref_primary_10_1016_j_biortech_2017_02_119 crossref_primary_10_1016_j_biortech_2019_121385 crossref_primary_10_1007_s13399_024_06242_5 crossref_primary_10_1016_j_joei_2025_102026 crossref_primary_10_1016_j_renene_2020_11_039 crossref_primary_10_1021_acs_iecr_9b00648 crossref_primary_10_1016_j_energy_2016_07_107 crossref_primary_10_1016_j_enconman_2015_09_038 crossref_primary_10_1016_j_ijbiomac_2024_133148 crossref_primary_10_1016_j_biortech_2023_129567 crossref_primary_10_1038_s41598_019_42696_8 crossref_primary_10_3390_en14061703 crossref_primary_10_1016_j_biortech_2014_08_064 crossref_primary_10_1016_j_biortech_2021_126258 crossref_primary_10_1016_j_biombioe_2020_105946 crossref_primary_10_1016_j_biortech_2014_10_077 crossref_primary_10_1021_ef501386g crossref_primary_10_1016_j_algal_2016_06_005 crossref_primary_10_3390_en14113013 crossref_primary_10_1016_j_biortech_2014_06_111 crossref_primary_10_1016_j_biortech_2014_10_118 crossref_primary_10_1016_j_energy_2021_120133 crossref_primary_10_3390_app10238706 crossref_primary_10_1016_j_indcrop_2020_112555 crossref_primary_10_1016_j_jece_2022_107514 crossref_primary_10_1007_s12649_016_9568_3 crossref_primary_10_1007_s13399_022_02723_7 crossref_primary_10_1016_j_algal_2025_103919 crossref_primary_10_1007_s10973_021_10616_6 crossref_primary_10_1016_j_biortech_2017_06_041 crossref_primary_10_1007_s12155_020_10185_w crossref_primary_10_1007_s11356_017_9009_2 crossref_primary_10_1007_s11630_019_1140_6 crossref_primary_10_1016_j_tca_2018_01_001 crossref_primary_10_1016_j_energy_2019_02_079 crossref_primary_10_1016_j_biortech_2015_01_066 crossref_primary_10_1016_j_algal_2021_102601 crossref_primary_10_1016_j_algal_2021_102325 crossref_primary_10_1016_j_biortech_2014_11_061 crossref_primary_10_1016_j_fuel_2015_08_030 crossref_primary_10_1016_j_enconman_2020_113165 crossref_primary_10_1016_j_algal_2015_08_003 crossref_primary_10_1016_j_ceramint_2019_09_015 crossref_primary_10_1016_j_ijhydene_2015_04_098 crossref_primary_10_1016_j_grets_2024_100077 crossref_primary_10_1016_j_enconman_2020_113609 crossref_primary_10_1016_j_renene_2023_02_015 crossref_primary_10_1007_s13399_019_00469_3 crossref_primary_10_1016_j_envres_2022_113532 crossref_primary_10_1016_j_algal_2014_08_010 crossref_primary_10_1016_j_renene_2020_05_069 crossref_primary_10_1016_j_biortech_2015_08_069 crossref_primary_10_1016_j_enconman_2015_05_029 crossref_primary_10_1016_j_algal_2020_102031 crossref_primary_10_1016_j_energy_2015_04_078 crossref_primary_10_1016_j_heliyon_2023_e17236 crossref_primary_10_1016_j_biortech_2019_121971 crossref_primary_10_1080_17597269_2019_1642642 crossref_primary_10_1007_s10068_015_0212_y crossref_primary_10_3390_en12183509 crossref_primary_10_1016_j_algal_2019_101601 crossref_primary_10_1016_j_biortech_2021_125992 crossref_primary_10_1016_j_algal_2024_103885 crossref_primary_10_1016_j_jclepro_2018_10_040 crossref_primary_10_1039_C9SE00114J crossref_primary_10_1007_s40430_018_1356_5 crossref_primary_10_1007_s10811_021_02437_9 crossref_primary_10_1016_j_jaap_2017_08_007 crossref_primary_10_1016_j_enconman_2015_02_056 crossref_primary_10_1016_j_energy_2022_124388 crossref_primary_10_1016_j_carbpol_2018_07_095 crossref_primary_10_1016_j_energy_2019_116030 crossref_primary_10_1016_j_fuel_2017_11_046 crossref_primary_10_1007_s10973_017_6734_1 crossref_primary_10_1016_j_algal_2018_04_007 crossref_primary_10_1016_j_algal_2016_11_011 crossref_primary_10_1016_j_rser_2015_05_076 crossref_primary_10_1007_s10973_015_5126_7 crossref_primary_10_1007_s10973_017_6617_5 crossref_primary_10_1016_j_biortech_2016_09_022 crossref_primary_10_1016_j_biortech_2014_07_077 