Application of IRSA-BP neural network in diagnosing diabetes

Within the healthcare sector, the application of machine learning is gaining prominence, notably enhancing the efficiency and precision of diagnostic procedures. This study focuses on this key area of diabetes prediction and aims to develop an innovative prediction method. Using the data set publish...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 6; p. e0324759
Main Authors Zhang, Wan-Hua, Zhang, Zi-Xun
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 25.06.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0324759

Cover

More Information
Summary:Within the healthcare sector, the application of machine learning is gaining prominence, notably enhancing the efficiency and precision of diagnostic procedures. This study focuses on this key area of diabetes prediction and aims to develop an innovative prediction method. Using the data set published by Kare, this paper constructs and compares various intelligent systems based on multilayer algorithms, and specifically introduces improved reptile search algorithm (IRSA) to optimize the weight and threshold initialization of traditional backpropagation (BP) neural networks. This improvement aims to improve the network performance and accuracy in diabetes detection. In the study, the IRSA-BP hybrid algorithm and many other machine learning algorithms were used for diabetes prediction, and the algorithm performance was comprehensively evaluated using multiple classification metrics. The experimental results showed that the IRSA-BP algorithm performed the best among all the evaluated algorithms, with an accuracy of up to 83.6%, showing its superior performance in diabetes prediction. Therefore, the IRSA-BP classifier has an important potential for application in the medical field. It can assist medical professionals to identify diabetes risk earlier and assess the condition more accurately, thus improving diagnostic efficiency and accuracy. This is important for early intervention and treatment of patients with diabetes and to improve their health status and quality of life.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0324759