Antiosteoporotic Activity of Anthraquinones from Morinda officinalis on Osteoblasts and Osteoclasts

Bioactivity-guided fractionation led to the successful isolation of antiosteoporotic components, i.e. physicion (1), rubiadin-1-methyl ether (2), 2-hydroxy-1-methoxy- anthraquinone (3), 1,2-dihydroxy-3-methylanthraquinone (4), 1,3,8-trihydroxy-2-methoxy- anthraquinone (5), 2-hydroxymethyl-3-hydroxya...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 14; no. 1; pp. 573 - 583
Main Authors Wu, Yan-Bin, Zheng, Cheng-Jian, Qin, Lu-Ping, Sun, Lian-Na, Han, Ting, Jiao, Lei, Zhang, Qiao-Yan, Wu, Jin-Zhong
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.01.2009
Molecular Diversity Preservation International
Subjects
Online AccessGet full text
ISSN1420-3049
1420-3049
DOI10.3390/molecules14010573

Cover

Abstract Bioactivity-guided fractionation led to the successful isolation of antiosteoporotic components, i.e. physicion (1), rubiadin-1-methyl ether (2), 2-hydroxy-1-methoxy- anthraquinone (3), 1,2-dihydroxy-3-methylanthraquinone (4), 1,3,8-trihydroxy-2-methoxy- anthraquinone (5), 2-hydroxymethyl-3-hydroxyanthraquinone (6), 2-methoxyanthraquinone (7) and scopoletin (8) from an ethanolic extract of the roots of Morinda officinalis. Compounds 4-8 are isolated for the first time from M. officinalis. Among them, compounds 2 and 3 promoted osteoblast proliferation, while compounds 4, 5 increased osteoblast ALP activity. All of the isolated compounds inhibited osteoclast TRAP activity and bone resorption, and the inhibitory effects on osteoclastic bone resorption of compounds 1 and 5 were stronger than that of other compounds. Taken together, antiosteoporotic activity of M. officinalis and its anthraquinones suggest therapeutic potential against osteoporosis.
AbstractList Bioactivity-guided fractionation led to the successful isolation of antiosteoporotic components, i.e. physicion (1), rubiadin-1-methyl ether (2), 2-hydroxy-1-methoxy- anthraquinone (3), 1,2-dihydroxy-3-methylanthraquinone (4), 1,3,8-trihydroxy-2-methoxy- anthraquinone (5), 2-hydroxymethyl-3-hydroxyanthraquinone (6), 2-methoxyanthraquinone (7) and scopoletin (8) from an ethanolic extract of the roots of Morinda officinalis. Compounds 4-8 are isolated for the first time from M. officinalis. Among them, compounds 2 and 3 promoted osteoblast proliferation, while compounds 4, 5 increased osteoblast ALP activity. All of the isolated compounds inhibited osteoclast TRAP activity and bone resorption, and the inhibitory effects on osteoclastic bone resorption of compounds 1 and 5 were stronger than that of other compounds. Taken together, antiosteoporotic activity of M. officinalis and its anthraquinones suggest therapeutic potential against osteoporosis.
Bioactivity-guided fractionation led to the successful isolation of antiosteoporotic components, i.e. physicion ( 1 ), rubiadin-1-methyl ether ( 2 ), 2-hydroxy-1-methoxy- anthraquinone ( 3 ), 1,2-dihydroxy-3-methylanthraquinone ( 4 ), 1,3,8-trihydroxy-2-methoxy- anthraquinone ( 5 ), 2-hydroxymethyl-3-hydroxyanthraquinone ( 6 ), 2-methoxyanthraquinone ( 7 ) and scopoletin ( 8 ) from an ethanolic extract of the roots of Morinda officinalis . Compounds 4-8 are isolated for the first time from M. officinalis. Among them, compounds 2 and 3 promoted osteoblast proliferation, while compounds 4, 5 increased osteoblast ALP activity. All of the isolated compounds inhibited osteoclast TRAP activity and bone resorption, and the inhibitory effects on osteoclastic bone resorption of compounds 1 and 5 were stronger than that of other compounds. Taken together, antiosteoporotic activity of M. officinalis and its anthraquinones suggest therapeutic potential against osteoporosis.