crossref_primary_10_1021_acs_energyfuels_6b03468 crossref_primary_10_1039_D0TC03781H crossref_primary_10_1080_15567036_2020_1834645 crossref_primary_10_1016_S1872_5805_22_60597_3 crossref_primary_10_1021_acs_energyfuels_9b03156 crossref_primary_10_1016_j_biortech_2024_131171 crossref_primary_10_1016_j_jece_2021_107011 crossref_primary_10_1016_j_cej_2021_133536 crossref_primary_10_1016_j_jiec_2022_12_003 crossref_primary_10_1021_acs_est_5b00652 crossref_primary_10_1016_j_biortech_2014_07_076 crossref_primary_10_1016_j_jhazmat_2018_11_026 crossref_primary_10_1016_j_fuel_2024_131156 crossref_primary_10_1016_j_jece_2018_10_025 |
Cites_doi | 10.1016/S0378-3820(99)00064-8 10.1016/j.biortech.2013.04.121 10.1007/BF01225712 10.1016/j.chemosphere.2006.01.002 10.1016/S0040-6031(00)00443-3 10.1039/c1ee01541a 10.1016/j.biortech.2009.08.020 10.1016/j.biortech.2011.01.031 10.1016/0016-2361(95)00001-L 10.1016/j.apenergy.2012.08.039 10.1021/ie202799e 10.1023/A:1008153831875 10.1039/c2ee22784c 10.1016/j.biortech.2012.11.045 10.1016/j.biortech.2011.02.060 10.1016/j.biombioe.2011.01.011 10.1016/j.biortech.2013.03.191 10.1016/j.biortech.2009.03.002 10.1021/bm0056310 10.1016/S0960-8524(01)00072-4 10.1080/10408399109527556 10.1016/j.biotechadv.2006.11.002 10.1080/014423598230108 10.1016/j.jaap.2011.01.004 10.1016/j.tca.2011.12.007 10.1016/j.biombioe.2012.12.038 10.1016/0165-2370(91)80036-8 10.1016/j.biortech.2013.01.076 10.1016/j.apenergy.2011.12.056 10.1002/(SICI)1096-987X(199702)18:3<393::AID-JCC9>3.0.CO;2-P 10.1016/j.biombioe.2007.11.004 10.1016/j.biombioe.2012.11.011 10.1016/j.biortech.2012.10.043 10.1016/j.biortech.2012.01.001 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2015 INIST-CNRS Copyright © 2013 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2015 INIST-CNRS – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 7QO 8FD F1W FR3 H95 H98 L.G M7N P64 7SU 7TB C1K KR7 |
DOI | 10.1016/j.biortech.2013.09.137 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Biotechnology Research Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Environmental Sciences and Pollution Management Civil Engineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Civil Engineering Abstracts Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 148 |
ExternalDocumentID | 24161552 28058989 10_1016_j_biortech_2013_09_137 S0960852413015794 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW CGR CUY CVF ECM EFKBS EIF NPM 7X8 ACLOT ~HD 7S9 L.6 7QO 8FD F1W FR3 H95 H98 L.G M7N P64 7SU 7TB C1K KR7 |
ID | FETCH-LOGICAL-c563t-a467809a3c49a73a6d5b1cb2a66c8ed6896a15757bc0214b251e8f3d80017e8c3 |
IEDL.DBID | AIKHN |
ISSN | 0960-8524 1873-2976 |
IngestDate | Sun Sep 28 09:53:35 EDT 2025 Sun Sep 28 07:17:07 EDT 2025 Fri Sep 05 04:25:09 EDT 2025 Sun Sep 28 12:34:36 EDT 2025 Mon Jul 21 05:55:53 EDT 2025 Wed Apr 02 07:25:08 EDT 2025 Thu Apr 24 23:07:01 EDT 2025 Tue Jul 01 02:06:19 EDT 2025 Fri Feb 23 02:34:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Chlorella Spirulina Kinetic Thermogravimetric Apparent activation energy Thermal characteristic Thermal decomposition Algae Thermogravimetry Lipids Chlorophyceae Chlorophyta Cyanobacteria Bacteria Alga Kinetics Microorganism Activation energy |
Language | English |
License | CC BY 4.0 Copyright © 2013 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c563t-a467809a3c49a73a6d5b1cb2a66c8ed6896a15757bc0214b251e8f3d80017e8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4988-1876 |
PMID | 24161552 |
