Offspring genes indirectly influence sibling and maternal behavioural strategies over resource share
Family members show behavioural strategies predicted to maximize individual fitness. These behaviours depend directly on genes expressed in focal individuals but also indirectly on genes expressed in other family members. However, how sibling and parental behavioural strategies are modified by genes...
Saved in:
Published in | Proceedings of the Royal Society. B, Biological sciences Vol. 284; no. 1863; p. 20171059 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
The Royal Society
27.09.2017
The Royal Society Publishing |
Edition | Royal Society (Great Britain) |
Subjects | |
Online Access | Get full text |
ISSN | 0962-8452 1471-2954 1471-2954 |
DOI | 10.1098/rspb.2017.1059 |
Cover
Summary: | Family members show behavioural strategies predicted to maximize individual fitness. These behaviours depend directly on genes expressed in focal individuals but also indirectly on genes expressed in other family members. However, how sibling and parental behavioural strategies are modified by genes expressed in family members, and to what degree, remains unclear. To answer this question, we have used a split litter design in an experimental population of genetically variable mouse families, and identified loci that indirectly affected sibling and maternal behaviour simultaneously. These loci map to genomic regions that also show a direct effect on offspring behaviour. Directly and indirectly affected traits were significantly correlated at the phenotypic level, illustrating how indirect effects are caused. Genetic variants in offspring that influence solicitation also impacted their siblings' and maternal behaviour. However, in contrast to predictions from sibling competition, unrelated litter mates benefited from increased solicitation. Overall, such indirect genetic effects explained a large proportion of variation seen in behaviours, with candidate genes involved in metabolism to neuronal development. These results reveal that we need to view behavioural strategies as the result of conjoint selection on genetic variation in all interacting family members. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Electronic supplementary material is available online at https://dx.doi.org/10.6084/m9.figshare.c.3878407. |
ISSN: | 0962-8452 1471-2954 1471-2954 |
DOI: | 10.1098/rspb.2017.1059 |