Bioactivity-guided fractionation led to the successful isolation of antiosteoporotic components, i.e. physicion (1), rubiadin-1-methyl ether (2), 2-hydroxy-1-methoxy- anthraquinone (3), 1,2-dihydroxy-3-methylanthraquinone (4), 1,3,8-trihydroxy-2-methoxy- anthraquinone (5), 2-hydroxymethyl-3-hydroxyanthraquinone (6), 2-methoxyanthraquinone (7) and scopoletin (8) from an ethanolic extract of the roots of Morinda officinalis. Compounds 4-8 are isolated for the first time from M. officinalis. Among them, compounds 2 and 3 promoted osteoblast proliferation, while compounds 4, 5 increased osteoblast ALP activity. All of the isolated compounds inhibited osteoclast TRAP activity and bone resorption, and the inhibitory effects on osteoclastic bone resorption of compounds 1 and 5 were stronger than that of other compounds. Taken together, antiosteoporotic activity of M. officinalis and its anthraquinones suggest therapeutic potential against osteoporosis.Bioactivity-guided fractionation led to the successful isolation of antiosteoporotic components, i.e. physicion (1), rubiadin-1-methyl ether (2), 2-hydroxy-1-methoxy- anthraquinone (3), 1,2-dihydroxy-3-methylanthraquinone (4), 1,3,8-trihydroxy-2-methoxy- anthraquinone (5), 2-hydroxymethyl-3-hydroxyanthraquinone (6), 2-methoxyanthraquinone (7) and scopoletin (8) from an ethanolic extract of the roots of Morinda officinalis. Compounds 4-8 are isolated for the first time from M. officinalis. Among them, compounds 2 and 3 promoted osteoblast proliferation, while compounds 4, 5 increased osteoblast ALP activity. All of the isolated compounds inhibited osteoclast TRAP activity and bone resorption, and the inhibitory effects on osteoclastic bone resorption of compounds 1 and 5 were stronger than that of other compounds. Taken together, antiosteoporotic activity of M. officinalis and its anthraquinones suggest therapeutic potential against osteoporosis.
Author Zhang, Qiao-Yan
Sun, Lian-Na
Qin, Lu-Ping
Wu, Yan-Bin
Han, Ting
Jiao, Lei
Zheng, Cheng-Jian
Wu, Jin-Zhong
AuthorAffiliation 1 Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China; E-mail: wxsq1@163.com (Y-B. W.)
2 Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, P.R. China
3 Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
AuthorAffiliation_xml – name: 2 Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, P.R. China
– name: 1 Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China; E-mail: wxsq1@163.com (Y-B. W.)
– name: 3 Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
Author_xml – sequence: 1
  givenname: Yan-Bin
  surname: Wu
  fullname: Wu, Yan-Bin
– sequence: 2
  givenname: Cheng-Jian
  surname: Zheng
  fullname: Zheng, Cheng-Jian
– sequence: 3
  givenname: Lu-Ping
  surname: Qin
  fullname: Qin, Lu-Ping
– sequence: 4
  givenname: Lian-Na
  surname: Sun
  fullname: Sun, Lian-Na
– sequence: 5
  givenname: Ting
  surname: Han
  fullname: Han, Ting
– sequence: 6
  givenname: Lei
  surname: Jiao
  fullname: Jiao, Lei
– sequence: 7
  givenname: Qiao-Yan
  surname: Zhang
  fullname: Zhang, Qiao-Yan
– sequence: 8
  givenname: Jin-Zhong
  surname: Wu
  fullname: Wu, Jin-Zhong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19169204$$D View this record in MEDLINE/PubMed