PQID | 1464500826 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1709783145 proquest_miscellaneous_1516755942 proquest_miscellaneous_1490527185 proquest_miscellaneous_1464500826 pubmed_primary_24161552 pascalfrancis_primary_28058989 crossref_citationtrail_10_1016_j_biortech_2013_09_137 crossref_primary_10_1016_j_biortech_2013_09_137 elsevier_sciencedirect_doi_10_1016_j_biortech_2013_09_137 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Wang, Li, Zhu, Xiao (b0150) 2013; 129 Anastasakis, Ross (b0015) 2011; 102 Kay (b0065) 1991; 30 Fang, Jia, Yin (b0050) 2013; 48 Vyazovkin, Wight (b0140) 1998; 17 Zhang, Chen, Zhang, Luo, Zhang (b0170) 2013; 133 Aboyade, Carrier, Meyer, Knoetze, Görgens (b0005) 2012; 530 Brandenberger, Matzenberger, Vogel, Ludwig (b0025) 2013; 51 Zou, Wu, Yang, Li, Tong (b0175) 2010; 101 Becker (b0020) 2007; 25 Slopiecka, Bartocci, Fantozzi (b0120) 2012; 97 Olafsson, Bryan (b0090) 1970; 5 Brown, Maciejewski, Vyazovkin, Nomen, Sempere, Burnham (b0035) 2000; 355 Jaber, Probert (b0055) 2000; 63 Vinu, Broadbelt (b0135) 2012; 5 Yang, Jiang (b0160) 2009; 100 Liu, Lim, Wang, Yan, Mahakhant (b0085) 2012; 51 Agrawal, Chakraborty (b0010) 2013; 128 Sanchez-Silva, López-González, Villaseňor, Sánchez, Valverde (b0115) 2012; 109 Bridgwater (b0030) 1995; 74 Yu, Zhang, Schideman, Funk, Wang (b0165) 2011; 4 Persenaire, Alexandre, Degée, Dubois (b0105) 2001; 2 Rizzo, Prussi, Bettucci, Libelli, Chiaramonti (b0110) 2013; 102 Kumar, Wang, Jones, Hanna (b0070) 2008; 32 White, James Catallo, Legendre (b0155) 2011; 91 Julien, Chornet, Tiwan, Overend (b0060) 1991; 19 Thipkhunthod, Meeyoo, Rangsunvigit, Kitiyanan, Siemanond, Rirksomboon (b0125) 2006; 64 Vyazovkin (b0145) 1997; 18 Li, Zhao, Fu, Shao, Qin (b0080) 2013; 140 United States Environmental Protection Agency (EPA), 2012. Renewable Fuel Standard (RFS), http://www.epa.gov/otaq/fuels/renewablefuels/index.htm, (accessed 2.03.2012.). Damartzis, Vamvuka, Sfakiotakis, Zabaniotou (b0045) 2011; 102 Peng, Wu, Tu (b0095) 2001; 13 Peng, Wu, Tu, Zhao (b0100) 2001; 80 Li, Chen, Zhang, Ye, Xing (b0075) 2011; 35 Chutia, Kataki, Bhaskar (b0040) 2013; 139 Vyazovkin (10.1016/j.biortech.2013.09.137_b0140) 1998; 17 Persenaire (10.1016/j.biortech.2013.09.137_b0105) 2001; 2 Slopiecka (10.1016/j.biortech.2013.09.137_b0120) 2012; 97 10.1016/j.biortech.2013.09.137_b0130 Wang (10.1016/j.biortech.2013.09.137_b0150) 2013; 129 Vinu (10.1016/j.biortech.2013.09.137_b0135) 2012; 5 Bridgwater (10.1016/j.biortech.2013.09.137_b0030) 1995; 74 White (10.1016/j.biortech.2013.09.137_b0155) 2011; 91 Liu (10.1016/j.biortech.2013.09.137_b0085) 2012; 51 Julien (10.1016/j.biortech.2013.09.137_b0060) 1991; 19 Olafsson (10.1016/j.biortech.2013.09.137_b0090) 1970; 5 Thipkhunthod (10.1016/j.biortech.2013.09.137_b0125) 2006; 64 Brandenberger (10.1016/j.biortech.2013.09.137_b0025) 2013; 51 Zou (10.1016/j.biortech.2013.09.137_b0175) 2010; 101 Kumar (10.1016/j.biortech.2013.09.137_b0070) 2008; 32 Brown (10.1016/j.biortech.2013.09.137_b0035) 2000; 355 Yu (10.1016/j.biortech.2013.09.137_b0165) 2011; 4 Fang (10.1016/j.biortech.2013.09.137_b0050) 2013; 48 Chutia (10.1016/j.biortech.2013.09.137_b0040) 2013; 139 Vyazovkin (10.1016/j.biortech.2013.09.137_b0145) 1997; 18 Damartzis (10.1016/j.biortech.2013.09.137_b0045) 2011; 102 Yang (10.1016/j.biortech.2013.09.137_b0160) 2009; 100 Kay (10.1016/j.biortech.2013.09.137_b0065) 1991; 30 Li (10.1016/j.biortech.2013.09.137_b0080) 2013; 140 Aboyade (10.1016/j.biortech.2013.09.137_b0005) 2012; 530 Rizzo (10.1016/j.biortech.2013.09.137_b0110) 2013; 102 Zhang (10.1016/j.biortech.2013.09.137_b0170) 2013; 133 Becker (10.1016/j.biortech.2013.09.137_b0020) 2007; 25 Peng (10.1016/j.biortech.2013.09.137_b0100) 2001; 80 Agrawal (10.1016/j.biortech.2013.09.137_b0010) 2013; 128 Anastasakis (10.1016/j.biortech.2013.09.137_b0015) 2011; 102 Li (10.1016/j.biortech.2013.09.137_b0075) 2011; 35 Peng (10.1016/j.biortech.2013.09.137_b0095) 2001; 13 Sanchez-Silva (10.1016/j.biortech.2013.09.137_b0115) 2012; 109 Jaber (10.1016/j.biortech.2013.09.137_b0055) 2000; 63 |
