Cortical responses to noxious stimuli during sleep
We used magnetoencephalography to study effects of sleep on cortical responses to noxious stimuli and to clarify the mechanisms underlying pain perception. For a noxious stimulus, painful intra-epidermal electrical stimulation, which selectively activates A-δ fibers, was applied to the dorsum of the...
Saved in:
Published in | Neuroscience Vol. 128; no. 1; pp. 177 - 186 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
2004
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0306-4522 1873-7544 |
DOI | 10.1016/j.neuroscience.2004.06.036 |
Cover
Summary: | We used magnetoencephalography to study effects of sleep on cortical responses to noxious stimuli and to clarify the mechanisms underlying pain perception. For a noxious stimulus, painful intra-epidermal electrical stimulation, which selectively activates A-δ fibers, was applied to the dorsum of the left hand. While awake, subjects were asked to count the number of stimuli silently (Attention) or ignore the stimuli (Control). During sleep, magnetic fields recorded in stage 1 sleep and stage 2 sleep were analyzed. One main component at a latency around 140–160 ms was identified in the awake condition. Multiple source analysis indicated that this main component was generated by activities in the contralateral primary somatosensory cortex (SI), bilateral secondary somatosensory cortex (SII) and insular cortex. The medial temporal area (MT) and cingulate cortex were activated later than the main component. Cortical responses in the contralateral SI, ipsilateral SII and MT, bilateral insula and cingulate cortex were significantly enhanced in Attention as compared with Control. The main component 1 M as well as later magnetic fields were markedly attenuated during sleep, suggesting that all these cortical areas are involved in pain cognition. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0306-4522 1873-7544 |
DOI: | 10.1016/j.neuroscience.2004.06.036 |