BookMark eNp1kktvHCEMx1GVqnm0H6CXaqRKvW0LAwzMpdIq6iNSqlzaM_LwSFgxsAEmUr592GwaJal6Att__2yDj9FBTNEi9J7gz5SO-MucgtVLsIUwTDAX9BU6IqzHK4rZePDkfoiOS9lg3BNG-Bt0SEYyjD1mR0ivY_WpVJu2KafqdbfW1d_4etsl17XgVYbrxe8Kl87lNHe_UvbRQAs7r32E4EuXYnexY0wBSi0dRLO39b39Fr12EIp993CeoD_fv_0-_bk6v_hxdro-X2nORV05MQoJfS-wA0naSNgxaowdJkyMlIxMlk2WcjqIiblhAKr75gNrsJNOUHqCzvZck2CjttnPkG9VAq_uHSlfKshtxGDVNFHhRilaEcIsNzD1gDkYxyQRzd1YX_es7TLN1mgba4bwDPo8Ev2Vukw3aug5lQw3wKcHQE7Xiy1Vzb5oGwJEm5aihkFyNoqxCT--EG7Sktu7FkU4JZwIQWVTfXjaz2Mjf3-yCcReoHMqJVuntK_Q_nbXng-KYLXbGfXPzrRM8iLzEf7fnDujqMlv
CitedBy_id crossref_primary_10_1002_slct_202300115
crossref_primary_10_1016_j_phytochem_2021_112929
crossref_primary_10_1016_j_phytochem_2024_114034
crossref_primary_10_1177_15353702231198071
crossref_primary_10_3390_ijms18010203
crossref_primary_10_1002_vjch_202060082
crossref_primary_10_1016_j_bbrep_2023_101586
crossref_primary_10_1155_2021_6641838
crossref_primary_10_1016_j_tifs_2024_104690
crossref_primary_10_3390_jof8080806
crossref_primary_10_1080_14786419_2024_2306172
crossref_primary_10_1016_j_phytol_2015_11_006
crossref_primary_10_1155_2012_364604
crossref_primary_10_1002_jcp_31063
crossref_primary_10_1007_s10600_018_2314_2
crossref_primary_10_1039_C8FO01569D
crossref_primary_10_1080_14786419_2021_1974434
crossref_primary_10_3390_ijms150610605
crossref_primary_10_1038_s41598_020_67890_x
crossref_primary_10_1016_j_arabjc_2022_104024
crossref_primary_10_1016_j_bse_2024_104828
crossref_primary_10_1002_cbdv_201200173
crossref_primary_10_1016_j_phytochem_2024_113995
crossref_primary_10_3390_molecules21030239
crossref_primary_10_1016_j_nut_2016_08_006
crossref_primary_10_1002_jssc_201700484
crossref_primary_10_1177_10815589241229693
crossref_primary_10_1155_2023_6726038
crossref_primary_10_1016_j_bmcl_2014_05_077
crossref_primary_10_3390_molecules23030615
crossref_primary_10_1007_s11011_016_9853_7
crossref_primary_10_1016_j_fitote_2020_104482
crossref_primary_10_1016_j_phymed_2015_03_002
crossref_primary_10_1021_acs_jafc_9b01910
crossref_primary_10_1016_j_fitote_2016_03_013
crossref_primary_10_1021_np300824h
crossref_primary_10_3390_foods12081590
crossref_primary_10_3390_molecules24081456
crossref_primary_10_1080_10286020_2017_1279609
crossref_primary_10_1016_j_tetlet_2016_12_080
crossref_primary_10_3389_fphar_2019_01344
crossref_primary_10_1371_journal_pone_0051377
crossref_primary_10_1038_srep07149
crossref_primary_10_1016_j_eujim_2012_01_006
crossref_primary_10_1016_j_jpba_2019_01_019
crossref_primary_10_3390_molecules18077998
crossref_primary_10_3390_molecules22101638
crossref_primary_10_3390_ijms21155332
crossref_primary_10_1016_j_bse_2011_07_003
crossref_primary_10_21851_obr_42_03_201809_130
crossref_primary_10_1016_S1875_5364_14_60034_0
crossref_primary_10_1016_j_bioorg_2021_104800
crossref_primary_10_1016_j_fitote_2024_105961
crossref_primary_10_1002_ptr_6579
crossref_primary_10_1007_s13659_013_0053_4
crossref_primary_10_1039_C7RA04024E
crossref_primary_10_1002_chem_201603055
crossref_primary_10_1080_14786419_2023_2192491
crossref_primary_10_1016_j_jep_2013_04_014
crossref_primary_10_1021_acs_jnatprod_0c00447
crossref_primary_10_1016_j_androl_2017_07_001
crossref_primary_10_1016_j_jpba_2018_04_028
crossref_primary_10_3390_ijms18020322
crossref_primary_10_3390_molecules15010241
crossref_primary_10_62347_KNRS3234