References_xml | – volume: 17 start-page: 407 year: 1998 end-page: 433 ident: b0140 article-title: Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids publication-title: Int. Rev. Phys. Chem. – volume: 101 start-page: 359 year: 2010 end-page: 397 ident: b0175 article-title: Pyrolysis characteristics and kinetics of the marine microalgae publication-title: Bioresour. Technol. – volume: 80 start-page: 1 year: 2001 end-page: 7 ident: b0100 article-title: Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis publication-title: Bioresour. Technol. – volume: 13 start-page: 5 year: 2001 end-page: 12 ident: b0095 article-title: Pyrolytic characteristics of heterotrophic chlorella protothecoides for renewable bio-fuel production publication-title: J. Appl. Phycol. – volume: 109 start-page: 163 year: 2012 end-page: 172 ident: b0115 article-title: Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis publication-title: Bioresour. Technol. – volume: 128 start-page: 72 year: 2013 end-page: 80 ident: b0010 article-title: A kinetic study of pyrolysis and combustion of microalgae publication-title: Bioresour. Technol. – volume: 139 start-page: 66 year: 2013 end-page: 72 ident: b0040 article-title: Thermogravimetric and decomposition kinetic studies of publication-title: Bioresour. Technol. – volume: 102 start-page: 6230 year: 2011 end-page: 6238 ident: b0045 article-title: Thermal degradation studies and kinetic modeling of cardoon ( publication-title: Bioresour. Technol. – volume: 32 start-page: 460 year: 2008 end-page: 467 ident: b0070 article-title: Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock publication-title: Biomass Bioenergy – volume: 48 start-page: 43 year: 2013 end-page: 50 ident: b0050 article-title: A weighted average global process model based on two-stage kinetic scheme for biomass combustion publication-title: Biomass Bioenergy – volume: 4 start-page: 4587 year: 2011 end-page: 4595 ident: b0165 article-title: Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae publication-title: Energy Environ. Sci. – volume: 51 start-page: 10320 year: 2012 end-page: 10326 ident: b0085 article-title: Investigation on pyrolysis of microalgae publication-title: Ind. Eng. Chem. Res. – volume: 97 start-page: 491 year: 2012 end-page: 497 ident: b0120 article-title: Thermogravimetric analysis and kinetic study of poplar wood pyrolysis publication-title: Appl. Energy – volume: 530 start-page: 95 year: 2012 end-page: 106 ident: b0005 article-title: Model fitting kinetic analysis and characterisation of the devolatilization of coal blends with corn and sugarcane residues publication-title: Thermochim. Acta – volume: 19 start-page: 81 year: 1991 end-page: 104 ident: b0060 article-title: Vacuum pyrolysis of cellulose: Fourier transform infrared characterization of solid residues, product distribution and correlations publication-title: J. Anal. Appl. Pyrolysis – volume: 133 start-page: 389 year: 2013 end-page: 397 ident: b0170 article-title: Hydrothermal liquefaction of publication-title: Bioresour. Technol. – volume: 102 start-page: 4876 year: 2011 end-page: 4883 ident: b0015 article-title: Hydrothermal liquefaction of the brown macro-alga publication-title: Bioresour. Technol. – volume: 51 start-page: 26 year: 2013 end-page: 34 ident: b0025 article-title: Production synthetic natural gas from microalgae via supercritical water