Development and validation of an algorithm to recalibrate mental models and reduce diagnostic errors associated with catheter-associated bacteriuria
Background Overtreatment of catheter-associated bacteriuria is a quality and safety problem, despite the availability of evidence-based guidelines. Little is known about how guidelines-based knowledge is integrated into clinicians’ mental models for diagnosing catheter-associated urinary tract infec...
Saved in:
| Published in | BMC medical informatics and decision making Vol. 13; no. 1; p. 48 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
15.04.2013
BioMed Central Ltd Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1472-6947 1472-6947 |
| DOI | 10.1186/1472-6947-13-48 |
Cover
| Summary: | Background
Overtreatment of catheter-associated bacteriuria is a quality and safety problem, despite the availability of evidence-based guidelines. Little is known about how guidelines-based knowledge is integrated into clinicians’ mental models for diagnosing catheter-associated urinary tract infection (CA-UTI). The objectives of this research were to better understand clinicians’ mental models for CA-UTI, and to develop and validate an algorithm to improve diagnostic accuracy for CA-UTI.
Methods
We conducted two phases of this research project. In phase one, 10 clinicians assessed and diagnosed four patient cases of catheter associated bacteriuria (n= 40 total cases). We assessed the clinical cues used when diagnosing these cases to determine if the mental models were IDSA guideline compliant. In phase two, we developed a diagnostic algorithm derived from the IDSA guidelines. IDSA guideline authors and non-expert clinicians evaluated the algorithm for content and face validity. In order to determine if diagnostic accuracy improved using the algorithm, we had experts and non-experts diagnose 71 cases of bacteriuria.
Results
Only 21 (53%) diagnoses made by clinicians without the algorithm were guidelines-concordant with fair inter-rater reliability between clinicians (Fleiss’ kappa = 0.35, 95% Confidence Intervals (CIs) = 0.21 and 0.50). Evidence suggests that clinicians’ mental models are inappropriately constructed in that clinicians endorsed guidelines-discordant cues as influential in their decision-making: pyuria, systemic leukocytosis, organism type and number, weakness, and elderly or frail patient. Using the algorithm, inter-rater reliability between the expert and each non-expert was substantial (Cohen’s kappa = 0.72, 95% CIs = 0.52 and 0.93 between the expert and non-expert #1 and 0.80, 95% CIs = 0.61 and 0.99 between the expert and non-expert #2).
Conclusions
Diagnostic errors occur when clinicians’ mental models for catheter-associated bacteriuria include cues that are guidelines-discordant for CA-UTI. The understanding we gained of clinicians’ mental models, especially diagnostic errors, and the algorithm developed to address these errors will inform interventions to improve the accuracy and reliability of CA-UTI diagnoses. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 ObjectType-Article-2 ObjectType-Feature-1 |
| ISSN: | 1472-6947 1472-6947 |
| DOI: | 10.1186/1472-6947-13-48 |