crossref_primary_10_1021_acsomega_1c03372
crossref_primary_10_1016_j_phytol_2021_02_005
crossref_primary_10_1016_j_phytol_2020_04_011
crossref_primary_10_1002_cbdv_202000056
crossref_primary_10_1016_j_biopha_2023_114850
crossref_primary_10_1080_14786419_2017_1410806
crossref_primary_10_1007_s12247_012_9139_5
crossref_primary_10_3390_molecules22020197
crossref_primary_10_1016_j_ijbiomac_2019_04_084
crossref_primary_10_1039_C8OB03223H
crossref_primary_10_1016_j_phymed_2022_154542
crossref_primary_10_1016_j_bbrc_2018_10_100
crossref_primary_10_1016_j_compbiolchem_2018_11_025
crossref_primary_10_1080_10286020_2023_2211510
crossref_primary_10_3390_ph15111392
crossref_primary_10_1016_j_cbi_2011_08_013
crossref_primary_10_1016_j_jep_2017_10_028
crossref_primary_10_1016_j_compbiomed_2020_104074
crossref_primary_10_3389_fendo_2021_727061
crossref_primary_10_1016_j_jtcms_2020_07_001
crossref_primary_10_1016_j_bse_2020_104166
crossref_primary_10_2174_2210315509666181227100320
crossref_primary_10_3390_agronomy14061134
crossref_primary_10_18311_jnr_2023_34056
crossref_primary_10_3390_molecules161210157
crossref_primary_10_1016_j_phytochem_2014_06_004
crossref_primary_10_1111_j_1753_4887_2011_00451_x
crossref_primary_10_1016_j_yexcr_2014_12_018
crossref_primary_10_2147_DDDT_S338548
crossref_primary_10_1016_j_jpba_2021_114403
crossref_primary_10_1515_znc_2020_0187
crossref_primary_10_3390_molecules201017684
crossref_primary_10_3390_molecules23051070
crossref_primary_10_3390_molecules14062049
Cites_doi 10.1016/S0014-2999(02)01898-8
10.1111/j.1745-7254.2006.00306.x
10.1039/j39670002100
10.1002/jbm.a.30426
10.1016/S8756-3282(99)00162-3
10.1002/jcp.1041430304
10.1055/s-2006-960473
10.1016/S0031-9422(02)00173-5
10.1097/00003086-198806000-00033
10.1016/S0308-8146(01)00402-2
10.1016/j.ejphar.2008.06.044
10.1055/s-2006-961543
10.1016/j.intimp.2008.01.027
10.1007/BF00305576
10.1093/aje/kwj005
10.1016/0003-2697(76)90527-3
10.1016/S0031-9422(98)00470-1
10.1002/ptr.1683
ContentType Journal Article
Copyright Copyright MDPI AG 2009
2009 by the authors; 2009
Copyright_xml – notice: Copyright MDPI AG 2009
– notice: 2009 by the authors; 2009
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/molecules14010573
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef


MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
EndPage 583
ExternalDocumentID oai_doaj_org_article_bb37f98740014e5dab2a05adf4817874
PMC6253840
3322768441
19169204
10_3390_molecules14010573
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
C1A
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IPNFZ
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RPM
SV3
TR2
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c557t-f7978a2270fa811400f43dde6b01d8841be4be35367b4f66a3c21beaed0f8f733
IEDL.DBID 7X7
ISSN 1420-3049
IngestDate Wed Aug 27 01:26:05 EDT 2025
Thu Aug 21 18:21:35 EDT 2025
Fri Sep 05 00:16:08 EDT 2025
Fri Jul 25 21:21:05 EDT 2025
Mon Jul 21 05:26:36 EDT 2025
Tue Jul 01 03:01:30 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/3.0
licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-f7978a2270fa811400f43dde6b01d8841be4be35367b4f66a3c21beaed0f8f733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1531517738?pq-origsite=%requestingapplication%
PMID 19169204