gasification: a techno-economic sensitivity analysis publication-title: Biomass Bioenergy – volume: 100 start-page: 3663 year: 2009 end-page: 3668 ident: b0160 article-title: Kinetic studies of overlapping pyrolysis reactions in industrial waste activated sludge publication-title: Bioresour. Technol. – volume: 74 start-page: 631 year: 1995 end-page: 653 ident: b0030 article-title: The technical and economic feasibility of biomass gasification for power generation publication-title: Fuel – volume: 5 start-page: 9808 year: 2012 end-page: 9826 ident: b0135 article-title: A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition publication-title: Energy Environ. Sci. – volume: 63 start-page: 57 year: 2000 end-page: 70 ident: b0055 article-title: Non-isothermal thermogravimetry and decomposition kinetics of two Jordanian oil shales under different processing conditions publication-title: Fuel Process. Technol. – volume: 18 start-page: 393 year: 1997 end-page: 402 ident: b0145 article-title: Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature publication-title: J. Comput. Chem. – volume: 91 start-page: 1 year: 2011 end-page: 33 ident: b0155 article-title: Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies publication-title: J. Anal. Appl. Pyrolysis – volume: 35 start-page: 1765 year: 2011 end-page: 1772 ident: b0075 article-title: Pyrolytic characteristics and kinetic studies of three kinds of red algae publication-title: Biomass Bioenergy – volume: 355 start-page: 125 year: 2000 end-page: 143 ident: b0035 article-title: Computational aspects of kinetic analysis. Part A: the ICTAC kinetics project-data, methods, and results publication-title: Thermochim. Acta – volume: 129 start-page: 1 year: 2013 end-page: 6 ident: b0150 article-title: Nitrogen removal of ramie stalk treated by acid wastewater combined with publication-title: Bioresour. Technol. – volume: 140 start-page: 152 year: 2013 end-page: 157 ident: b0080 article-title: Thermogravimetric and kinetic analysis of publication-title: Bioresour. Technol. – volume: 102 start-page: 24 year: 2013 end-page: 31 ident: b0110 article-title: Characterization of microalga chlorella as a fuel and its thermogravimetric behavior publication-title: Appl. Energy – volume: 30 start-page: 555 year: 1991 end-page: 573 ident: b0065 article-title: Microalgae as food and supplement publication-title: Crit. Rev. Food Sci. – volume: 2 start-page: 288 year: 2001 end-page: 294 ident: b0105 article-title: Mechanisms and kinetics of thermal degradation of Poly(ε-caprolactone) publication-title: Biomacromolecules – volume: 64 start-page: 955 year: 2006 end-page: 962 ident: b0125 article-title: Pyrolytic characteristics of sewage sludge publication-title: Chemosphere – reference: United States Environmental Protection Agency (EPA), 2012. Renewable Fuel Standard (RFS), http://www.epa.gov/otaq/fuels/renewablefuels/index.htm, (accessed 2.03.2012.). – volume: 25 start-page: 207 year: 2007 end-page: 210 ident: b0020 article-title: Micro-algae as a source of protein publication-title: Biotechnol. Adv. – volume: 5 start-page: 871 year: 1970 end-page: 878 ident: b0090 article-title: Evaluation of thermal dcomposition temperatures of amion acids by differential enthalpie analysis publication-title: Mikrochim. Acta – volume: 63 start-page: 57 year: 2000 ident: 10.1016/j.biortech.2013.09.137_b0055 article-title: Non-isothermal thermogravimetry and decomposition kinetics of two Jordanian oil shales under different processing conditions publication-title: Fuel Process. Technol. doi: 10.1016/S0378-3820(99)00064-8 – volume: 140 start-page: 152 year: 2013 