Adapting Robot Behavior for Human--Robot Interaction

Human beings subconsciously adapt their behaviors to a communication partner in order to make interactions run smoothly. In human-robot interactions, not only the human but also the robot is expected to adapt to its partner. Thus, to facilitate human-robot interactions, a robot should be able to rea...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on robotics Vol. 24; no. 4; pp. 911 - 916
Main Authors Mitsunaga, N., Smith, C., Kanda, T., Ishiguro, H., Hagita, N.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.08.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1552-3098
1941-0468
1941-0468
DOI10.1109/TRO.2008.926867

Cover

More Information
Summary:Human beings subconsciously adapt their behaviors to a communication partner in order to make interactions run smoothly. In human-robot interactions, not only the human but also the robot is expected to adapt to its partner. Thus, to facilitate human-robot interactions, a robot should be able to read subconscious comfort and discomfort signals from humans and adjust its behavior accordingly, just like a human would. However, most previous research works expected the human to consciously give feedback, which might interfere with the aim of interaction. We propose an adaptation mechanism based on reinforcement learning that reads subconscious body signals from a human partner, and uses this information to adjust interaction distances, gaze meeting, and motion speed and timing in human-robot interactions. The mechanism uses gazing at the robot's face and human movement distance as subconscious body signals that indicate a human's comfort and discomfort. A pilot study with a humanoid robot that has ten interaction behaviors has been conducted. The study result of 12 subjects suggests that the proposed mechanism enables autonomous adaptation to individual preferences. Also, detailed discussion and conclusions are presented.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ISSN:1552-3098
1941-0468
1941-0468
DOI:10.1109/TRO.2008.926867