PQID 1531517738
PQPubID 2032355
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_bb37f98740014e5dab2a05adf4817874
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6253840
proquest_miscellaneous_66854979
proquest_journals_1531517738
pubmed_primary_19169204
crossref_citationtrail_10_3390_molecules14010573
crossref_primary_10_3390_molecules14010573
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20090123
PublicationDateYYYYMMDD 2009-01-23
PublicationDate_xml – month: 1
  year: 2009
  text: 20090123
  day: 23
PublicationDecade 2000
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2009
Publisher MDPI AG
Molecular Diversity Preservation International
Publisher_xml – name: MDPI AG
– name: Molecular Diversity Preservation International
References Lee (ref_10) 2008; 8
Vaes (ref_9) 1988; 231
Daniel (ref_17) 2002; 60
Qin (ref_22) 2003; 24
Bradford (ref_21) 1976; 72
Yang (ref_1) 1992; 27
Ding (ref_16) 2008; 590
Zin (ref_18) 2001; 78
Hofbauer (ref_14) 1999; 25
Tamura (ref_15) 2002; 448
Xie (ref_3) 2007; 5
Liu (ref_19) 1995; 26
Zambonin (ref_20) 1982; 165
Savarino (ref_12) 2005; 75A
Seo (ref_2) 2005; 19
Wang (ref_11) 2006; 41
Koumaglo (ref_4) 1992; 58
Owen (ref_8) 1990; 143
Zhang (ref_13) 2006; 163
Schripsema (ref_5) 1999; 51
Sittie (ref_6) 1999; 65
ref_7
References_xml – volume: 448
  start-page: 81
  year: 2002
  ident: ref_15
  article-title: Pharmacological studies of diacerein in animal models of inflammation, arthritis and bone resorption
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/S0014-2999(02)01898-8
– volume: 26
  start-page: 157
  year: 1995
  ident: ref_19
  article-title: Biological study of growth pattern of newborn rat calvaria osteoblastic cell in vitro
  publication-title: Acta Anatom. Sin.
– volume: 41
  start-page: 555
  year: 2006
  ident: ref_11
  article-title: Inhibitory effect of diacere in on osteoclastic bone destruction and its possible mechan ism of action
  publication-title: Acta Pharm. Sinica
  doi: 10.1111/j.1745-7254.2006.00306.x
– ident: ref_7
  doi: 10.1039/j39670002100
– volume: 75A
  start-page: 324
  year: 2005
  ident: ref_12
  article-title: A preliminary in vitro and in vivo study of the effects of new anthraquinones on neutrophils and bone remodeling
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.a.30426
– volume: 27
  start-page: 358
  year: 1992
  ident: ref_1
  article-title: Anthraquinones isolated from Morinda officinalis and Damnacanthusindicus
  publication-title: Acta Pharm. Sinica
– volume: 25
  start-page: 255
  year: 1999
  ident: ref_14
  article-title: Interleukin-1β and tumor necrosis factor-α, but not interleukin-6 stimulate osteoprotegerin ligand gene expression in human osteoblastic cells
  publication-title: Bone
  doi: 10.1016/S8756-3282(99)00162-3
– volume: 143
  start-page: 420
  year: 1990
  ident: ref_8
  article-title: Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationship in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracelluar matrix
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.1041430304
– volume: 65
  start-page: 259
  year: 1999
  ident: ref_6
  article-title: Structure-activity studies: in vitro antileishmanial and antimalarial activities of anthraquinones from Morinda lucida
  publication-title: Pianta Med.
  doi: 10.1055/s-2006-960473
– volume: 60
  start-page: 567
  year: 2002
  ident: ref_17
  article-title: Peroxidase-mediated transformation of hydroxy-9,10-anthraquinones
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(02)00173-5
– volume: 231
  start-page: 239
  year: 1988
  ident: ref_9
  article-title: Celluar biology and biochemical mechanism of bone resorption. A review of recent developments on the formation, activation, and mode of action of osteoclasts
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1097/00003086-198806000-00033
– volume: 78
  start-page: 227
  year: 2001
  ident: ref_18
  article-title: Antioxidative activity of extracts from mengkudu (Morinda citrifolia L.) root, fruit and leaf
  publication-title: Food Chem.
  doi: 10.1016/S0308-8146(01)00402-2
– volume: 590
  start-page: 377
  year: 2008
  ident: ref_16
  article-title: Exploration of emodin to treat alpha-naphthylisothiocyanate-induced cholestatic hepatitis via anti-inflammatory pathway
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2008.06.044
– volume: 5
  start-page: 193
  year: 2007
  ident: ref_3
  article-title: Chemical constituents from Inula cappa
  publication-title: Chin. J. Nat. Med.
– volume: 58
  start-page: 533
  year: 1992
  ident: ref_4
  article-title: Effects of three compounds extracted from Morinda lucida on Plasmodium falciparum
  publication-title: Planta Med.
  doi: 10.1055/s-2006-961543
– volume: 8
  start-page: 741
  year: 2008
  ident: ref_10
  article-title: Emodin accelerates osteoblast differentiation through phosphatidylinositol 3-kinase activation and bone morphogenetic protein-2 gene expression
  publication-title: Int. J. Immunopharmacol.
  doi: 10.1016/j.intimp.2008.01.027
– volume: 165
  start-page: 405
  year: 1982
  ident: ref_20
  article-title: Isolated osteoclasts in primary culture: first observation on structure and survival in culture media
  publication-title: Anat. Embryol.
  doi: 10.1007/BF00305576
– volume: 163
  start-page: 9
  year: 2006
  ident: ref_13
  article-title: Antioxidant intake and risk of osteoporotic hip fracture in Utah: an effect modified by smoking status
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwj005
– volume: 72
  start-page: 248
  year: 1976
  ident: ref_21
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(76)90527-3
– volume: 24
  start-page: 181
  year: 2003
  ident: ref_22
  article-title: Total coumarins from fruits of Cnidium monnieri (TCFC) inhibit the formation and differentiation of multinucleated osteoclasts derived from rat marrow cells
  publication-title: Acta Pharmacol. Sin.
– volume: 51
  start-page: 55
  year: 1999
  ident: ref_5
  article-title: Robustaquinones, novel anthraquinones from an elicited Cinchona robusta suspension culture
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(98)00470-1
– volume: 19
  start-page: 231
  year: 2005
  ident: ref_2
  article-title: Effect of Mornidae radix extracts on experimental osteoporosis in sciatic neurectomized mice
  publication-title: Phytother. Res.
  doi: 10.1002/ptr.1683
SSID ssj0021415
Score 2.2730536
Snippet Bioactivity-guided fractionation led to the successful isolation of antiosteoporotic components, i.e. physicion (1), rubiadin-1-methyl ether (2),...
Bioactivity-guided fractionation led to the successful isolation of antiosteoporotic components, i.e. physicion ( 1 ), rubiadin-1-methyl ether ( 2 ),...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 573
SubjectTerms Alkaline Phosphatase - metabolism
Animals
Anthraquinones
Anthraquinones - chemistry
Anthraquinones - pharmacology
Anthraquinones - therapeutic use
Bone Density Conservation Agents - chemistry
Bone Density Conservation Agents - pharmacology
Bone Density Conservation Agents - therapeutic use
Bone Resorption - drug therapy
Cell Proliferation - drug effects
Cells, Cultured
Fractionation
Molecular Structure
Morinda - chemistry
Morinda officinalis
Osteoblast
Osteoblasts - cytology
Osteoblasts - drug effects
Osteoclast
Osteoclasts - cytology
Osteoclasts - drug effects
Osteoporosis
Pharmacy
Phosphatase
Rats
Rats, Wistar
Traditional Chinese medicine
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwFLRQL3CpaIE2tAUfOCFFdWLHdo7biqpCWrhQqbfIn2qlklCy-__7np1ddtsKLhwTO5bj9xLPyPYMIZ9qXwVualeGCiiKsE0oWx9lGXzrdStFZQQeFJ5_k5dX4ut1c71h9YV7wrI8cB64U2u5ii0axwGYD403tjasMT4KDa2rpATKWrYiUxPVqkTyLqgEng8GEJzXMzkQ_NOf2XY2jEgtUA5wa0ZKwv3Poc3HmyY3ZqGL12R3go90lru9R16Efp-8PF-5tr0hbobbFyF0AwDrAWrRmcsGEXSINNkimPvlbY8S_RTPltA5bsHzhmYxCcTlIx16-h3bsICtFyM1vc_XLl2_JVcXX36cX5aTkULpmkYtyqiAK5q6ViwaDQSIsSg4_NekZZXXWlQ2CBt4w6WyIkppuKvhngmeRR0V5-_IDvbrkFDbtNE4DlEQQUioI3RIcY3RchZcQdhqMDs3qYyj2cVdB2wDx797Mv4F-bx-5FeW2Phb5TOM0LoiqmOnG5Az3ZQz3b9ypiDHq_h20yc7dvDrB_SjFNcF-bguhujhCorpw7AcOyk18GnVFuQgJ8OfDgPMbmsGTautNNnq6HZJf3uT5LyBgXKg2e__x5sdkVd5uasqa35Mdha_l-EEUNPCfkgfyANs9xm0
  priority: 102
  providerName: Directory of Open Access Journals
Title Antiosteoporotic Activity of Anthraquinones from Morinda officinalis on Osteoblasts and Osteoclasts
URI https://www.ncbi.nlm.nih.gov/pubmed/19169204
https://www.proquest.com/docview/1531517738
https://www.proquest.com/docview/66854979
https://pubmed.ncbi.nlm.nih.gov/PMC6253840
https://doaj.org/article/bb37f98740014e5dab2a05adf4817874
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPcAFUZ6BdvGBE1LUJHZs54S2VZcKqQUhKu0t8pNWgqRtdv8_M3Z2ly1VL5H8iDXyjO35_JiPkI-VKz3Tlc19CRCFm9rnjQsi965xqhG81BwfCp-di9ML_nVez8cNt2G8VrmaE-NE7XqLe-SHMDJhcZKSqc_XNzmyRuHp6kih8ZjsluCJIHWDnG8AVwmrUzrJZADtD_8kwlk_IKjAQIBba1EM2X-fn3n3uuQ_68_sOXk2Oo50mjS9Rx757gV5crzia3tJ7BQvLoLSenCpe6hFpzZRQ9A-0EiIoG-WVx0G56f4qoSe4eU7p2kKI4Ee-UD7jn7DNgx41YuB6s6ltI3pV-RidvLz-DQfKRRyW9dykQcJKFFXlSyCVgB9iiJwBjOaMEXplOKl8dx4VjMhDQ9CaGYryNPeFUEFydhrsoNyvSXU1E3QlmlTcc8F1OHKR42GYFjhbUaKVWe2dowvjjQXv1vAGdj_7X_9n5FP61-uU3CNhyofoYbWFTEudszob3-14zBrjWEyNEgzCNDP1w6k1UWtXeAKbFHyjOyv9NuOg3VoN6aVkQ_rYtAenp3ozvfLoRVCAZKWTUbeJGPYCAwOdlMV0LTcMpMtQbdLuqvLGMgbsCcDgP3uYaHek6fpCKvMK7ZPdha3S38AntDCTKK5w1fNvkzI7tHJ-fcfk7ir8Bf-ThMa
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq7aFcEG8ChfoAF6SoTuzYyaFC29JqS7sLQq3UW_ATKkHSNrtC_Dl-GzN5bFlAvfVox7FG9oxnPj_mI-RV6hLPdWpjnwBEESbzceGCjL0rXF5IkWiBD4WnMzk5Fe_PsrM18mt4C4PXKoc1sV2oXW1xj3wbLBOck1I8f3txGSNrFJ6uDhQauqdWcDttirH-YceR__kDIFyzc_gO5vt1mh7sn-xN4p5lILZZpuZxUACkdJoqFnQO6ICxIDgYvTQscXkuEuOF8TzjUhkRpNTcplCnvWMhDwo3RMEFrAvcQBmR9d392cdPS8iXgH_szlI5L9j2947y1jcIazAV4Yo3bEkD_hfp_n1h8w8PeHCP3O1DVzrudO0-WfPVA7KxNzDGPSR2jFcnQW1qCOpraEXHtiOnoHWgLSWDvlycV0gPQPFdC53i9T-naZfIAjFBQ-uKfsA-DMT184bqynVl25YfkdNbGd7HZIRyPSXUZEXQlmuTCi8ktBG5b3UqBMOZtxFhw2CWts9wjkQb30pAOjj-5T_jH5E3y18uuvQeNzXexRlaNsTM3G1FffWl7A29NIarUCDRIYBPnzmQVrNMuyBysAYlIrI5zG_ZLxdNea3cEdlafobZw9MbXfl60ZRS5oDlVRGRJ50yXAsMIX6RMuharajJiqCrX6rzr20qcUC_HCD-s5uF2iIbk5PpcXl8ODt6Tu50B2pJnPJNMppfLfwLiMvm5mWv_JR8vm17-w2zMFNB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVgIuiDeBQn2AC1K0ie3YyaFC28eqpXSpEJV6C35CpTZpm10h_iK_ipk8tiyg3np04lgje8YzXzyej5A3zKWea2ZjnwJEESbzceGCjL0rXF5IkWqBF4UPp3LvWHw4yU5WyK_hLgymVQ57YrtRu9riP_IRWCY4J6V4Pgp9WsTRzuT9xWWMDFJ40jrQaeieZsFttuXG-kseB_7nD4Bzzeb-Dqz9W8Ymu1-29-KecSC2WaZmcVAAqjRjKgk6B6SQJEFw2ACkSVKX5yI1XhjPMy6VEUFKzS2DZ9q7JORB4c9RcAdrCrw-AMG1rd3p0ecF_EvBV3bnqpwXyei8o7_1DUIcLEu45BlbAoH_Rb1_J2_-4Q0nD8j9Poyl407vHpIVXz0id7cH9rjHxI4xjRJUqIYAv4ZedGw7ogpaB9rSM-jL-WmFVAEU77jQQ0wFdJp2RS0QHzS0rugnHMNAjD9rqK5c17Zt-wk5vpXpfUpWUa7nhJqsCNpybZjwQkIfkftWv0IwPPE2IskwmaXtq50j6cZZCagH57_8Z_4j8m7xyUVX6uOmzlu4QouOWKW7fVBffSt7oy-N4SoUSHoIQNRnDqTVSaZdEDlYhhIRWR_Wt-y3jqa8VvSIbCxew-rhSY6ufD1vSilzwPWqiMizThmuBYZwv2AJDK2W1GRJ0OU31en3tqw4IGEOcP_FzUJtkDtgd-XH_enBS3KvO1tLY8bXyersau5fQYg2M6973afk622b229DtVeF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antiosteoporotic+Activity+of+Anthraquinones+from+Morinda+officinalis+on+Osteoblasts+and+Osteoclasts&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Wu%2C+Yan-Bin&rft.au=Zheng%2C+Cheng-Jian&rft.au=Qin%2C+Lu-Ping&rft.au=Sun%2C+Lian-Na&rft.date=2009-01-23&rft.pub=MDPI+AG&rft.eissn=1420-3049&rft.volume=14&rft.issue=1&rft.spage=573&rft_id=info:doi/10.3390%2Fmolecules14010573&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3322768441
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon