SciPy 1.0: fundamental algorithms for scientific computing in Python

SciPy is an open-source scientific computing library for the Python programming language. Since its initial release in 2001, SciPy has become a de facto standard for leveraging scientific algorithms in Python, with over 600 unique code contributors, thousands of dependent packages, over 100,000 depe...

Full description

Saved in:
Bibliographic Details
Published inNature methods Vol. 17; no. 3; pp. 261 - 272
Main Authors Virtanen, Pauli, Gommers, Ralf, Oliphant, Travis E., Haberland, Matt, Reddy, Tyler, Cournapeau, David, Burovski, Evgeni, Peterson, Pearu, Weckesser, Warren, Bright, Jonathan, van der Walt, Stéfan J., Brett, Matthew, Wilson, Joshua, Millman, K. Jarrod, Mayorov, Nikolay, Nelson, Andrew R. J., Jones, Eric, Kern, Robert, Larson, Eric, Carey, C J, Polat, İlhan, Feng, Yu, Moore, Eric W., VanderPlas, Jake, Laxalde, Denis, Perktold, Josef, Cimrman, Robert, Henriksen, Ian, Quintero, E. A., Harris, Charles R., Archibald, Anne M., Ribeiro, Antônio H., Pedregosa, Fabian, van Mulbregt, Paul
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.03.2020
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1548-7091
1548-7105
1548-7105
DOI10.1038/s41592-019-0686-2

Cover

More Information
Summary:SciPy is an open-source scientific computing library for the Python programming language. Since its initial release in 2001, SciPy has become a de facto standard for leveraging scientific algorithms in Python, with over 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories and millions of downloads per year. In this work, we provide an overview of the capabilities and development practices of SciPy 1.0 and highlight some recent technical developments. This Perspective describes the development and capabilities of SciPy 1.0, an open source scientific computing library for the Python programming language.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
USDOE
LA-UR--19-29085
89233218CNA000001
ISSN:1548-7091
1548-7105
1548-7105
DOI:10.1038/s41592-019-0686-2