ident: 10.1016/j.biortech.2013.09.137_b0080 article-title: Thermogravimetric and kinetic analysis of Spirulina wastes under nitrogen and air atmospheres publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.04.121 – volume: 5 start-page: 871 year: 1970 ident: 10.1016/j.biortech.2013.09.137_b0090 article-title: Evaluation of thermal dcomposition temperatures of amion acids by differential enthalpie analysis publication-title: Mikrochim. Acta doi: 10.1007/BF01225712 – volume: 64 start-page: 955 year: 2006 ident: 10.1016/j.biortech.2013.09.137_b0125 article-title: Pyrolytic characteristics of sewage sludge publication-title: Chemosphere doi: 10.1016/j.chemosphere.2006.01.002 – volume: 355 start-page: 125 year: 2000 ident: 10.1016/j.biortech.2013.09.137_b0035 article-title: Computational aspects of kinetic analysis. Part A: the ICTAC kinetics project-data, methods, and results publication-title: Thermochim. Acta doi: 10.1016/S0040-6031(00)00443-3 – volume: 4 start-page: 4587 year: 2011 ident: 10.1016/j.biortech.2013.09.137_b0165 article-title: Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01541a – volume: 101 start-page: 359 year: 2010 ident: 10.1016/j.biortech.2013.09.137_b0175 article-title: Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.08.020 – volume: 102 start-page: 4876 year: 2011 ident: 10.1016/j.biortech.2013.09.137_b0015 article-title: Hydrothermal liquefaction of the brown macro-alga Laminaria Saccharina: effect of reaction conditions on product distribution and composition publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.01.031 – volume: 74 start-page: 631 year: 1995 ident: 10.1016/j.biortech.2013.09.137_b0030 article-title: The technical and economic feasibility of biomass gasification for power generation publication-title: Fuel doi: 10.1016/0016-2361(95)00001-L – volume: 102 start-page: 24 year: 2013 ident: 10.1016/j.biortech.2013.09.137_b0110 article-title: Characterization of microalga chlorella as a fuel and its thermogravimetric behavior publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.08.039 – volume: 51 start-page: 10320 year: 2012 ident: 10.1016/j.biortech.2013.09.137_b0085 article-title: Investigation on pyrolysis of microalgae Botryococcus braunii and Hapalosiphon sp. publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie202799e – volume: 13 start-page: 5 year: 2001 ident: 10.1016/j.biortech.2013.09.137_b0095 article-title: Pyrolytic characteristics of heterotrophic chlorella protothecoides for renewable bio-fuel production publication-title: J. Appl. Phycol. doi: 10.1023/A:1008153831875 – volume: 5 start-page: 9808 year: 2012 ident: 10.1016/j.biortech.2013.09.137_b0135 article-title: A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22784c – volume: 129 start-page: 1 year: 2013 ident: 10.1016/j.biortech.2013.09.137_b0150 article-title: Nitrogen removal of ramie stalk treated by acid wastewater combined with Clostridium thermocellum and the kinetic study of pyrolysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.11.045 – ident: 10.1016/j.biortech.2013.09.137_b0130 – volume: 102 start-page: 6230 year: 2011 ident: 10.1016/j.biortech.2013.09.137_b0045 article-title: Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA) publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.02.060 – volume: 35 start-page: 1765 year: 2011 ident: 10.1016/j.biortech.2013.09.137_b0075 article-title: Pyrolytic characteristics and kinetic studies of three kinds of red algae publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2011.01.011 – volume: 139 start-page: 66 year: 2013 ident: 10.1016/j.biortech.2013.09.137_b0040 article-title: Thermogravimetric and decomposition kinetic studies of Mesua ferrea L. deoiled cake publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.03.191 – volume: 100 start-page: 3663 year: 2009 ident: 10.1016/j.biortech.2013.09.137_b0160 article-title: Kinetic studies of overlapping pyrolysis reactions in industrial waste activated sludge publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.03.002 – volume: 2 start-page: 288 year: 2001 ident: 10.1016/j.biortech.2013.09.137_b0105 article-title: Mechanisms and kinetics of thermal degradation of Poly(ε-caprolactone) publication-title: Biomacromolecules doi: 10.1021/bm0056310 – volume: 80 start-page: 1 year: 2001 ident: 10.1016/j.biortech.2013.09.137_b0100 article-title: Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(01)00072-4 – volume: 30 start-page: 555 year: 1991 ident: 10.1016/j.biortech.2013.09.137_b0065 article-title: Microalgae as food and supplement publication-title: Crit. Rev. Food Sci. doi: 10.1080/10408399109527556 – volume: 25 start-page: 207 year: 2007 ident: 10.1016/j.biortech.2013.09.137_b0020 article-title: Micro-algae as a source of protein publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2006.11.002 – volume: 17 start-page: 407 year: 1998 ident: 10.1016/j.biortech.2013.09.137_b0140 article-title: Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids publication-title: Int. Rev. Phys. Chem. doi: 10.1080/014423598230108 – volume: 91 start-page: 1 year: 2011 ident: 10.1016/j.biortech.2013.09.137_b0155 article-title: Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2011.01.004 – volume: 530 start-page: 95 year: 2012 ident: 10.1016/j.biortech.2013.09.137_b0005 article-title: Model fitting kinetic analysis and characterisation of the devolatilization of coal blends with corn and sugarcane residues publication-title: Thermochim. Acta doi: 10.1016/j.tca.2011.12.007 – volume: 51 start-page: 26 year: 2013 ident: 10.1016/j.biortech.2013.09.137_b0025 article-title: Production synthetic natural gas from microalgae via supercritical water gasification: a techno-economic sensitivity analysis publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2012.12.038 – volume: 19 start-page: 81 year: 1991 ident: 10.1016/j.biortech.2013.09.137_b0060 article-title: Vacuum pyrolysis of cellulose: Fourier transform infrared characterization of solid residues, product distribution and correlations publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/0165-2370(91)80036-8 – volume: 133 start-page: 389 year: 2013 ident: 10.1016/j.biortech.2013.09.137_b0170 article-title: Hydrothermal liquefaction of Chlorella pyrenoidosa in sub- and supercritical ethanol with heterogeneous catalysts publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.01.076 – volume: 97 start-page: 491 year: 2012 ident: 10.1016/j.biortech.2013.09.137_b0120 article-title: Thermogravimetric analysis and kinetic study of poplar wood pyrolysis publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.12.056 – volume: 18 start-page: 393 year: 1997 ident: 10.1016/j.biortech.2013.09.137_b0145 article-title: Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(199702)18:3<393::AID-JCC9>3.0.CO;2-P – volume: 32 start-page: 460 year: 2008 ident: 10.1016/j.biortech.2013.09.137_b0070 article-title: Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2007.11.004 – volume: 48 start-page: 43 year: 2013 ident: 10.1016/j.biortech.2013.09.137_b0050 article-title: A weighted average global process model based on two-stage kinetic scheme for biomass combustion publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2012.11.011 – volume: 128 start-page: 72 year: 2013 ident: 10.1016/j.biortech.2013.09.137_b0010 article-title: A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.10.043 – volume: 109 start-page: 163 year: 2012 ident: 10.1016/j.biortech.2013.09.137_b0115 article-title: Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.01.001 |
SSID | ssj0003172 |
Score | 2.502952 |
Snippet | •Thermal decomposition characteristics of microalgae Chlorella pyrenoidosa and Spirulina platensis.•Characteristic parameters of TG–DTG curves of the samples... The thermal decomposition behavior of two microalgae, Chlorella pyrenoidosa (CP) and Spirulina platensis (SP), were investigated on a thermogravimetric... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 139 |
SubjectTerms | Activation energy Analyzers Apparent activation energy Arthrospira platensis Biological and medical sciences chemistry Chlorella Chlorella - chemistry Chlorella pyrenoidosa Conversion Differential equations Fundamental and applied biological sciences. Psychology Hot Temperature Integral equations Kinetic Kinetics Lipids Lipids - chemistry Mathematical models methods microalgae Microalgae - chemistry Regression Analysis Spirulina Spirulina - chemistry Spirulina platensis Thermal decomposition Thermal degradation Thermogravimetric thermogravimetry Thermogravimetry - methods |
Title | Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae |
URI | https://dx.doi.org/10.1016/j.biortech.2013.09.137 https://www.ncbi.nlm.nih.gov/pubmed/24161552 https://www.proquest.com/docview/1464500826 https://www.proquest.com/docview/1490527185 https://www.proquest.com/docview/1516755942 https://www.proquest.com/docview/1709783145 |
Volume | 150 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB616QEQQlBeKRAZiasb79q72T1GUasAoheo1Ju1L1cuiROlKdz47cz4ERqpTQ_c_Jj1rmbGM7Oa2fkAPhGyqOZWxElW2DgL3MWa4y5FMyu9VtKnNYrCtzM5Pc--XIiLPZh0Z2GorLK1_Y1Nr611-2TYcnO4LMvhdwq-lajzQkygWu3DAUdvr3pwMP78dXq2McjoIutkAtLHNODWQeGrY1tSUWudl2AptTxlBIl-t496ujTXyLmigby4PyatfdPpc3jWBpXRuFn3C9gL1SE8GV-u2sYa4RAeTTpkN3xzqwnhS7hETVnNqUrrVzknfC0XmcpHP5FiXV83XUuiRRFRsDjHiXygSvS23Cty2z2fiXC2-B3PymXpozkV_NF5kfAKzk9PfkymcQu_EDsh03Vs0IaqRJvUZdqMUiO9sMxZbqR0KniptDTIeDGyjhqvWYyUgipSr8jzBeXS19CrFlV4C5GziQ2MOY8bvIy5Quki8W7E0cJZx5Tqg-gYnru2NzlBZMzyrgjtKu8ElZOg8kTnKKg-DDfjlk13jgdH6E6e-Zae5ehCHhw72FKAzZRcETij0n342GlEjiKl1IupwuLmmjZYmaBwS-6i0YngGCuIHTSC4Q5P6IzvoBnVZ3NYht9506jlv5VmdSKaH_0HG97BY7pranreQ2-9ugkfMDJb2wHsH_9hg_b_-wtp9Tl4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa69NAVw7B1j2aPzgN29WLZkiIdg2BFura5rAV6E6yHC7d5IU23vz_Sj6wBtvSwm2FRlkDSJAVS_AC-ELKoTq2IE17YmIfUxTrFU4pmVnqtpM8qFIXzsRxd8u9X4moHhu1dGCqrbGx_bdMra9286TXc7C3KsveDgm8lqrwQE6hWT2CXE6h1B3YHJ6ej8dogo4uskglIH9OEBxeFb77akopaq7wEy6jlKSNI9L_7qGeL_A45V9SQF_-OSSvfdPwCnjdBZTSo9_0SdsLsAPYH18umsUY4gL1hi-yGIw-aEL6Ca9SU5ZSqtH6WU8LXclE-89EtUqyq57prSTQvIgoWp7iQD1SJ3pR7RW6z5zMRTua_4km5KH00pYI_ui8SXsPl8beL4Shu4BdiJ2S2inO0oSrReea4zvtZLr2wzNk0l9Kp4KXSMkfGi7511HjNYqQUVJF5RZ4vKJe9gc5sPguHEDmb2MCY83jA48wVSheJd_0ULZx1TKkuiJbhxjW9yQkiY2LaIrQb0wrKkKBMog0Kqgu99bxF3Z3j0Rm6lafZ0DODLuTRuUcbCrBeMlUEzqh0Fz63GmFQpJR6yWdhfn9HBywuKNyS22h0IlKMFcQWGsHwhCc0T7fQ9Ku7OYzjd97Wavlnp7xKRKfv_oMNn2BvdHF-Zs5Oxqfv4SmN1PU9H6CzWt6HjxilrexR8xf-BsaYO14 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermogravimetric+and+kinetic+analysis+of+thermal+decomposition+characteristics+of+low-lipid+microalgae&rft.jtitle=Bioresource+technology&rft.au=Gai%2C+Chao&rft.au=Zhang%2C+Yuanhui&rft.au=Chen%2C+Wan-Ting&rft.au=Zhang%2C+Peng&rft.date=2013-12-01&rft.issn=0960-8524&rft.volume=150&rft.spage=139&rft.epage=148&rft_id=info:doi/10.1016%2Fj.biortech.2013.09.137&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |